jeef-needham

2910 results

Introducing the New MongoDB Application Delivery Certification

Since we launched our System Integrators Certification Program in 2022, we have certified over 18,000 associates and architects across MongoDB’s various system integrator, advisory, and consulting services partners. This program gives system integrators a solid foundation in MongoDB and the capabilities that enable them to architect modernization projects and modern, AI-enriched applications. Our customers continue to tell us that they are looking to innovate quicker and take advantage of new technologies, and we want to support them in these goals. They want to work with partners who have in-depth knowledge of the problems they are trying to solve and hands-on experience working with the technology they are implementing. To meet this customer need and continue to evolve our partnership with our system integrators, we have launched the MongoDB Application Delivery Certification . This is a natural evolution of our certification program that provides comprehensive training and equips developers and application delivery leads with the knowledge and skills needed to design, develop, and deploy modern solutions at scale. Driving innovation alongside our partners The MongoDB Application Delivery Certification includes exclusive, partner-only, online learning and hands-on labs, as well as a proctored certification exam that teaches application delivery fundamentals and implementation best practices. Partners can expect carefully curated content on everything from optimizing storage, queries, and aggregation to retrieval-augmented generation (RAG), and how to architect and deliver with Atlas Vector Search . We piloted this new program with our partners at Accenture and Capgemini to ensure it would drive value for all participants. Twenty developers were invited from each company to participate in an initial version of the curriculum and were able to provide their input on its content. Based on their feedback, we created a program that’s completely self-service and flexible, so learners can fit the coursework into their schedules, at their own pace. "With the growth of AI and data-powered applications, Capgemini are investing in our staff to ensure they have the skills required for this transformation,” said Steve Jones, Executive Vice President, Data Driven Business & Collaborative Data Ecosystems at Capgemini. “The MongoDB Application Delivery Certification helps ensure our people have the right skills to help MongoDB and Capgemini collaborate with our clients on delivering the maximum business value possible in the data-powered future." "Accenture, a strategic partner and part of MongoDB’s AI Application Program, leverages MongoDB’s certification program to ensure the highest quality of delivery capability as our clients race to modernize legacy systems to MongoDB,” said Ram Ramalingam, Senior Managing Director and Global Lead, Platform Engineering and Intelligent Edge at Accenture. We understand that for many businesses, speed is a necessity, and keeping pace with the technological innovation in the current market is essential. Now, customers looking to implement MongoDB solutions will be able to do so quickly and easily by working with partners who have achieved the new MongoDB Application Delivery Certification. They can have the peace of mind knowing that these validated partners are extensively equipped to create and deploy robust MongoDB solutions at scale. What’s more, this new certification will provide partners with other opportunities. Partners who have demonstrated deep technical expertise by successfully completing the MongoDB Application Delivery Certification Program may be considered for the MongoDB AI Applications Program (MAAP). This will give them access to a greater network of customers that need help building and deploying modern applications enriched with AI technology. To learn more about MongoDB’s partners helping boost developer productivity with a range of proven technology integrations, visit the MongoDB Partner Ecosystem . Current SI partners can register for the MongoDB Certification Program and MongoDB Application Delivery Certification Program .

September 20, 2024

Ahamove Rides Vietnam’s E-commerce Boom with AI on MongoDB

The energy in Vietnam’s cities is frenetic as millions of people navigate the busy streets with determination and purpose. Much of this traffic is driven by e-commerce, with food and parcel deliveries perched on the back of the country’s countless motorcycles or in cars and trucks. In the first quarter of 2024, online spending in Vietnam grew a staggering 79% over the previous year. Explosive growth like this is expected to continue, raising the industry’s value to $32 billion by 2025 , with 70% of the country’s 100 million population making e-commerce transactions . With massive numbers like this, in logistics, efficiency is king. The high customer expectations for rapid deliveries drive companies like Ahamove to innovate their way to seamless operations with cloud technology. Ahamove is Vietnam’s largest on-demand delivery company, handling more than 200,000 e-commerce, food, and warehouse deliveries daily, with 100,000 drivers and riders plying the streets nationwide. The logistics leader serves a network of more than 300,000 merchants, including regional e-commerce giants like Lazada and Shopee, as well as nationwide supermarket chains and small restaurants. The stakes are high for all involved, so maximizing efficiency is of utmost importance. Innovating to make scale count Online shoppers’ behavior is rarely predictable, and to cope with sudden spikes in daily delivery demand, Ahamove needed to efficiently scale up its operations to enhance customer and end-user satisfaction. Moving to MongoDB Atlas on Amazon Web Services (AWS) in 2019, Ahamove fundamentally changed its ability to meet the rising demand for deliveries and new services that please e-commerce providers, online shoppers, and diners. The scalability of MongoDB is crucial for Ahamove, especially during peak times, like Christmas or Lunar New Year, when the volume of orders surges to more than 200,000 a day. “MongoDB's ability to scale ensures that the database can handle increased loads, including data requests, without compromising performance and leading to quicker order processing and improved user experience,” said Tien Ta, Strategic Planning Manager at Ahamove. One of the powerful services that improves e-commerce across Vietnam is geospatial queries enabled by MongoDB. Using this geospatial data associated with specific locations on Earth's surface, Ahamove can easily locate drivers, map drivers to restaurants to accelerate deliveries, and track orders without relying on third-party services to provide information, which slows deliveries. Meanwhile, the versatility of MongoDB’s developer data platform empowers Ahamove to store its operational data, metadata, and vector embeddings on MongoDB Atlas and seamlessly use Atlas Vector Search to index, retrieve, and build performant generative artificial intelligence (AI) applications. AI evolution Powered by MongoDB Atlas , Ahamove is transforming Vietnam’s e-commerce industry with innovations like instant order matching, real-time GPS vehicle tracking, generative AI chatbots, and services like driver rating and variable delivery times, all available 24 hours a day, seven days a week. In addition to traffic, Vietnam is also famous for its excellent street food. Recognizing the importance of the country’s rapidly growing food and beverage (F&B) industry, which is projected to be worth more than US$27.3 billion in 2024 , Ahamove decided to help Vietnam’s small food vendors benefit from the e-commerce boom gripping the country. Using the latest models, including ChatGPT-4o-mini and Llama 3.1, Ahamove’s fully automated generative AI chatbot on MongoDB integrates with restaurants’ Facebook pages. This makes it easier for hungry consumers to handle the entire order process with the restaurant in natural language, from seeking recommendations to placing orders, making payments, and tracking deliveries to their doorsteps. How AhaFood AI chatbot automates the food order journey “Vietnam’s e-commerce industry is growing rapidly as more people turn to their mobile devices to purchase goods and services,” added Ta. “With MongoDB, we meet this customer need for new purchase experiences with innovative services like generative AI chatbots and faster delivery times.” Anticipated to achieve 10% of food deliveries at Da Nang market and take the solution nationwide in the first half of 2025, AhaFood.AI - Ahamove’s latest initiative, also provides personalized dish recommendations based on consumer demographics, budgets, or historical preferences, helping people find and order their favorite food faster. Moreover, merchants receive timely notifications of incoming orders via the AhaMerchant web portal, allowing them to start preparing dishes earlier. AhaFood.AI also collects and securely stores users’ delivery addresses and phone numbers, ensuring better driver assignment and fulfilling food orders in less than 15 minutes. “Adopting MongoDB Atlas was one of the best decisions we’ve ever made for Ahamove, allowing us to build an effective infrastructure that can scale with growing demand and deliver a better experience for our drivers and customers,” said Ngon Pham, CEO, Ahamove. “Generative AI will significantly disrupt the e-commerce and food industry, and with MongoDB Vector Search we can rapidly build new solutions using the latest database and AI technology.” The vibrant atmosphere of Vietnam's bustling cities is part of the country's charm. Rather than seeking to bring calm to this energy, Vietnam thrives on it. Focusing on improving efficiency and supporting street food vendors in lively urban areas with cloud technology will benefit all. Learn how to build AI applications with MongoDB Atlas . Head over to our quick-start guide to get started with Atlas Vector Search today.

