How to Run Atlas Search Compound Queries with Weighted Fields
On this page
This tutorial demonstrates how to add weights to your search fields to boost or bury the documents in the results or a category of results. It demonstrates how to assign one or more values to a field to return results with a higher or lower score.
Specifically, the tutorial shows how to create an index with dynamic
mapping on the sample_mflix.movies
collection. It shows how to run
compound queries and alter the score using constant
,
function
, and boost
. It takes you through
the following steps:
Set up an Atlas Search index with dynamic mapping for the
sample_mflix.movies
collection.Run the following Atlas Search queries:
Query the
year
field and alter the score using specific a word in thetitle
field to boost the document in the results.Query the
title
andplot
fields and alter the score based on a specific genre in thegenres
field to bury results in that genre.
Before you begin, ensure that your Atlas cluster meets the requirements described in the Prerequisites.
To create an Atlas Search index, you must have Project Data Access Admin
or higher access to the project.
Create the Atlas Search Index With Dynamic Mapping
In this section, you will create an Atlas Search index that uses dynamic
mapping to index the fields in the sample_mflix.movies
collection.
In Atlas, go to the Clusters page for your project.
If it's not already displayed, select the organization that contains your desired project from the Organizations menu in the navigation bar.
If it's not already displayed, select your desired project from the Projects menu in the navigation bar.
If it's not already displayed, click Clusters in the sidebar.
The Clusters page displays.
Enter the Index Name, and set the Database and Collection.
In the Index Name field, enter
compound-query-custom-score-tutorial
.If you name your index
default
, you don't need to specify anindex
parameter in the $search pipeline stage. If you give a custom name to your index, you must specify this name in theindex
parameter.In the Database and Collection section, find the
sample_mflix
database, and select themovies
collection.
Specify an index definition.
You can create an Atlas Search index that uses dynamic mappings or static mappings. To learn more about dynamic and static mappings, see Static and Dynamic Mappings.
The following index definition dynamically indexes the fields of
supported types in the movies
collection. You can use the Atlas Search Visual Editor or the
Atlas Search JSON Editor in the Atlas user interface to create the
index.
Visual Editor
Click Next.
Review the
"default"
index definition for themovies
collection.
JSON Editor
Click Next.
Review the index definition.
Your index definition should look similar to the following:
{ "mappings": { "dynamic": true } } The above index definition dynamically indexes the fields of supported types in each document in the
movies
collection.Click Next.
Run Compound Queries
You use the compound operator to combine two or more operators into a single query. Atlas Search assigns a score based on relevance, in order from highest score to lowest, to every document that it returns for your query. The queries demonstrate how to boost or bury the documents in the results.
➤ Use the Select your language drop-down menu to set the language of the examples in this section.
Tip
Atlas Search provides a sample compound query template with guidance. To learn more, see View Query Guidance Template.
Run a Compound Query to Boost Results
In this section, you connect to your Atlas cluster and run
the sample queries using the compound operator against the
title
and year
fields in the sample_mflix.movies
collection.
The sample queries use custom scoring to alter the relevance score
returned by Atlas Search for movie titles that contain the term snow
.
In Atlas, go to the Clusters page for your project.
If it's not already displayed, select the organization that contains your desired project from the Organizations menu in the navigation bar.
If it's not already displayed, select your desired project from the Projects menu in the navigation bar.
If it's not already displayed, click Clusters in the sidebar.
The Clusters page displays.
Run the following Atlas Search queries with the compound
operator on the movies
collection.
Copy and paste the following query into the Query Editor, and then click the Search button in the Query Editor.
The following examples use the compound
operator with subqueries
to search for movies between the years 2013
to 2015
with the
term snow
in the title
field.
The following query:
Uses the following
compound
operator clauses:Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.
[ { $search: { index: "compound-query-custom-score-tutorial", compound: { filter: [{ range: { path: "year", gte: 2013, lte: 2015 } }], should: [{ text: { query: "snow", path: "title", score: {constant: {value: 5}} } }] }, highlight:{ path: "title" } } } ]
SCORE: 5 _id: "573a13d7f29313caabda38ad" Snow in Paradise Matching fields: title SCORE: 5 _id: "573a13e2f29313caabdbeded" Dead Snow 2: red vs. Matching fields: title SCORE: 5 _id: "573a13e6f29313caabdc66c4" The Snow White Murder Case Matching fields: title SCORE: 5 _id: "573a13edf29313caabdd37bd" Snow on the Blades Matching fields: title SCORE: 0 _id: "573a13acf29313caabd29366" No highlights found. Matching fields: unknown SCORE: 0 _id: "573a13adf29313caabd2b765" No highlights found. Matching fields: unknown SCORE: 0 _id: "573a13b0f29313caabd333e7" No highlights found. Matching fields: unknown SCORE: 0 _id: "573a13b0f29313caabd3486a" No highlights found. Matching fields: unknown SCORE: 0 _id: "573a13b1f29313caabd3719d" No highlights found. Matching fields: unknown SCORE: 0 _id: "573a13b2f29313caabd3abb9" No highlights found. Matching fields: unknown
The first four documents in the results have a higher score
because the should
clause in the query specifies a preference for
documents with snow
in the title. The should
clause also
alters the score for the query term snow
using the constant
option.
The following query:
Uses the following
compound
operator clauses:Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.