September 19, 2024

MongoDB Enables AI-Powered Legal Searches with Qura

The launch of ChatGPT in November 2022 caught the world by surprise. But while the rest of us marveled at the novelty of its human-like responses, the founders of Qura immediately saw another, more focused use case. “Legal data is a mess,” said Kevin Kastberg, CTO for Qura. “The average lawyer spends tens of hours each month on manual research. We thought to ourselves, ‘what impact would this new LLM technology have on the way lawyers search for information?’” And with that, Qura was born. Gaining trust From its base in Stockholm, Sweden, Qura set about building an AI-powered legal search engine. The team trained custom models and did continual pre-training on millions of pages of publicly available legal texts, looking to bring the comprehensive power of LLMs to the complex and intricate language of the law. “Legal searches have typically been done via keyword search,” said Kastberg. “ We wanted to bring the power of LLMs to this field. ChatGPT created hype around the ability of LLMs to write. Qura is one of the first startups to showcase their far more impressive ability to read. LLMs can read and analyze, on a logical and semantic level, millions of pages of textual data in seconds. This is a game changer for legal search.” Unlike other AI-powered applications, Qura is not interested in generating summaries or “answers” to the questions posed by lawyers or researchers. Instead, Qura aims to provide customers with the best sources and information. “We deliberately wanted to stay away from generative AI. Our customers can be sure that with Qura there is no risk of hallucinations or bad interpretation. Put another way, we will not put an answer in your mouth; rather, we give you the best possible information to create that answer yourselves,” said Kastberg. “Our users are looking for hard-to-find sources, not a gen AI-summary of the basic sources,” he added. With this mantra, the company claims to have reduced research times by 78% while surfacing double the number of relevant sources when compared to similar legal search products. MongoDB in the mix Qura has worked with MongoDB since the beginning. “We needed a document database for flexibility. MongoDB was really convenient as we had a lot of unstructured data with many different characteristics.” In addition to the flexibility to adapt to different data types, MongoDB also offered the Qura team lightning-fast search capabilities. “ MongoDB Atlas search is a crucial tool for our search algorithm agents to navigate our huge datasets. This is especially true of the speed at which we can do efficient text searches on huge corpuses of text, an important part for navigating documents,” said Kastberg. And when it came to AI, a vector database to store and retrieve embeddings was also a real benefit. “Having vector search built into Atlas was convenient and offered an efficient way to work with embeddings and vectorized data.” What's next? Qura's larger goal is to bring about the next generation of intelligent search. The legal space is only the start, and the company has larger ambitions to expand beyond Sweden and into other industries too. “We are live with Qura in the legal space in Sweden and currently onboarding EU customers in the coming month. What we are building towards is a new way of navigating huge text databases, and that could be applied to any type of text data, in any industry,” said Kastberg. Are you building AI apps? Join the MongoDB AI Innovators Program today! Successful participants gain access to free Atlas credits, technical enablement, and invaluable connections within the broader AI ecosystem. If your company is interested in being featured, we’d love to hear from you. Connect with us at ai_adopters@mongodb.com. Head over to our quick-start guide to get started with Atlas Vector Search today.

September 18, 2024

Top Use Cases for Text, Vector, and Hybrid Search

Search is how we discover new things. Whether you’re looking for a pair of new shoes, the latest medical advice, or insights into corporate data, search provides the means to unlock the truth. Search habits—and the accompanying end-user expectations—have evolved along with changes to the search experiences offered by consumer apps like Google and Amazon. The days of the standard of 10 blue links may well be behind us, as new paradigms like vector search and generative AI (gen AI) have upended long-held search norms. But are all forms of search created equal, or should we be seeking out the right “flavor” of search for specific jobs? In this blog post, we will define and dig into various flavors of search, including text, vector and AI-powered search, and hybrid search, and discuss when to use each, including sample use cases where one type of search might be superior to others. Information retrieval revolutionized with text search The concept of text search has been baked into user behavior from the early days of the web, with the rudimentary text box entry and 10 blue link results based on text relevance to the initial query. This behavior and associated business model has produced trillions in revenue and has become one of the fiercest battlegrounds across the internet . Text search allows users to quickly find specific information within a large set of data by entering keywords or phrases. When a query is entered, the text search engine scans through indexed documents to locate and retrieve the most relevant results based on the keywords. Text search is a good solution for queries requiring exact matches where the overarching meaning isn't as critical. Some of the most common uses include: Catalog and content search: Using the search bar to find specific products or content based on keywords from customer inquiries. For example, a customer searching for "size 10 men trainers" or “installation guide” can instantly find the exact items they’re looking for, like how Nextar tapped into Atlas Search to enable physical retailers to create online catalogs Covid-19 pandemic. In-application search: This is well-suited for organizations with straightforward offerings to make it easier for users to locate key resources, but that don’t require advanced features like semantic retrieval or contextual re-ranking. For instance, if a user searches for "songs key of G," they can quickly receive relevant materials. This streamlines asset retrieval, allowing users to focus on the task they are trying to achieve and boosts overall satisfaction. For a company like Yousician , Atlas Search enabled their 20 million monthly active users to tackle their music lessons with ease. Customer 360: Unifying data from different sources to create a single, holistic view. Consolidated information such as user preferences, purchase history, and interaction data can be used to enhance business visibility and simplify the management, retrieval, and aggregation of user data. Consider a support agent searching for all information related to customer “John Doe." They can quickly access relevant attributes and interaction history, ensuring more accurate and efficient service. Helvetia was able to achieve success after migrating to MongoDB and using Atlas Search to deliver a single, 360-degree real-time view across all customer touchpoints and insurance products. AI and a new paradigm with vector search With advances in technology, vector search has emerged to help solve the challenge of providing relevant results even when the user may not know what they’re looking for. Vector search allows you to take any type of media or content, convert it into a vector using machine learning algorithms, and then search to find results similar to the target term. The similarity aspect is determined by converting your data into numerical high-dimensional vectors, and then calculating the distance between them to determine relevance—the closer the vector, the higher the relevance. There is a wide range of practical, powerful use cases powered by vector search—notably semantic search and retrieval-augmented generation (RAG) for gen AI. Semantic search focuses on meaning and prioritizes user intent by deciphering not just what users type but why they're searching, in order to provide more accurate and context-oriented search results. Some examples of semantic search include: Content/knowledge base search: Vast amounts of organizational data, structured and unstructured, with hidden insights, can benefit significantly from semantic search. Questions like “What’s our remote work policy?” can return accurate results even when the source materials do not contain the “remote” keyword, but rather have “return to office” or “hybrid” or other keywords. A real-world example of content search is the National Film and Sound Archive of Australia , which uses Atlas Vector Search to power semantic search across petabytes of text, audio, and visual content in its collections. Recommendation engines: Understanding users’ interests and intent is a strong competitive advantage–like how Netflix provides a personalized selection of shows and movies based on your watch history, or how Amazon recommends products based on your purchase history. This is particularly powerful in e-commerce, media & entertainment, financial services, and product/service-oriented industries where the customer experience tightly influences the bottom line. A success story is Delivery Hero , which leverages vector search-powered real-time recommendations to increase customer satisfaction and revenue. Anomaly detection: Identifying and preventing fraud, security breaches, and other system anomalies is paramount for all organizations. By grouping similar vectors and using vector search to identify outliers, potential threats can be detected early, enabling timely responses. Companies like VISO TRUST and Extrac are among the innovators that build their core offerings using semantic search for security and risk management. With the rise of large language models (LLMs), vector search is increasingly becoming essential in gen AI application development. It augments LLMs by providing domain-specific context outside of what the LLMs “know,” ensuring relevance and accuracy of the gen AI output. In this case, the semantic search outputs are used to enhance RAG. By providing relevant information from a vector database, vector search helps the RAG model generate responses that are more contextually relevant. By grounding the generated text in factual information, vector search helps reduce hallucinations and improve the accuracy of the response. Some common RAG applications are for chatbots and virtual assistants, which provide users with relevant responses and carry out tasks based on the user query, delivering enhanced user experience. Two real-world examples of such chatbot implementations are from our customers Okta and Kovai . Another popular application is using RAG to help generate content like articles, blog posts, scripts, code, and more, based on user prompts or data. This significantly accelerates content production, allowing organizations including Novo Nordisk and Scalestack to save time and produce content at scale, all at an accuracy level that was not possible without RAG. Beyond RAG, an emerging vector search usage is in agentic systems . Such a system is an architecture encompassing one or more AI agents with autonomous decision-making capabilities, able to access and use various system components and resources to achieve defined objectives while adapting to environmental feedback. Vector search enables efficient and semantically meaningful information retrieval in these systems, facilitating relevant context for LLMs, optimized tool selection, semantic understanding, and improved relevance ranking. Hybrid search: The best of both worlds Hybrid search combines the strengths of text search with the advanced capabilities of vector search to deliver more accurate and relevant search results. Hybrid search shines in scenarios where there's a need for both precision (where text search excels) and recall (where vector search excels), and where user queries can vary from simple to complex, including both keyword and natural language queries. Hybrid search delivers a more comprehensive, flexible information retrieval process, helping RAG models access a wider range of relevant information. For example, in a customer support context, hybrid search can ensure that the RAG model retrieves not only documents containing exact keywords but also semantically similar content, resulting in more informative and helpful responses. Hybrid search can also help reduce information overload by prioritizing the most relevant results. This allows RAG models to focus on processing and understanding the most critical information, leading to faster, more accurate responses, and improving the user experience. Powering your AI and search applications with MongoDB As your organization continues to innovate in the rapidly evolving technology ecosystem, building robust AI and search applications supporting customer, employee, and stakeholder experiences can deliver powerful competitive advantages. With MongoDB, you can efficiently deploy full-text search , vector search , and hybrid search capabilities. Start building today—simplify your developer experience while increasing impact in MongoDB’s fully-managed, secure vector database, integrated with a vast AI partner ecosystem , including all major cloud providers, generative AI model providers, and system integrators. Head over to our quick-start guide to get started with Atlas Vector Search today.