[ { $search: { index: "compound-query-custom-score-tutorial", compound: { must: [{ range: { path: "year", gte: 2013, lte: 2015 } }], should: [{ text: { query: "snow", path: "title", score: {boost: {value: 2}} } }] }, highlight:{ path: "title" } } } ]
SCORE: 6.7722930908203125 _id: "573a13d7f29313caabda38ad" Snow in Paradise Matching fields: title SCORE: 6.063445568084717 _id: "573a13edf29313caabdd37bd" Snow on the Blades Matching fields: title SCORE: 5.509652137756348 _id: "573a13e6f29313caabdc66c4" The Snow White Murder Case Matching fields: title SCORE: 5.065053939819336 _id: "573a13e2f29313caabdbeded" Dead Snow 2: Red vs. Matching fields: title SCORE: 1 _id: "573a13acf29313caabd29366" No highlights found. Matching fields: unknown SCORE: 1 _id: "573a13adf29313caabd2b765" No highlights found. Matching fields: unknown SCORE: 1 _id: "573a13b0f29313caabd333e7" No highlights found. Matching fields: unknown SCORE: 1 _id: "573a13b0f29313caabd3486a" No highlights found. Matching fields: unknown SCORE: 1 _id: "573a13b1f29313caabd3719d" No highlights found. Matching fields: unknown SCORE: 1 _id: "573a13b2f29313caabd3abb9" No highlights found. Matching fields: unknown
The first four documents in the results have a higher score
because the should
clause in the query specifies a preference for
documents with snow
in the title. The should
clause also
alters the score for the query term snow
using the boost
option.
The following query:
Uses the following
compound
operator clauses with theboost
option to prioritize some fields more than other fields:must
clause with the text operator to prioritize the genrecomedy
the most, followed by the termsnow
in thetitle
field. Theboost
option applies weights to the fields.should
clause with the range operator to search for movies between the years2013
to2015
.
Note
The
boost
option applies different weights to the fields to prioritize the fields.
[ { $search: { index: "compound-query-custom-score-tutorial", compound: { must: [{ text: { query: "comedy", path: "genres", score: {boost: {value: 9}} } }, { text: { query: "snow", path: "title", score: {boost: {value: 5}} } }], should: [{ range: { path: "year", gte: 2013, lte: 2015, score: {boost: {value: 3}} } }] } } } ]
SCORE: 21.872983932495117 _id: "573a13c2f29313caabd6874c" plot: "A ski vacation turns horrific for a group of medical students, as they…" genres: Array runtime: 91 SCORE: 21.043487548828125 _id: "573a139ff29313caabcffff8" fullplot: "When an entire town in upstate New York is closed down by an unexpecte…" imdb: Object year: 2000 SCORE: 21.043487548828125 _id: "573a13a6f29313caabd16b02" plot: "When a Miami dentist inherits a team of sled dogs, he's got to learn t…" genres: Array runtime: 99 SCORE: 19.523927688598633 _id: "573a13a1f29313caabd06765" fullplot: "Our two young lovers meet on a series of snowy days in high school. Ye…" imdb: Object runtime: 1999 SCORE: 17.426334381103516 _id: "573a13e2f29313caabdbeded" plot: "Still on the run from a group of Nazi zombies, a man seeks the aid of …" genres: Array runtime: 100 SCORE: 16.367326736450195 _id: "573a13c2f29313caabd6688e" countries: Array genres: Array runtime: 108 SCORE: 15.537829399108887 _id: "573a13b1f29313caabd36d7d" plot: "A love-struck Italian poet is stuck in Iraq at the onset of an America…" genres: Array runtime: 110 SCORE: 14.4263334274292 _id: "573a1395f29313caabce1925" plot: "An ice-skating Snow White finds refuge from the Wicked Queen with the …" genres: Array runtime: 107
The following query:
Uses the following
compound
operator clauses:must
clause with the range operator to search for movies between the years2013
to2015
.should
clause with the text operator to query for the termsnow
in thetitle
field and alter thescore
with thefunction
option. Thefunction
option adds the following using an arithmetic expression:The relevance score of the query for the search term
The value of the numeric field named
imdb.rating
or the number2
for those documents that do not have theimdb.rating
field.
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.
[ { $search: { index: "compound-query-custom-score-tutorial", compound: { must: [{ range: { path: "year", gte: 2013, lte: 2015, } }], should: [{ text: { query: "snow", path: "title", score: { function: { add: [{ path: { value: "imdb.rating", undefined: 2 } }, { score: "relevance" }] } } } }] }, highlight: { path: "title" } } } ]
SCORE: 10.454826354980469 _id: "573a13e6f29313caabdc66c4" The Snow White Murder Case Matching fields: title SCORE: 10.3317232131958 _id: "573a13edf29313caabdd37bd" Snow on the Blades Matching fields: title SCORE: 10.032526969909668 _id: "573a13e2f29313caabdbeded" Dead Snow 2: Red vs. Matching fields: title SCORE: 8.386146545410156 _id: "573a13d7f29313caabda38ad" Snow in Paradise Matching fields: title SCORE: 1 _id: "573a13acf29313caabd29366" No highlights found. Matching fields: unknown SCORE: 1 _id: "573a13adf29313caabd2b765" No highlights found. Matching fields: unknown SCORE: 1 _id: "573a13b0f29313caabd333e7" No highlights found. Matching fields: unknown SCORE: 1 _id: "573a13b0f29313caabd3486a" No highlights found. Matching fields: unknown SCORE: 1 _id: "573a13b1f29313caabd3719d" No highlights found. Matching fields: unknown SCORE: 1 _id: "573a13b2f29313caabd3abb9" No highlights found. Matching fields: unknown
The first four documents in the results have a higher score
because the should
clause in the query specifies a preference for
documents with snow
in the title. The should
clause also
alters the score for the query term snow
using the function
option.
Expand your query results.
The Search Tester might not display all the fields in the documents it returns. To view all the fields, including the field that you specify in the query path, expand the document in the results.
Connect to your cluster in mongosh
.
Open mongosh
in a terminal window and
connect to your cluster. For detailed instructions on connecting,
see Connect via mongosh
.
Use the sample_mflix
database.
Run the following command at mongosh
prompt:
use sample_mflix
Run the following Atlas Search queries with the compound
operator on the movies
collection.
The following examples use the compound
operator with subqueries
to search for movies between the years 2013
to 2015
with the
term snow
in the title
field.