September 16, 2024

AI Agents, Hybrid Search, and Indexing with LangChain and MongoDB

Since we announced integration with LangChain last year, MongoDB has been building out tooling to help developers create advanced AI applications with LangChain . With recent releases, MongoDB has made it easier to develop agentic AI applications (with a LangGraph integration), perform hybrid search by combining Atlas Search and Atlas Vector Search , and ingest large-scale documents more effectively. For more on each development—plus new support for the LangChain Indexing API—please read on! The rise of AI agents Agentic applications have emerged as a compelling next step in the development of AI. Imagine an application able to act on its own, working towards complicated goals and drawing on context to create a strategy. These applications leverage large language models (LLMs) to dynamically determine their execution path, breaking free from the constraints of traditional, deterministic logic. Consider an application tasked with answering a question like "In our most profitable market, what is the current weather?" While a traditional retrieval-augmented generation (RAG) app may falter, unable to obtain information about “current weather,” an agentic application shines. The application can intelligently deduce the need for an external API call to obtain current weather information, seamlessly integrating this with data retrieved from a vector search to identify the most profitable market. These systems take action and gather additional information with limited human intervention, supplementing what they already know. Building such a system is easier than ever thanks to MongoDB’s continued work with LangGraph. Unleashing the power of AI agents with LangGraph and MongoDB Because it now offers LangGraph—a framework for performing multi-agent orchestration—LangChain is more effective than ever at simplifying the creation of applications using LLMs, including AI agents. These agents require memory to maintain context across multiple interactions, allowing users to engage with them repeatedly while the agent retains information from previous exchanges. While basic agentic applications can utilize in-memory structures, for more complicated use cases these structures are not sufficient. MongoDB allows developers to build stateful, multi-actor applications with LLMs, storing and retrieving the “checkpoints” needed by LangGraph.js. The new MongoDBSaver class makes integration simpler than ever before, as LangGraph.js is able to utilize historical user interactions to enhance agentic AI. By segmenting this history into checkpoints, the library allows for persistent session memory, easier error recovery, and even the ability to “time travel”—allowing users to jump back in the graph to a previous state to explore alternative execution. The MongoDBSaver class implements all of this functionality right into LangGraph.js, with sensible defaults and MongoDB-specific optimization. To learn more, please visit the source code , the documentation , and our new tutorial (which includes both a written and video version). Improve retrieval accuracy with Hybrid Search Retriever Hybrid search is particularly well-suited for queries that have both semantic and keyword-based components. Let’s look at an example, a query such as "find recent scientific papers about climate change impacts on coral reefs that specifically mention ocean acidification". This query would use a hybrid search approach, combining semantic search to identify papers discussing climate change effects on coral ecosystems, keyword matching to ensure "ocean acidification" is mentioned, and potential date-based filtering or boosting to prioritize recent publications. This combination allows for more comprehensive and relevant results than either semantic or keyword search alone could provide. With our recent release of Retrievers in LangChain-MongoDB, building such advanced retrieval patterns is more accessible than ever. Retrievers are how LangChain integrates external data sources into LLM applications. MongoDB has added two new custom, purpose-built Retrievers to the langchain-mongodb Python package, giving developers a unified way to perform hybrid search and full-text search with sensible defaults and extensive code annotation. These new classes make it easier than ever to use the full capabilities of MongoDB Vector Search with LangChain. The new MongoDBAtlasFullTextSearchRetriever class performs full-text searches using the Best Match 25 (BM25) analyzer. The MongoDBAtlasHybridSearchRetriever class builds on this work, combining the above implementation with vector search, fusing the results with Reciprocal Rank Fusion (RRF) algorithm. The combination of these two techniques is a potent tool for improving the retrieval step of a Retrieval-Augmented Generation (RAG) application, enhancing the quality of the results. To find out more, please dive into the MongoDBAtlasHybridSearchRetriever and MongoDBAtlasFullTextSearchRetriever classes. Seamless synchronization using LangChain Indexing API In addition to these releases, we’re also excited to announce that MongoDB now supports the LangChain Indexing API, allowing for seamless loading and synchronization of documents from any source into MongoDB, leveraging LangChain's intelligent indexing features. This new support will help users avoid duplicate content, minimize unnecessary rewrites, and optimize embedding computations. The LangChain Indexing API's record management system ensures efficient tracking of document writes, computing hashes for each document, and storing essential information like write time and source ID. This feature is particularly valuable for large-scale document processing and retrieval applications, offering flexible cleanup modes to manage documents effectively in MongoDB vector search. To read more about how to use the Indexing API, please visit the LangChain Indexing API Documentation . We’re excited about these LangChain integrations and we hope you are too. Here are some resources to further your learning: Check out our written and video tutorial to walk you through building your own JavaScript AI agent with LangGraph.js and MongoDB. Experiment with Hybrid search retrievers to see the power of Hybrid search for yourself. Read the previous announcement with LangChain about Semantic Caching.

September 12, 2024

Building Gen AI with MongoDB & AI Partners | August 2024

As the AI landscape continues to evolve, companies, industries, and developers seek tailored solutions to their unique challenges. Gone are the days when general-purpose AI models could be applied universally. Now, organizations are looking for industry-specific applications, verticalized AI solutions, and specialized tools to gain a competitive edge and best serve their customers. And as gen AI use cases have diversified—from healthcare diagnostics and autonomous driving, to personalized recommendations and creative content generation—so has the technology stack supporting them. The complexity of building and deploying AI models has led to the rise of specialized AI frameworks and platforms that streamline workflows and optimize performance for specific use cases. In this context, having the right AI stack is essential for driving innovation. AI development is no longer just about choosing the best model but also about selecting the right tools, libraries, and infrastructure to support that model across the board. All of which makes partnerships (and combining technical strengths) increasingly important to innovating with AI. Take, for example, our most recent integration with LangChain: the MongoDB-LangChain partnership exemplifies how having the right components in an AI stack allows teams to focus on innovating instead of managing infrastructure bottlenecks. By combining LangGraph with MongoDB’s vector search capabilities, developers can create more sophisticated, high-performing AI applications. This integration allows for the seamless development of agentic AI systems capable of generating actionable insights and delivering complex tasks. To learn more about building powerful AI agents with LangGraph.js and MongoDB, plus our recent work making vector search even more versatile with custom LangChain Retrievers, check out our tutorial . Welcoming new AI partners MongoDB’s partnership with LangChain highlights the importance of building adaptable solutions that can grow and change as the needs of developers and customers grow and change. Which is why MongoDB is always on the lookout for innovative partners and solutions—in August we welcomed five new AI partners that offer product integrations with MongoDB. Read on to learn more about each great new partner! BuildShip BuildShip is a low-code visual backend and workflow builder to instantly create APIs, scheduled tasks, backend cloud jobs, and automation, powered by AI. " We at BuildShip are thrilled to partner with MongoDB to introduce an innovative low-code approach for rapidly building AI workflows and backend tasks in a visual and scalable manner,” said Harini Janakiraman, CEO of BuildShip.com. “MongoDB offers a comprehensive data stack for AI developers and organizations, enabling them to efficiently build scalable databases and access vector or hybrid search options for their products. Our collaboration provides customizable low-code templates that allow for easy integration of MongoDB databases with a variety of AI models and tools. This enables teams and companies to quickly build powerful APIs, automations, vector search, and scheduled tasks, unlocking organizational efficiency and driving product innovation.” Inductor Inductor is a platform to prototype, evaluate, improve, and observe LLM apps and features, helping developers ship high-quality LLM-powered functionality rapidly and systematically. “ We’re excited to partner with MongoDB to enable companies to rapidly create production-grade LLM applications, by combining MongoDB's powerful vector search with Inductor’s developer platform enabling streamlined, systematic workflows for developing RAG-based applications,” said Ariel Kleiner, CEO of Inductor. “While many LLM-powered demos have been created, few have successfully evolved into production-grade applications that deliver business wins. Together, Inductor and MongoDB enable enterprises to build impactful, needle-moving LLM applications, accelerating time to market and delivering real value to customers.” Metabase Metabase is the easy-to-use, open source Business Intelligence tool that lets everyone work with data, with or without SQL, for internal and customer-facing, embedded analytics. "This partnership is an important step forward for NoSQL database analytics. By integrating Metabase with MongoDB , two popular open-source tools, we are making it easier for users to quickly get valuable insights from their MongoDB data,” explained Luiz Arakaki, Product Manager at Metabase. “Our goal is to create a better integration between the tools to offer more advanced features and stability, simplifying the use of NoSQL databases for advanced analytics.” Shakudo Shakudo is a comprehensive development platform that lets data professionals develop, run, and deploy data pipelines and applications in an all-in-one integrated environment. “ Shakudo is thrilled to be partnering with MongoDB to streamline the entire retrieval-augmented generation (RAG) development lifecycle. Together we help companies test and optimize their RAG features for faster PoC, and production deployment,” noted Yevgeniy Vahlis, CEO of Shakudo. “MongoDB has made it dead simple to launch a scalable vector database with operational data, and Shakudo brings industry leading AI tooling to that data. Our collaboration speeds up time to market and helps companies get real value to customers faster.” VLM Run VLM Run is a versatile API that enables accurate JSON extraction from any visual content such as images, videos, and documents, helping users to integrate visual AI to applications. “ VLM Run is excited to partner with MongoDB to help enterprises accurately extract structured insights from visual content such as images, videos and visual documents,” said Sudeep Pillai, Co-Founder and CEO of VLM Run. “Our combined solution will enable enterprises to turn their often-untapped unstructured visual content into actionable, queryable business intelligence.” But wait, there's more! To learn more about building AI-powered apps with MongoDB, check out our AI Resources Hub , and stop by our Partner Ecosystem Catalog to read about our integrations with MongoDB’s ever-evolving AI partner ecosystem. Head over to our quick-start guide to get started with Atlas Vector Search today.