This query uses the following pipeline stages:
$search
to query the collection. The query:Uses the following
compound
operator clauses:Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.
$limit
stage to limit the output to10
results.$project
stage to:Exclude all fields except
title
andyear
Add a
score
field
db.movies.aggregate([ { "$search": { "index": "compound-query-custom-score-tutorial", "compound": { "filter": [{ "range": { "path": "year", "gte": 2013, "lte": 2015 } }], "should": [{ "text": { "query": "snow", "path": "title", "score": {"constant": {"value": 5}} } }] }, "highlight": { "path": "title" } } }, { "$limit": 10 }, { "$project": { "_id": 0, "title": 1, "year": 1, "score": { "$meta": "searchScore" }, "highlights": { "$meta": "searchHighlights" } } } ])
Atlas Search returns the following results for
constant
:
[ { title: 'Snow in Paradise', year: 2014, score: 5, highlights: [ { score: 1.382846713066101, path: 'title', texts: [ { value: 'Snow', type: 'hit' }, { value: ' in Paradise', type: 'text' } ] } ] }, { title: 'Dead Snow 2: Red vs. Dead', year: 2014, score: 5, highlights: [ { score: 1.3924485445022583, path: 'title', texts: [ { value: 'Dead ', type: 'text' }, { value: 'Snow', type: 'hit' }, { value: ' 2: Red vs. ', type: 'text' } ] } ] }, { title: 'The Snow White Murder Case', year: 2014, score: 5, highlights: [ { score: 1.3525336980819702, path: 'title', texts: [ { value: 'The ', type: 'text' }, { value: 'Snow', type: 'hit' }, { value: ' White Murder Case', type: 'text' } ] } ] }, { title: 'Snow on the Blades', year: 2014, score: 5, highlights: [ { score: 1.3766303062438965, path: 'title', texts: [ { value: 'Snow', type: 'hit' }, { value: ' on the Blades', type: 'text' } ] } ] }, { year: 2013, title: 'The Secret Life of Walter Mitty', score: 0, highlights: [] }, { title: 'Jurassic World', year: 2015, score: 0, highlights: [] }, { title: 'Action Jackson', year: 2014, score: 0, highlights: [] }, { year: 2013, title: 'In Secret', score: 0, highlights: [] }, { title: 'The Stanford Prison Experiment', year: 2015, score: 0, highlights: [] }, { year: 2014, title: 'The Giver', score: 0, highlights: [] } ]
The first four documents in the results have a higher score
because the should
clause in the query specifies a preference for
documents with snow
in the title. The should
clause also
alters the score for the query term snow
using the constant
option.
This query uses the following pipeline stages:
$search
to query the collection. The query:Uses the following
compound
operator clauses:Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.
$limit
stage to limit the output to10
results.$project
stage to:Exclude all fields except
title
andyear
Add a
score
field
db.movies.aggregate([ { "$search": { "index": "compound-query-custom-score-tutorial", "compound": { "must": [{ "range": { "path": "year", "gte": 2013, "lte": 2015 } }], "should": [{ "text": { "query": "snow", "path": "title", "score": {"boost": {"value": 2}} } }] }, "highlight": { "path": "title" } } }, { "$limit": 10 }, { "$project": { "_id": 0, "title": 1, "year": 1, "score": { "$meta": "searchScore" }, "highlights": { "$meta": "searchHighlights" } } } ])
Atlas Search returns the following results for
boost
:
[ { title: 'Snow in Paradise', year: 2014, score: 6.7722930908203125, highlights: [ { score: 1.382846713066101, path: 'title', texts: [ { value: 'Snow', type: 'hit' }, { value: ' in Paradise', type: 'text' } ] } ] }, { title: 'Snow on the Blades', year: 2014, score: 6.063445568084717, highlights: [ { score: 1.3766303062438965, path: 'title', texts: [ { value: 'Snow', type: 'hit' }, { value: ' on the Blades', type: 'text' } ] } ] }, { title: 'The Snow White Murder Case', year: 2014, score: 5.509652137756348, highlights: [ { score: 1.3525336980819702, path: 'title', texts: [ { value: 'The ', type: 'text' }, { value: 'Snow', type: 'hit' }, { value: ' White Murder Case', type: 'text' } ] } ] }, { title: 'Dead Snow 2: Red vs. Dead', year: 2014, score: 5.065053939819336, highlights: [ { score: 1.3924485445022583, path: 'title', texts: [ { value: 'Dead ', type: 'text' }, { value: 'Snow', type: 'hit' }, { value: ' 2: Red vs. ', type: 'text' } ] } ] }, { year: 2013, title: 'The Secret Life of Walter Mitty', score: 1, highlights: [] }, { title: 'Jurassic World', year: 2015, score: 1, highlights: [] }, { title: 'Action Jackson', year: 2014, score: 1, highlights: [] }, { year: 2013, title: 'In Secret', score: 1, highlights: [] }, { title: 'The Stanford Prison Experiment', year: 2015, score: 1, highlights: [] }, { year: 2014, title: 'The Giver', score: 1, highlights: [] } ]
The first four documents in the results have a higher score
because the should
clause in the query specifies a preference for
documents with snow
in the title. The should
clause also
alters the score for the query term snow
using the boost
option.
This query uses the following pipeline stages:
$search
to query the collection. The query uses the followingcompound
operator clauses with theboost
option to prioritize some fields more than other fields:must
clause with the text operator to prioritize the genrecomedy
the most, followed by the termsnow
in thetitle
field. Theboost
option applies weights to the fields.should
clause with the range operator to search for movies between the years2013
to2015
.