September 11, 2024

Boosting Customer Lifetime Value with Agmeta and MongoDB

Nobody likes calling customer service. The phone trees, the wait times, the janky music, and how often your issue just isn’t resolved can make the whole process one most people would rather avoid. For business owners, the customer contact center can also be a source of frustration, simultaneously creating customer churn and unhappiness, while also acting as a black hole of information as to why that churn occurred. It doesn’t have to be this way. What if instead, customer service centers offered valuable ways to increase the Customer Lifetime Value (CLTV) of customers, pipelines of upsell opportunities, and valuable sources of information? That’s the goal of Agmeta.AI , a startup dedicated to giving businesses actionable insights to fight churn, identify key customers primed for upsell, and improve customer service overall. Lost in translation “We started with a very simple thesis±people call into contact centers because they have a problem. That is a real make-or-break moment. The opportunity for churn is very high… or that customer can be a great target for upselling,” said Samir Agarwal, CEO and co-founder of Agmeta. “All of this data sits in a contact center, and businesses don't ever get to see it,” he added. According to Samir, even the businesses that think they are collecting useful information on customer service interactions are instead collecting incorrect or incomplete information. Or worse, they’re analyzing the information they do record incorrectly. Every business today talks about the importance of customer experience (CX), but the challenge businesses face is how they quantify that CX. Many contact centers substitute call sentiment for CX, or use keywords to determine canned responses. For example, imagine if a customer calls into a service center and they have what appears to be a positive conversation with an agent. They use words and phrases like “thank you,” and “yes, I understand,” and reply “no, I do not have anything else to ask” at the end of a call in which their complaint is not resolved. After putting the phone down, the customer goes on to cancel the service, or worse, initiate a chargeback request with their credit card provider. In some businesses the customer service agent may manually mark such a call as positive’ The agent, after all, ‘answered all the customers' concerns.’ As this example illustrates, the sentiment of a call should not be confused with the measure of customer experience. Another common way businesses try to gather feedback is by sending a post-call survey. However, a problem with this approach is that industry response rates for surveys are close to 3%. This implies that decisions get made on that small sample, and may not take into account the other 97% of the customers who didn’t respond to the survey. Survey results are also frequently skewed, as those most likely to respond are also the ones who were most unhappy with the contact center interaction and want their voices heard. The MongoDB advantage Using machine learning and generative AI, backed by MongoDB Atlas , Agmeta’s software understands not only the content of the call, but the context too. Taking our example above, Agmeta’s software would detect that the customer is unhappy, despite their polite and ‘positive’ sounding conversation with the agent, and flag the customer as a potential churn or chargeback candidate in need of immediate attention. “We will give you a CSAT (customer satisfaction) score and a reason for that CSAT score within seconds of the call ending±for 100% of the interactions,” said Samir. For Agmeta to work, Samir and his team had to have a database ready to accept all kinds of data, including voice recordings, unstructured text, and constantly evolving schema. “We didn’t have a fixed schema, we needed a database that was as flexible as Agmeta needed to be. I’ve known of MongoDB forever, so when I started to look at databases it seemed an obvious choice to me,” he said. The ability to quickly and easily work with vectorized data for gen AI was also crucial. “MongoDB provides vector search capabilities in an operational database. Rather than having to add a bolt on a vector database and figure out the ETL, MongoDB solved this issue for me in a single product. The way I look at it, if you do a good job on Vector search, then my life as an entrepreneur and software builder becomes much easier,” Samir said. After assessing database options and multiple LLMs, Samir and his team chose to pair MongoDB Atlas with Google Cloud, taking advantage of Gemini on Google’s generative AI platform. “With Atlas on Google Cloud, there are zero worries about database administration, maintenance, and availability. This frees us up to focus on creating business value,” Samir said. “Another benefit of using MongoDB is the flexibility to use the customer’s MongoDB setup which gives the customer the peace of mind from the perspective of security and privacy of their data.” Customer service first With the power of generative AI and MongoDB, Agmeta can deliver a CSAT score that measures the customers’ true takeaway from the call. The CSAT score is a multi-dimensional score that takes into account areas including resolution (as the customer sees it), politeness, the onus on the customer, and many other attributes. In the short term, the primary use for this technology is to detect and flag those customers at risk of churn, filing a charge dispute with their card provider, or potentially upselling, giving businesses an opportunity to “see” what they could never find out before. “When we talk to customers, the number one thing they are concerned about is customer churn. Right now they operate completely blind with no idea why people are leaving them,” said Samir. “One large telecoms customer Agmeta is in talks with had no idea where their churn was happening. But when we described being able to assign every customer a CSAT score, they were very excited,” he added. And it’s not just about preventing churn. Businesses can identify happy customers too, targeting them for upsell opportunities. “One of the things we do is spot patterns of unanswered questions from product support interactions,” Samir added. “When we see ‘Oh look, suddenly there are a lot more calls because of a release,’ then we can flag this to product teams as a must-fix issue.” The future of customer service Agmeta aims to amalgamate customer information with current and past experiences to provide businesses a more holistic±and nuanced—picture of their customers, and more precise next steps they can take. “What we want to do is look back in time and see what else happened with this customer,” Samir said. “The goal is to provide businesses with targeted directives to minimize churn and grow customer lifetime value.” Retrieval-augmented generation plays a key role in Agmeta’s vision. This also means an expanded role for both MongoDB’s vector database as the source of information against which semantic searches can be run, as well as Gemini for both analysis and presentation of the directives for the business. You can learn more about how innovators across the world are using MongoDB by reviewing our Building AI case studies . If your team is building AI apps, sign up for the AI Innovators Program . Successful companies get access to free Atlas credits and technical enablement, as well as connections into the broader AI ecosystem. Additionally, if your company is interested in being featured in a story like this, we'd love to hear from you! Reach out to us at ai_adopters@mongodb.com . Head over to our quick-start guide to get started with Atlas Vector Search today.

September 10, 2024

Atlas Stream Processing: A Cost-Effective Way to Integrate Kafka and MongoDB

Developers around the world use Apache Kafka and MongoDB together to build responsive, modern applications. There are two primary interfaces for integrating Kafka and MongoDB. In this post, we’ll introduce these interfaces and highlight how Atlas Stream Processing offers an easy developer experience, cost savings, and performance advantages when using Apache Kafka in your applications. First, we will provide some background. The Kafka Connector For many years, MongoDB has offered the MongoDB Connector for Kafka (Kafka Connector). The Kafka Connector enables the movement of data between Apache Kafka and MongoDB, and thousands of development teams use it. While it supports simple message transformation, developers largely handle data processing with separate downstream tools. Atlas Stream Processing More recently , we announced Atlas Stream Processing—a native stream processing solution in MongoDB Atlas. Atlas Stream Processing is built on the document model and extends the MongoDB Query API to give developers a powerful, familiar way to connect to streams of data and perform continuous processing. The simplest stream processors act similarly to the primary Kafka Connector use case, helping developers move data from one place to another, whether from Kafka to MongoDB or vice versa. Check out an example: // Connect to MongoDB Atlas database using $source. s = { $source: { connectionName: 'myAtlasCluster', db: myDB', coll: ‘myCollection’ } } // Write your data to a Kafka topic using $emit. e = { $emit: { connectionName: 'myKafkaConnection', topic: myTopic } } // Create your processor and start it! sp.createStreamProcessor("mongoDBtoKafka", [s,e]) sp.mongoDBToKafka.start() Beyond making data movement easy, Atlas Stream Processing enables advanced stream processing use cases not possible in the Kafka Connector. One common use case is enriching your event data by using $lookup as a stage in your stream processor. In the example above, a developer can perform this enrichment by simply adding a lookup stage in the pipeline between source and sink. While the Kafka Connector can perform some single message transformations, Atlas Stream Processing makes for both an easier overall experience and gives teams the ability to perform much more complex processing. Choosing the right solution for your needs It’s important to note that Atlas Stream Processing was built to simplify complex, continuous processing and streaming analytics rather than as a replacement for the Kafka Connector. However, even for the more basic data movement use cases referenced above, it provides a new alternative to the Kafka Connector. The decision will depend on data movement and processing needs. Three common considerations we see teams making to help with this choice are ease of use, performance, and cost. Ease of use The Kafka Connector runs on Kafka Connect. If your team already heavily uses Kafka Connect across many systems beyond MongoDB, this may be a good reason to keep it in place. However, many teams find configuring, monitoring, and maintaining connectors costly and cumbersome. In contrast, Atlas Stream Processing is a fully managed service integrated into MongoDB Atlas. It prioritizes ease of use by leveraging the MongoDB Query API to process your event data continuously. Atlas Stream Processing balances simplicity (no managing servers, utilizing other cloud platforms, or learning new tools) and processing power to reduce development time, decrease infrastructure and maintenance costs, and build applications quicker. Performance High performance is increasingly a priority with all data infrastructure, but it’s often a must-have for use cases that rely on streams of event data (commonly from Apache Kafka) to deliver an application feature. Many of our early customers have found Atlas Stream Processing more performant than similar data movement in their Kafka Connector configurations. By connecting directly to your data in Kafka and MongoDB and acting on it as needed, Atlas Stream Processing eliminates the need for a tool in-between. Cost Finally, managing costs is a critical consideration for all development teams. We’ve priced Atlas Stream Processing competitively when compared to typical Kafka Connector configurations. Most hosted Kafka providers charge per task. That means each additional source and sink will generate a separate data transfer and storage cost that linearly scales as you expand. Atlas Stream Processing charges per Stream Processing Instance (SPI) worker and each worker supports up to four stream processors. This means potential cost savings when running similar configurations to the Kafka Connector. See more details in the documentation . Atlas Stream Processing launched just a few months ago. Developers are already using it for a wide range of use cases, like managing real-time inventories, serving contextually relevant recommendations, and optimizing yields in industrial manufacturing facilities. We can’t wait to see what you build and hear about your experience! Ready to get started? Log in to Atlas today. Already a Kafka Connector user? Dig into even more details and get started using our tutorial .

September 9, 2024

Exploring New Security, Billing, and Customization Features in Atlas Charts

MongoDB is excited to announce a few new updates to Atlas Charts that enable you to securely share insights, gain deeper visibility into expenses, and customize your most frequently used data visualizations. Based on specific feedback received from users of our native visualization tool, these significant improvements will make data analysis even more productive. We: Improved security in Atlas Charts for passcode-protected public dashboards Increased visibility into Atlas spending through an updated billing dashboard Introduced new customization for table charts through hyperlinks and hidden columns Secure insights with passcode-protected public dashboards First, there’s the new passcode-protected public dashboards feature that brings an extra layer of security to publicly shared dashboards—we understand that not everyone who benefits from Atlas Charts operates within MongoDB Atlas. Alongside the ability to schedule email reports and support for publicly-shared dashboards , we’re offering a new and secure way to spread insights with the launch of our latest feature. Add an extra layer of security to previously publicly shared dashboards, ensuring that only authorized users with the passcode can access your data. Enabling passcode protection on a dashboard is simple. As a dashboard owner, a new option is available to protect dashboard links with a passcode when sharing it publicly. Check the box to protect your public link with a passcode Once enabled, a passcode is automatically generated and can be copied to the clipboard (and regenerated on demand as needed). Viewers navigating to dashboards via the public link will see a new screen prompting them to enter a passcode. Once authenticated successfully, they can view the dashboard just as before. Easily access your dashboards by inputting your password when prompted Whether you're sharing insights with clients, stakeholders, or team members, rest assured that your data remains easily accessible yet secure. To learn more about the different ways we support dashboard sharing, check out our documentation . What’s new in the Atlas Charts billing dashboard Next, we continue to make enhancements to the MongoDB Atlas Charts billing dashboard , all of which provide insights into Atlas expenses. We are delighted to share that it’s now possible to see resource tags data, as well as billing data from all linked organizations inside the Atlas Charts billing dashboard. Additionally, users can now ingest billing data from another organization, provided they possess the organization’s API keys. These newly introduced features rely on the availability of billing data within the organization. And for those leveraging resource tags, the billing data will seamlessly integrate, empowering users to generate personalized charts or to incorporate tailored dashboard filters within the Atlas Charts billing dashboard. If cross-organization billing is enabled, editing the configuration will ingest the linked organization’s billing data for the last three months, with the option to extend this period to up to a year by creating a new ingestion. Project tags data in the Atlas Charts billing dashboard Resource tags are now seamlessly integrated into billing data and can be included in any of the charts or the dashboard filters inside the Atlas billing dashboard. For example, our MongoDB organization uses the Atlas auto-suggested tags “application” and “environment,” alongside a custom resource tag labeled "team." The following chart uses the tags data and shows the billing cost per team and per environment. A chart which depicts cost per team and environment using tags The subsequent chart presents the billing cost allocated per project and team, providing valuable insights into the primary cost drivers for each team's projects. A chart depicting cost allocated per project and team Users can also add a dashboard filter to the “tags” field, which will allow them to see the whole dashboard based on the selected tag values. In the next example, we have selected a specific “team” : “Charts” from the tags dashboard filter, so we can see all of the billing insights per team thanks to our custom tag. Billing insights filtered by specific "charts" team in an intuitive dashboard Linked organization’s data in the Atlas Charts billing dashboard For complex Atlas projects spanning multiple organizations, the Atlas Charts billing dashboard now seamlessly integrates billing data from all linked organizations. The most productive use case is to add a dashboard filter based on the "organizationId" to enable filtering data according to specific organizations for a more granular analysis of the spending. Dashboard filtered by the organizationID field to show insights for one organization Billing data from another organization Users can now ingest billing data from other organizations that are not directly linked, provided they possess authorization API keys, bringing the data you need to where you are. Provide the API key to ingest billing data from other organizations These new features in the Atlas Charts billing dashboard are designed to provide richer, more detailed insights into organization spend. Check out our documentation and our previous blog post to learn more about it. Hyperlinks and hidden columns for tables in Atlas Charts Of all the data visualization methods available in Atlas Charts, table charts rank as one of the most popular among our users. So it should come as no surprise that one of the most highly requested features from our customers is the ability to format columnar data as hyperlinks. We're excited to announce that this is now possible in Atlas Charts through the new hyperlink customization options available for table charts . With hyperlink customization, you can format columnar data as hyperlinks using any of the following URI protocols: http, https, mailto, or tel, and can be constructed statically or dynamically using encoded fields. Let’s assume we’ve created a table using the sample movies dataset in Atlas, with encodings like title, imdb.id, runtime, genre, poster_display—which is a calculated field —and more. Customization panel in Atlas Charts To turn movie titles into clickable links that direct users to their respective IMDB pages, navigate to the customization panel and click into the hyperlinking feature in the fields tab . We will format the title field as a hyperlink which links to the Internet Movie Database (IMDB) entry for that movie. IMDB URLs are formatted as follows, where id needs to be substituted with the value of the imdb.id field for each document. https://www.imdb.com/title/tt<id>/ Customize the “title” field in the table chart to link to IMDB using the “imdb.id” field in the URI input. Below, a preview displays the fully formatted URI with fields substituted for their values, helping to ensure it’s correct before we save it to be applied to the chart. Preview of URI in the hyperlinking panel Since we only need the imdb.id field to be encoded for the purpose of constructing the URI applied to the title field, we can hide the column from rendering using another new customization option. Select the imdb.id field in the customization panel, and toggle on the “Hide Column” option. Toggle "Hide Column" We also support using URI values directly from fields (provided they use one of the supported protocols). Let’s see this in action by creating a hyperlink to the movie poster. In the URI input, trigger the encoded field menu using the @ keyboard shortcut, and select the poster field. Similar to the previous example, a preview will be displayed. After saving and applying the hyperlink formatting, we can hide the rendering of the poster field as needed to keep the chart clean. Use the @ keyboard shortcut to trigger the encoded field menu All these options are accessible in the customization panel, making it straightforward to enhance table charts with interactive hyperlinks. For more detailed instructions, visit our documentation . As we conclude this roundup, we hope you’re as excited about these updates as we are. The Atlas Charts team is dedicated to continuously improving Atlas Charts to meet your needs and enhance your data visualization experience. Stay tuned for more updates, and happy charting! New to Atlas Charts? Get started today by logging into or signing up for MongoDB Atlas , deploying or selecting a cluster, and activating Charts for free.