Note
The
boost
option applies different weights to the fields to prioritize the fields.$limit
stage to limit the output to10
results.$project
stage to:Exclude all fields except
title
,year
, andgenres
Add a
score
field
db.movies.aggregate([ { "$search": { "index": "compound-query-custom-score-tutorial", "compound": { "must": [{ "text": { "path": "genres", "query": "comedy", "score": {"boost": {"value": 9}} } }, { "text": { "path": "title", "query": "snow", "score": {"boost": {"value": 5}} } }], "should": [{ "range": { "path": "year", "gte": 2013, "lte": 2015, "score": {"boost": {"value": 3}} } }] } } }, { "$limit": 10 }, { "$project": { "_id": 0, "title": 1, "year": 1, "genres": 1, "score": { "$meta": "searchScore" } } } ])
[ { genres: [ 'Comedy', 'Horror' ], title: 'Dead Snow', year: 2009, score: 21.872983932495117 }, { year: 2000, genres: [ 'Adventure', 'Comedy', 'Family' ], title: 'Snow Day', score: 21.043487548828125 }, { genres: [ 'Adventure', 'Comedy', 'Family' ], title: 'Snow Dogs', year: 2002, score: 21.043487548828125 }, { year: 1999, genres: [ 'Comedy', 'Romance' ], title: 'Let It Snow', score: 19.523927688598633 }, { genres: [ 'Action', 'Comedy', 'Horror' ], title: 'Dead Snow 2: Red vs. Dead', year: 2014, score: 17.426334381103516 }, { genres: [ 'Comedy', 'Drama' ], title: 'Snow White and Russian Red', year: 2009, score: 16.367326736450195 }, { genres: [ 'Comedy', 'Drama', 'Romance' ], title: 'The Tiger and the Snow', year: 2005, score: 15.537829399108887 }, { genres: [ 'Adventure', 'Comedy', 'Family' ], title: 'Snow White and the Three Stooges', year: 1961, score: 14.4263334274292 } ]
This query uses the following pipeline stages:
$search
to query the collection. The query:Uses the following
compound
operator clauses:must
clause with the range operator to search for movies between the years2013
to2015
.should
clause with the text operator to query for the termsnow
in thetitle
field and alter thescore
with thefunction
option. Thefunction
option adds the following using an arithmetic expression:The relevance score of the query for the search term
The value of the numeric field named
imdb.rating
or the number2
for those documents that do not have theimdb.rating
field.
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.
$limit
stage to limit the output to10
results.$project
stage to:Exclude all fields except
title
andyear
Add a
score
field
db.movies.aggregate([ { "$search": { "index": "compound-query-custom-score-tutorial", "compound": { "must": [{ "range": { "path": "year", "gte": 2013, "lte": 2015 } }], "should": [{ "text": { "query": "snow", "path": "title", "score": { "function": { "add": [{ "path": { "value": "imdb.rating", "undefined": 2 } }, { "score": "relevance" }] } } } }] }, "highlight": { "path": "title" } } }, { "$limit": 10 }, { "$project": { "_id": 0, "title": 1, "year": 1, "score": { "$meta": "searchScore" }, "highlights": { "$meta": "searchHighlights" } } } ])
Atlas Search returns the following results for
function
:
[ { title: 'The Snow White Murder Case', year: 2014, score: 10.454826354980469, highlights: [ { score: 1.3525336980819702, path: 'title', texts: [ { value: 'The ', type: 'text' }, { value: 'Snow', type: 'hit' }, { value: ' White Murder Case', type: 'text' } ] } ] }, { title: 'Snow on the Blades', year: 2014, score: 10.3317232131958, highlights: [ { score: 1.3766303062438965, path: 'title', texts: [ { value: 'Snow', type: 'hit' }, { value: ' on the Blades', type: 'text' } ] } ] }, { title: 'Dead Snow 2: Red vs. Dead', year: 2014, score: 10.032526969909668, highlights: [ { score: 1.3924485445022583, path: 'title', texts: [ { value: 'Dead ', type: 'text' }, { value: 'Snow', type: 'hit' }, { value: ' 2: Red vs. ', type: 'text' } ] } ] }, { title: 'Snow in Paradise', year: 2014, score: 8.386146545410156, highlights: [ { score: 1.382846713066101, path: 'title', texts: [ { value: 'Snow', type: 'hit' }, { value: ' in Paradise', type: 'text' } ] } ] }, { year: 2013, title: 'The Secret Life of Walter Mitty', score: 1, highlights: [] }, { title: 'Jurassic World', year: 2015, score: 1, highlights: [] }, { title: 'Action Jackson', year: 2014, score: 1, highlights: [] }, { year: 2013, title: 'In Secret', score: 1, highlights: [] }, { title: 'The Stanford Prison Experiment', year: 2015, score: 1, highlights: [] }, { year: 2014, title: 'The Giver', score: 1, highlights: [] } ]
The first four documents in the results have a higher score
because the should
clause in the query specifies a preference for
documents with snow
in the title. The should
clause also
alters the score for the query term snow
using the function
option.
Connect to your cluster in MongoDB Compass.
Open MongoDB Compass and connect to your cluster. For detailed instructions on connecting, see Connect via Compass.
Run an Atlas Search compound query that alters the score using the constant
option.
The query performs the following tasks:
Uses the following
compound
operator clauses:Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.Uses the following pipeline stages:
To run this query in MongoDB Compass:
Click the Aggregations tab.
Click Select..., then configure each of the following pipeline stages by selecting the stage from the dropdown and adding the query for that stage. Click Add Stage to add additional stages.