September 5, 2024

Saving Energy, Smarter: MongoDB and Cedalo for Smart Meter Systems

The global energy landscape is undergoing a significant transformation, with energy consumption rising 2.2% in 2023, surpassing the 2010-2019 average of 1.5% per year. This increase is largely due to global developments in BRICS member countries—Brazil, Russia, India, China, and South Africa. As renewable sources like solar power and wind energy become more prevalent (in the EU, renewables accounted for over 50% of the power mix in the first quarter of 2024 ), ensuring a reliable and efficient energy infrastructure is crucial. Smart meters, the cornerstone of intelligent energy networks, play a vital role in this evolution. According to IoT analyst firm Berg Insight, the penetration of smart meters is skyrocketing, with the US and Canada expected to reach nearly 90% adoption by 2027, whereas China is expected to account for as much as 70–80% of smart electricity meter demand across Asia in the next few years. This surge is indicative of a growing trend towards smarter, more sustainable energy solutions. In Central Asian countries, the Asian Development Bank is supporting the fast deployment of smart meters to save energy and improve the financial position of countries' power utilities. This article will delve into the benefits of smart meters, the challenges associated with managing their data, and the innovative solutions offered by MongoDB and Cedalo. The rise of smart meters Smart meters, unlike traditional meters that require manual readings, collect and transmit real-time energy consumption data directly to energy providers. This digital transformation offers numerous benefits, including: Accurate Billing: Smart meters eliminate the need for estimations, ensuring that consumers are billed precisely for the energy they use. Personalized Tariffs: Energy providers can offer tailored tariffs based on individual consumption patterns, allowing consumers to take advantage of off-peak rates, special discounts, and other cost-saving opportunities. Enhanced Grid Management: Smart meter data enables utilities to optimize grid operations, reduce peak demand, and improve overall system efficiency. Energy Efficiency Insights: Consumers can gain valuable insights into their energy usage patterns, identifying areas for improvement and reducing their overall consumption. With the increasing adoption of smart meters worldwide, there is a growing need for effective data management solutions to harness the full potential of this technology. Data challenges in smart meter adoption Despite the numerous benefits, the widespread adoption of smart meters also presents significant data management challenges. To use smart metering, power utility companies need to deploy a core smart metering ecosystem that includes the smart meters themselves, the meter data collection network, the head-end system (HES), and the meter data management system (MDMS). Smart meters collect data from end consumers and transmit it to the data aggregator via the Local Area Network (LAN). The transmission frequency can be adjusted to 15 minutes, 30 minutes, or hourly, depending on data demand requirements. The aggregator retrieves the data and then transmits it to the head-end system. The head-end system analyzes the data and sends it to the MDMS. The initial communications path is two-way, signals or commands can be sent directly to the meters, customer premise, or distribution device. Figure 1: End-to-end data flow for a smart meter management system / advanced metering infrastructure (AMI 2.0) When setting up smart meter infrastructure, power, and utility companies face several significant data-related challenges: Data interoperability: The integration and interoperability of diverse data systems pose a substantial challenge. Smart meters must be seamlessly integrated with existing utility systems and other smart grid components often requiring extensive upgrades and standardization efforts. Data management: The large volume of data generated by smart meters requires advanced data management and analytics capabilities. Utilities must implement robust data storage, processing, and analysis solutions to handle real-time time series data streams storage, analysis for anomaly detection, and trigger decision-making processes. Data privacy: Smart meters collect vast amounts of sensitive information about consumer energy usage patterns, which must be protected against breaches and unauthorized access. Addressing these challenges is crucial for the successful deployment and operation of smart meter infrastructure. MQTT: A cornerstone of smart meter communication MQTT , a lightweight publish-subscribe protocol, shines in smart meter communication beyond the initial connection. It's ideal for resource-constrained devices on low-bandwidth networks, making it perfect for smart meters. While LoRaWAN or PLC handle meter-to-collector links, MQTT bridges Head-End Systems (HES) and Meter Data Management Systems (MDMS). Its efficiency, reliable delivery, and security make it well-suited for large-scale smart meter deployments. Cedalo MQTT platform and MongoDB: A powerful combination Cedalo , established in 2017, is a leading German software provider specializing in MQTT solutions. Their flagship product, the Cedalo MQTT Platform, offers a comprehensive suite of features, including the Pro Mosquitto MQTT broker and Management Center . Designed to meet the demands of large enterprises, the platform delivers high availability, audit trail logging, persistent queueing, role-based access control, SSO integration, advanced security, and enhanced monitoring. To complement the platform's capabilities, MongoDB's Time Series collections provide a robust and optimized solution for storing and analyzing smart meter data. These collections leverage a columnar storage format and compound secondary indexes to ensure efficient data ingestion, reduced disk usage, and rapid query processing. Additionally, window functions enable flexible time-based analysis, making them ideal for IoT and analytical applications. Figure 2: MongoDB as the main database for the meter data management system where it receives meter data via Pro Mosquitto MQTT broker. Let us revisit Figure 1 and leverage both the Cedalo MQTT Platform and MongoDB in our design. In Figure 2, the Head-end System (HES) can use MQTT to filter, aggregate, and convert data before storing it in MongoDB. This data flow can be established using the MongoDB Bridge plugin provided by Cedalo. Since the MQTT payload is JSON, it is ideal to store it in MongoDB as the database stores data in BSON (Binary JSON). The MongoDB Bridge plugin offers advanced features such as flexible data import settings (specifying target databases and collections, choosing authentication methods, and selecting specific topics and message fields to import) and advanced collection mapping (mapping multiple MQTT topics to one or more collections with the ability to choose specific fields for insertion). MongoDB's schema flexibility is crucial for adapting to the ever-changing structures of MQTT payloads. Unlike traditional databases, MongoDB accommodates shifts in data format seamlessly, eliminating the constraints of rigid schema requirements. This helps with interoperability challenges faced by utility companies. Once the data is stored in MongoDB, it can be analyzed for anomalies. Anomalies in smart meter data can be identified based on various criteria, including sudden spikes or drops in voltage, current, power, or other metrics that deviate significantly from normal patterns. Here are some common types of anomalies that we might look for in smart meter data: Sudden spikes or drops: These include voltage, current, or power spikes or drops. A sudden increase or decrease in voltage beyond expected limits. Outliers: Data points that are significantly different from the majority of the data. Unusual patterns: Unusually high or low energy consumption compared to historical data or inconsistent power factor readings. Frequency anomalies: Frequency readings that deviate from the normal range. MongoDB's robust aggregation framework can aid in anomaly detection. Both anomaly data and raw data can be stored in time series collections, which offer reduced storage footprint and improved query performance due to an automatically created clustered index on timestamp and _id. The high compression offered addresses the challenge of data management at scale. Additionally, data tiering capabilities like Atlas Online Archive can be leveraged to push cold data into cost-effective storage. MongoDB also provides built-in security controls for all your data, whether managed in a customer environment or MongoDB Atlas, a fully managed cloud service. These security features include authentication, authorization, auditing, data encryption (including Queryable Encryption ), and the ability to access your data security with dedicated clusters deployed in a unique Virtual Private Cloud (VPC). End-to-end solution Figure 3: End-to-end data flow Interested readers can clone this repository and set up their own MongoDB-based smart meter data collection and anomaly detection solution. The solution follows the pattern illustrated in Figure 3, where a smart meter simulator generates raw data and transmits it via an MQTT topic. A Mosquitto broker receives these messages and then stores them in a MongoDB collection using the MongoDB Bridge. By leveraging MongoDB change streams , an algorithm can retrieve these messages, transform them according to MDMS requirements, and perform anomaly detection. The results are stored in a time series collection using a highly compressed format. The Cedalo MQTT Platform with MongoDB offers all the essential components for a flexible and scalable smart meter data management system, enabling a wide range of applications such as anomaly detection, outage management, and billing services. This solution empowers power distribution companies to analyze trends, implement real-time monitoring, and make informed decisions regarding their smart meter infrastructure. We are actively working with our clients to solve IoT challenges. Take a look at our Manufacturing and Industrial IoT page for more stories.