Pipeline StageQuery$search
{ "index": "compound-query-custom-score-tutorial", "compound": { "filter": [{ "range": { "path": "year", "gte": 2013, "lte": 2015 } }], "should": [{ "text": { "query": "snow", "path": "title", "score": {"constant": {"value": 5}} } }] }, "highlight": { "path": "title" } } $limit
10 $project
{ "_id": 0, "title": 1, "year": 1, "score": { "$meta": "searchScore" }, "highlights": { "$meta": "searchHighlights" } } If you enabled Auto Preview, MongoDB Compass displays the following documents next to the
$project
pipeline stage:{ title: 'Snow in Paradise', year: 2014, score: 5, highlights: [{ score: 1.382846713066101, path: 'title', texts: [ { value: 'Snow', type: 'hit' }, { value: ' in Paradise', type: 'text' } ] }] }, { title: 'Dead Snow 2: Red vs. Dead', year: 2014, score: 5, highlights: [{ score: 1.3924485445022583, path: 'title', texts: [ { value: 'Dead ', type: 'text' }, { value: 'Snow', type: 'hit' }, { value: ' 2: Red vs. ', type: 'text' } ] }] }, { title: 'The Snow White Murder Case', year: 2014, score: 5, highlights: [{ score: 1.3525336980819702, path: 'title', texts: [ { value: 'The ', type: 'text' }, { value: 'Snow', type: 'hit' }, { value: ' White Murder Case', type: 'text' } ] }] }, { title: 'Snow on the Blades', year: 2014, score: 5, highlights: [{ score: 1.3766303062438965, path: 'title', texts: [ { value: 'Snow', type: 'hit' }, { value: ' on the Blades', type: 'text' } ] }] }, { year: 2013, title: 'The Secret Life of Walter Mitty', score: 0, highlights: [] }, { title: 'Jurassic World', year: 2015, score: 0, highlights: [] }, { title: 'Action Jackson', year: 2014, score: 0, highlights: [] }, { year: 2013, title: 'In Secret', score: 0, highlights: [] }, { title: 'The Stanford Prison Experiment', year: 2015, score: 0, highlights: [] }, { year: 2014, title: 'The Giver', score: 0, highlights: [] } The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using theconstant
option.
Run Atlas Search compound queries that alter the score using the boost
option.
Click the Aggregations tab.
Click Select..., then configure each of the following pipeline stages by selecting the stage from the dropdown and adding the query for that stage. Click Add Stage to add additional stages.
The query uses the following pipeline stages:
$search
to perform the following tasks:Queries using the following
compound
operator clauses:Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.
$limit stage to limit the output to 10 results
$project stage to:
Exclude all fields except
title
andyear
Add two fields named
score
andhighlights
Pipeline StageQuery$search
{ "index": "compound-query-custom-score-tutorial", "compound": { "must": [{ "range": { "path": "year", "gte": 2013, "lte": 2015 } }], "should": [{ "text": { "query": "snow", "path": "title", "score": {"boost": {"value": 2}} } }] }, "highlight": { "path": "title" } } $limit
10 $project
{ "_id": 0, "title": 1, "year": 1, "score": { "$meta": "searchScore" }, "highlights": { "$meta": "searchHighlights" } } This query uses the following pipeline stages:
$search
to perform the following tasks:Queries using the
compound
operator clauses with theboost
option to prioritize some fields more than other fields:must
clause with the text operator to prioritize the genrecomedy
the most, followed by the termsnow
in thetitle
field. Theboost
option applies weights to the fields.should
clause with the range operator to search for movies between the years2013
to2015
.
Note
The
boost
option applies different weights to the fields to prioritize the fields.
$limit stage to limit the output to 10 results
$project stage to:
Exclude all fields except
title
andyear
Add two fields named
score
andhighlights
must
clause with the text operator to prioritize the genrecomedy
the most, followed by the termsnow
in thetitle
field. Theboost
option applies weights to the fields.should
clause with the range operator to search for movies between the years2013
to2015
.
Note
The
boost
option applies different weights to the fields to prioritize the fields.Pipeline StageQuery$search
{ "index": "compound-query-custom-score-tutorial", "compound": { "must": [{ "text": { "path": "genres", "query": "comedy", "score": {"boost": {"value": 9}} } }, { "text": { "path": "title", "query": "snow", "score": {"boost": {"value": 5}} } }], "should": [{ "range": { "path": "year", "gte": 2013, "lte": 2015, "score": {"boost": {"value": 3}} } }] } } $limit
10 $project
{ "_id": 0, "title": 1, "year": 1, "genres": 1, "score": { "$meta": "searchScore" } } If you enabled Auto Preview, MongoDB Compass displays the following documents next to the
$project
pipeline stage:{ title: 'Snow in Paradise', year: 2014, score: 6.7722930908203125, highlights: [{ score: 1.382846713066101, path: 'title', texts: [ { value: 'Snow', type: 'hit' }, { value: ' in Paradise', type: 'text' } ] }] }, { title: 'Snow on the Blades', year: 2014, score: 6.063445568084717, highlights: [{ score: 1.3766303062438965, path: 'title', texts: [ { value: 'Snow', type: 'hit' }, { value: ' on the Blades', type: 'text' } ] }] }, { title: 'The Snow White Murder Case', year: 2014, score: 5.509652137756348, highlights: [{ score: 1.3525336980819702, path: 'title', texts: [ { value: 'The ', type: 'text' }, { value: 'Snow', type: 'hit' }, { value: ' White Murder Case', type: 'text' } ] }] }, { title: 'Dead Snow 2: Red vs. Dead', year: 2014, score: 5.065053939819336, highlights: [{ score: 1.3924485445022583, path: 'title', texts: [ { value: 'Dead ', type: 'text' }, { value: 'Snow', type: 'hit' }, { value: ' 2: Red vs. ', type: 'text' } ] }] }, { year: 2013, title: 'The Secret Life of Walter Mitty',score: 1, highlights: [] }, { title: 'Jurassic World', year: 2015, score: 1, highlights: [] }, { title: 'Action Jackson', year: 2014, score: 1, highlights: [] }, { year: 2013, title: 'In Secret', score: 1, highlights: [] }, { title: 'The Stanford Prison Experiment', year: 2015, score: 1, highlights: [] }, { year: 2014, title: 'The Giver', score: 1, highlights: [] } The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using theboost
option.[ { genres: [ 'Comedy', 'Horror' ], title: 'Dead Snow', year: 2009, score: 21.872983932495117 }, { year: 2000, genres: [ 'Adventure', 'Comedy', 'Family' ], title: 'Snow Day', score: 21.043487548828125 }, { genres: [ 'Adventure', 'Comedy', 'Family' ], title: 'Snow Dogs', year: 2002, score: 21.043487548828125 }, { year: 1999, genres: [ 'Comedy', 'Romance' ], title: 'Let It Snow', score: 19.523927688598633 }, { genres: [ 'Action', 'Comedy', 'Horror' ], title: 'Dead Snow 2: Red vs. Dead', year: 2014, score: 17.426334381103516 }, { genres: [ 'Comedy', 'Drama' ], title: 'Snow White and Russian Red', year: 2009, score: 16.367326736450195 }, { genres: [ 'Comedy', 'Drama', 'Romance' ], title: 'The Tiger and the Snow', year: 2005, score: 15.537829399108887 }, { genres: [ 'Adventure', 'Comedy', 'Family' ], title: 'Snow White and the Three Stooges', year: 1961, score: 14.4263334274292 } ]
Run an Atlas Search compound query that alters the score using the function
option.
The query uses the following pipeline stages:
$search
stage to perform the following tasks:Queries using the following
compound
operator clauses:must
clause with the range operator to search for movies between the years2013
to2015
.should
clause with the text operator to query for the termsnow
in thetitle
field and alter thescore
with thefunction
option. Thefunction
option adds the following using an arithmetic expression:The relevance score of the query for the search term
The value of the numeric field named
imdb.rating
or the number2
for those documents that do not have theimdb.rating
field.
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.
$limit stage to limit the output to 10 results
$project stage to:
Exclude all fields except
title
andyear
Add two fields named
score
andhighlights
To run this query in MongoDB Compass:
Click the Aggregations tab.
Click Select..., then configure each of the following pipeline stages by selecting the stage from the dropdown and adding the query for that stage. Click Add Stage to add additional stages.
Pipeline StageQuery$search
{ "index": "compound-query-custom-score-tutorial", "compound": { "must": [{ "range": { "path": "year", "gte": 2013, "lte": 2015 } }], "should": [{ "text": { "query": "snow", "path": "title", "score": { "function": { "add": [{ "path": { "value": "imdb.rating", "undefined": 2 } }, { "score": "relevance" }] } } } }]}, "highlight":{ "path": "title" } } $limit
10 $project
{ "_id": 0, "title": 1, "year": 1, "score": { "$meta": "searchScore" }, "highlights": { "$meta": "searchHighlights" } } If you enabled Auto Preview, MongoDB Compass displays the following documents next to the
$project
pipeline stage:{ title: 'The Snow White Murder Case', year: 2014, score: 10.454826354980469, highlights: [{ score: 1.3525336980819702, path: 'title', texts: [ { value: 'The ', type: 'text' }, { value: 'Snow', type: 'hit' }, { value: ' White Murder Case', type: 'text' } ] }] }, { title: 'Snow on the Blades', year: 2014, score: 10.3317232131958, highlights: [{ score: 1.3766303062438965, path: 'title', texts: [ { value: 'Snow', type: 'hit' }, { value: ' on the Blades', type: 'text' } ] }] }, { title: 'Dead Snow 2: Red vs. Dead', year: 2014, score: 10.032526969909668, highlights: [{ score: 1.3924485445022583, path: 'title', texts: [ { value: 'Dead ', type: 'text' }, { value: 'Snow', type: 'hit' }, { value: ' 2: Red vs. ', type: 'text' } ] }] }, { title: 'Snow in Paradise', year: 2014, score: 8.386146545410156, highlights: [{ score: 1.382846713066101, path: 'title', texts: [ { value: 'Snow', type: 'hit' }, { value: ' in Paradise', type: 'text' } ] }] }, { year: 2013, title: 'The Secret Life of Walter Mitty', score: 1, highlights: [] }, { title: 'Jurassic World', year: 2015, score: 1, highlights: [] }, { title: 'Action Jackson', year: 2014, score: 1, highlights: [] }, { year: 2013, title: 'In Secret', score: 1, highlights: [] }, { title: 'The Stanford Prison Experiment', year: 2015, score: 1, highlights: [] }, { year: 2014, title: 'The Giver', score: 1, highlights: [] } The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using thefunction
option.
Run an Atlas Search compound query that alters the score using the constant
option.
Create a new directory called
compound-constant-example
and initialize your project with thedotnet new
command.mkdir compound-constant-example cd compound-constant-example dotnet new console Add the .NET/C# Driver to your project as a dependency.
dotnet add package MongoDB.Driver Replace the contents of the
Program.cs
file with the following code.The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Uses the following compound clauses to query the collection:
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.Uses the following pipeline stages:
Iterates over the cursor to print the documents that match the query.