September 4, 2024

Mobile and Edge Solutions with MongoDB and Ditto

Mobile and edge solutions offer impressive opportunities for profit and growth for a variety of businesses around the world. Companies have consistently found ways to use mobile applications to grow revenue, cut costs, and stay ahead of the competition. In the power and utilities sector, for example, field workers can get enabled quickly by accessing their daily tasks on mobile devices and, in retail, consumers can use mobile apps to skip lines, providing businesses with upselling opportunities that can result in larger transactions. Indeed, mobile commerce is estimated to make up 44.6% of total US retail ecommerce sales in 2024. For banks, increased use of mobile applications can reduce operating costs by decreasing the demand for in-person and phone-based customer service. At the same time, having a mobile app allows financial institutions to reach additional customers, as many internet users around the world (particularly in developing countries) rely on mobile access. Time and time again, we’ve seen that the most successful apps are those thats meet modern user expectations. Specifically, apps need to be fast and reactive, without lags or crashes. And if internet connectivity drops, the app should continue functioning normally until connectivity is restored. In cases where the workforce is located in low-connectivity areas—e.g., warehouses, factories, and rural areas—peer-to-peer sync is a requirement for apps to communicate with each other and sync data. In such an ever-important space, partnerships are critical to combining the strengths of organizations to create solutions that would be challenging to develop independently. At MongoDB, we’re laser-focused on bringing the best solutions to customers. So we’re thrilled to announce MongoDB’s partnership with Ditto , a company that enables consistently fast data synchronization between devices like mobile phones and point-of-sale systems for mission-critical enterprise apps regardless of environment connectivity and existing infrastructure. With MongoDB and Ditto, businesses can drive consistent revenue at the edge without Wi-Fi, servers, or a cloud connection. Retailers can sell products, banks can deliver services, and energy companies can conduct operations anywhere without worrying about connectivity. Welcome to our mobile partner, Ditto Based in San Francisco, Ditto is revolutionizing the mobile app development space. Ditto technology uses existing devices like phones and tablets to create a distributed wireless network that can sync data anytime, even without the internet, Wi-Fi, or servers. With Ditto’s SDK, devices automatically discover, connect, and sync with each other in peer-to-peer (P2P) mesh networks. This means that when the internet goes down or Wi-Fi is spotty, deskless workers can continue to serve customers or complete business-critical workflows. Ditto manages a mesh network of devices and automatically syncs data changes locally in the mesh and opportunistically with the cloud when available. Depending on the environment and device positioning, Ditto intelligently switches between LAN, BLE, P2P Wi-Fi, IP-based transports, and cellular to ensure that apps get the fastest sync. Ditto’s platform has two major components: Small Peer/Ditto SDK: This is the Ditto SDK embedded into an application that lives on a mobile device, point of sale system, IoT device, and more. There can be many Small Peers in a solution. Small Peers self-organize and sync with each other regardless of internet connectivity and with the cloud when connectivity is available. Big Peer: Ditto’s middleware platform that receives the data from small peers and forwards them to MongoDB. And some of the unique value propositions that Ditto offers include: Self-organizing mesh networking: Devices running Ditto-powered apps automatically and securely discover nearby peers and form wireless, distributed networks. Intelligent peer-to-peer data sync: Devices in the mesh exchange data in real-time via Bluetooth Low Energy, Peer-to-Peer Wi-Fi, Local Area Network, and more. Conflict-free replicated data types (CRDTs): Ditto peers each have a local database. To ensure low-bandwidth usage and concurrent edits, only the deltas, or changes, are synced Distributed architecture: As the image below shows, Ditto isn’t reliant on a centralized system to synchronize data. Each device has an embedded database capable of reading, writing, and syncing deltas within the mesh. This means there is no single point of failure, such as a cloud or server. With MongoDB and Ditto working together, developers can create robust data pipelines from mobile to cloud. MongoDB Atlas is a multi-cloud developer data platform that gives users the versatility they need to build a wide variety of applications—including mobile applications. With MongoDB Atlas, users can scale their mobile applications’ backend confidently with a foundation built for resilience, performance, and security. Additionally, MongoDB Atlas enables delivering fast and consistent mobile user experiences in any region on AWS, Azure, and Google Cloud—or replicate data across multiple regions and clouds to reach wider audiences and protect against broader outages. Read more about Ditto at our partner catalog page .

September 3, 2024

Away From the Keyboard: Anaiya Raisinghani, MongoDB Developer Advocate

Welcome to our new article series focused on developers and what they do when they’re not building incredible things with code and data. “Away From the Keyboard” features interviews with developers at MongoDB, discussing what they do, how they establish a healthy work-life balance, and their advice for others looking to create a more holistic approach to coding. In our first article, Anaiya Raisinghani shares her day-to-day responsibilities as a Developer Advocate at MongoDB; how she uses nonrefundable workout classes and dinner reservations to help her step away from work; and her hack for making sure that when she logs off for the day, she stays logged off. Q: What do you do at MongoDB? Anaiya: I’m a developer advocate here at MongoDB on the Technical Content team! This means I get to build super fun MongoDB tutorials for the entire developer community. I’m lucky where each day is different. If I’m researching a platform to build a tutorial, it can mean hours of research and reading up on documentation, whereas if I’m filming a YouTube video it means lots of time recording and editing. Q: What does work-life balance look like for you? Anaiya: A bad habit of mine is to get really caught up in a piece of content I’m creating and refuse to leave a certain spot until I’ve accomplished what I’ve set out to do that day. Because of this—and because I work mainly from home—if I can anticipate that I’m going to get caught up in a project, I create plans that force me to leave my desk. Some examples of these are non-refundable workout classes, drinks with friends after work (I hate being a flake), or even dinner reservations that charge you if you cancel less than 24 hours in advance. My biggest gripe is paying for something that I didn’t get anything out of. If I’m paying for a single pilates class, I will make sure I’m there trying my best on the reformer. So this has been a fantastic motivator. Being 25 and living in NYC means that my weekends are always booked, so I’m always out and about, and this allows me to not think about work on my time off. I’m also lucky enough to have a great manager and team that keep very great work-life boundaries, so I never feel guilty practicing those boundaries myself. Q: Was that balance always a priority for you or did you develop it later in your career? Anaiya: This balance was definitely something I had to develop and actively work on. I’ve always been an anxious over-achiever, and when coming into my first corporate job I thought staying overtime would be expected. We’ve all heard the phrase: “Be the first one in and the last to leave.” My manager actually used to actively tell me to log off when I first started because he would notice that my Slack was active past work hours (shoutout to Nic!). Having him and my team as a great example helped me understand that there will always be more work and to enjoy the time that you spend away from your laptop. It was also the realization that working shouldn’t be your entire life. You need to develop hobbies and build relationships within your community in order to be a happier human being. Q: What benefits has this balance given you? Anaiya: The biggest benefit this balance has given me both at work and in my life is that I’m incredibly present when I’m doing one or the other. When I’m working during the day, I’m entirely locked in and take advantage of each hour. And when I’m done with the workday, I’m actually done and can focus on my hobbies or my friends. It’s also taught me to plan in advance and it gives me a better understanding of how much work on average is expected for each project. Q: What advice would you give to a developer seeking to find a better balance? Anaiya: If you’re seeking a better balance, I recommend removing Slack from your personal phone and laptop. This way when you’re disconnected, you’re truly disconnected. Of course, there are some teams and companies that require you to be on call or working around the clock, but even then having a specific laptop or device with everything you need that is separate from your personal devices can help bridge this gap. Thank you to Anaiya Raisinghani for sharing her insights! And thanks to all of you for reading. Look for more in our new series. Interested in learning more about or connecting more with MongoDB? Join our MongoDB Community to meet other community members, hear about inspiring topics, and receive the latest MongoDB news and events. And let us know if you have any questions for our future guests when it comes to building a better work-life balance as developers. Tag us on social media: @mongodb #AwayFromTheKeyboard

September 3, 2024