1 using MongoDB.Bson; 2 using MongoDB.Bson.Serialization.Attributes; 3 using MongoDB.Bson.Serialization.Conventions; 4 using MongoDB.Driver; 5 using MongoDB.Driver.Search; 6 7 public class CompoundConstantExample 8 { 9 private const string MongoConnectionString = "<connection-string>"; 10 11 public static void Main(string[] args) 12 { 13 // allow automapping of the camelCase database fields to our MovieDocument 14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() }; 15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true); 16 17 // connect to your Atlas cluster 18 var mongoClient = new MongoClient(MongoConnectionString); 19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix"); 20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies"); 21 22 // define and run pipeline 23 var results = moviesCollection.Aggregate() 24 .Search(Builders<MovieDocument>.Search.Compound() 25 .Filter(Builders<MovieDocument>.Search.Range(movie => movie.Year, SearchRangeBuilder.Gte(2013).Lte(2015))) 26 .Should(Builders<MovieDocument>.Search.Text(movie => movie.Title, "snow", score: new SearchScoreDefinitionBuilder<MovieDocument>().Constant(5))), 27 new SearchHighlightOptions<MovieDocument>(movie => movie.Title), 28 indexName: "compound-query-custom-score-tutorial") 29 .Project<MovieDocument>(Builders<MovieDocument>.Projection 30 .Include(movie => movie.Title) 31 .Include(movie => movie.Year) 32 .Exclude(movie => movie.Id) 33 .MetaSearchScore(movie => movie.Score) 34 .MetaSearchHighlights("highlights")) 35 .Limit(10) 36 .ToList(); 37 38 // print results 39 foreach (var movie in results) 40 { 41 Console.WriteLine(movie.ToJson()); 42 } 43 } 44 } 45 46 [ ]47 public class MovieDocument 48 { 49 [ ]50 public ObjectId Id { get; set; } 51 public string Title { get; set; } 52 public int Year { get; set; } 53 [ ]54 public List<SearchHighlight> Highlights { get; set; } 55 public double Score { get; set; } 56 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Compile and run the
Program.cs
file.dotnet run compound-constant-example.csproj { "title" : "Snow in Paradise", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3828467130661011, "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " in Paradise" }] }], "score" : 5.0 } { "title" : "Dead Snow 2: Red vs. Dead", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3924485445022583, "texts" : [{ "type" : "Text", "value" : "Dead " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " 2: Red vs. " }] }], "score" : 5.0 } { "title" : "The Snow White Murder Case", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3525336980819702, "texts" : [{ "type" : "Text", "value" : "The " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " White Murder Case" }] }], "score" : 5.0 } { "title" : "Snow on the Blades", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3766303062438965, "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " on the Blades" }] }], "score" : 5.0 } { "title" : "The Secret Life of Walter Mitty", "year" : 2013, "highlights" : [], "score" : 0.0 } { "title" : "Jurassic World", "year" : 2015, "highlights" : [], "score" : 0.0 } { "title" : "Action Jackson", "year" : 2014, "highlights" : [], "score" : 0.0 } { "title" : "In Secret", "year" : 2013, "highlights" : [], "score" : 0.0 } { "title" : "The Stanford Prison Experiment", "year" : 2015, "highlights" : [], "score" : 0.0 } { "title" : "The Giver", "year" : 2014, "highlights" : [], "score" : 0.0 } The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using theconstant
option.
Run Atlas Search compound queries that alter the score using the boost
option.
Create a new directory called
compound-boost-example
and initialize your project with thedotnet new
command.mkdir compound-boost-example cd compound-boost-example dotnet new console Add the .NET/C# Driver to your project as a dependency.
dotnet add package MongoDB.Driver Replace the contents of the
Program.cs
file with the following code.The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Iterates over the cursor to print the documents that match the query.
The query uses the following pipeline stages:
$search
stage to query the collection. The query:Uses the following
compound
operator clauses:
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.
$limit stage to limit the output to 10 results
$project stage to:
Exclude all fields except
title
andyear
Add two fields named
score
andhighlights
1 using MongoDB.Bson; 2 using MongoDB.Bson.Serialization.Attributes; 3 using MongoDB.Bson.Serialization.Conventions; 4 using MongoDB.Driver; 5 using MongoDB.Driver.Search; 6 7 public class CompoundBoostSingleExample 8 { 9 private const string MongoConnectionString = "<connection-string>"; 10 11 public static void Main(string[] args) 12 { 13 // allow automapping of the camelCase database fields to our MovieDocument 14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() }; 15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true); 16 17 // connect to your Atlas cluster 18 var mongoClient = new MongoClient(MongoConnectionString); 19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix"); 20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies"); 21 22 // define and run pipeline 23 var results = moviesCollection.Aggregate() 24 .Search(Builders<MovieDocument>.Search.Compound() 25 .Must(Builders<MovieDocument>.Search.Range(movie => movie.Year, SearchRangeBuilder.Gte(2013).Lte(2015))) 26 .Should(Builders<MovieDocument>.Search.Text(movie => movie.Title, "snow", score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(2))), 27 new SearchHighlightOptions<MovieDocument>(movie => movie.Title), 28 indexName: "compound-query-custom-score-tutorial") 29 .Project<MovieDocument>(Builders<MovieDocument>.Projection 30 .Include(movie => movie.Title) 31 .Include(movie => movie.Year) 32 .Exclude(movie => movie.Id) 33 .MetaSearchScore(movie => movie.Score) 34 .MetaSearchHighlights("highlights")) 35 .Limit(10) 36 .ToList(); 37 38 // print results 39 foreach (var movie in results) 40 { 41 Console.WriteLine(movie.ToJson()); 42 } 43 } 44 } 45 46 [ ]47 public class MovieDocument 48 { 49 [ ]50 public ObjectId Id { get; set; } 51 public string Title { get; set; } 52 public int Year { get; set; } 53 [ ]54 public List<SearchHighlight> Highlights { get; set; } 55 public double Score { get; set; } 56 } This query uses the following
compound
operator clauses with theboost
option to prioritize some fields more than other fields:must
clause with the text operator to prioritize the genrecomedy
the most, followed by the termsnow
in thetitle
field. Theboost
option applies weights to the fields.should
clause with the range operator to search for movies between the years2013
to2015
.
Note
The
boost
option applies different weights to the fields to prioritize the fields.1 using MongoDB.Bson; 2 using MongoDB.Bson.Serialization.Attributes; 3 using MongoDB.Bson.Serialization.Conventions; 4 using MongoDB.Driver; 5 using MongoDB.Driver.Search; 6 7 public class CompoundBoostMultipleExample 8 { 9 private const string MongoConnectionString = "<connection-string>"; 10 11 public static void Main(string[] args) 12 { 13 // allow automapping of the camelCase database fields to our MovieDocument 14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() }; 15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true); 16 17 // connect to your Atlas cluster 18 var mongoClient = new MongoClient(MongoConnectionString); 19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix"); 20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies"); 21 22 // define and run pipeline 23 var results = moviesCollection.Aggregate() 24 .Search(Builders<MovieDocument>.Search.Compound() 25 .Must(Builders<MovieDocument>.Search.Text(movie => movie.Genres, "comedy", score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(9))) 26 .Must(Builders<MovieDocument>.Search.Text(movie => movie.Title, "snow", score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(5))) 27 .Should(Builders<MovieDocument>.Search.Range(movie => movie.Year, SearchRangeBuilder.Gte(2013).Lte(2015), score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(3))), 28 indexName: "compound-query-custom-score-tutorial") 29 .Project<MovieDocument>(Builders<MovieDocument>.Projection 30 .Include(movie => movie.Genres) 31 .Include(movie => movie.Title) 32 .Include(movie => movie.Year) 33 .Exclude(movie => movie.Id) 34 .MetaSearchScore(movie => movie.Score)) 35 .Limit(10) 36 .ToList(); 37 38 // print results 39 foreach (var movie in results) 40 { 41 Console.WriteLine(movie.ToJson()); 42 } 43 } 44 } 45 46 [ ]47 public class MovieDocument 48 { 49 [ ]50 public ObjectId Id { get; set; } 51 public string [] Genres { get; set; } 52 public string Title { get; set; } 53 public int Year { get; set; } 54 public double Score { get; set; } 55 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Compile and run the
Program.cs
file.dotnet run compound-boost-example.csproj { "title" : "Snow in Paradise", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3828467130661011, "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " in Paradise" }] }], "score" : 6.7722930908203125 } { "title" : "Snow on the Blades", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3766303062438965, "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " on the Blades" }] }], "score" : 6.0634455680847168 } { "title" : "The Snow White Murder Case", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3525336980819702, "texts" : [{ "type" : "Text", "value" : "The " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " White Murder Case" }] }], "score" : 5.5096521377563477 } { "title" : "Dead Snow 2: Red vs. Dead", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3924485445022583, "texts" : [{ "type" : "Text", "value" : "Dead " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " 2: Red vs. " }] }], "score" : 5.0650539398193359 } { "title" : "The Secret Life of Walter Mitty", "year" : 2013, "highlights" : [], "score" : 1.0 } { "title" : "Jurassic World", "year" : 2015, "highlights" : [], "score" : 1.0 } { "title" : "Action Jackson", "year" : 2014, "highlights" : [], "score" : 1.0 } { "title" : "In Secret", "year" : 2013, "highlights" : [], "score" : 1.0 } { "title" : "The Stanford Prison Experiment", "year" : 2015, "highlights" : [], "score" : 1.0 } { "title" : "The Giver", "year" : 2014, "highlights" : [], "score" : 1.0 } The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using theboost
option.dotnet run compound-boost-example.csproj { "genres" : ["Comedy", "Horror"], "title" : "Dead Snow", "year" : 2009, "score" : 21.872983932495117 } { "genres" : ["Adventure", "Comedy", "Family"], "title" : "Snow Day", "year" : 2000, "score" : 21.043487548828125 } { "genres" : ["Adventure", "Comedy", "Family"], "title" : "Snow Dogs", "year" : 2002, "score" : 21.043487548828125 } { "genres" : ["Comedy", "Romance"], "title" : "Let It Snow", "year" : 1999, "score" : 19.523927688598633 } { "genres" : ["Action", "Comedy", "Horror"], "title" : "Dead Snow 2: Red vs. Dead", "year" : 2014, "score" : 17.426334381103516 } { "genres" : ["Comedy", "Drama"], "title" : "Snow White and Russian Red", "year" : 2009, "score" : 16.367326736450195 } { "genres" : ["Comedy", "Drama", "Romance"], "title" : "The Tiger and the Snow", "year" : 2005, "score" : 15.537829399108887 } { "genres" : ["Adventure", "Comedy", "Family"], "title" : "Snow White and the Three Stooges", "year" : 1961, "score" : 14.426333427429199 }
Run an Atlas Search compound query that alters the score using the function
option.
Create a new directory called
compound-function-example
and initialize your project with thedotnet new
command.mkdir compound-function-example cd compound-function-example dotnet new console Add the .NET/C# Driver to your project as a dependency.
dotnet add package MongoDB.Driver Replace the contents of the
Program.cs
file with the following code.The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Uses the following pipeline stages to query the collection:
must
clause with the range operator to search for movies between the years2013
to2015
.should
clause with the text operator to query for the termsnow
in thetitle
field and alter thescore
with thefunction
option. Thefunction
option adds the following using an arithmetic expression:The relevance score of the query for the search term
The value of the numeric field named
imdb.rating
or the number2
for those documents that do not have theimdb.rating
field.
Uses the following pipeline stages:
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.Iterates over the cursor to print the documents that match the query.
1 using MongoDB.Bson; 2 using MongoDB.Bson.Serialization.Attributes; 3 using MongoDB.Bson.Serialization.Conventions; 4 using MongoDB.Driver; 5 using MongoDB.Driver.Search; 6 7 public class CompoundFunctionExample 8 { 9 private const string MongoConnectionString = "<connection-string>"; 10 11 public static void Main(string[] args) 12 { 13 // allow automapping of the camelCase database fields to our MovieDocument 14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() }; 15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true); 16 17 // connect to your Atlas cluster 18 var mongoClient = new MongoClient(MongoConnectionString); 19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix"); 20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies"); 21 22 var scoreFunction = Builders<MovieDocument>.SearchScore.Function(Builders<MovieDocument>.SearchScoreFunction.Add(Builders<MovieDocument>.SearchScoreFunction.Path(movie => movie.Imdb.Rating, 2), Builders<MovieDocument>.SearchScoreFunction.Relevance())); 23 // define and run pipeline 24 var results = moviesCollection.Aggregate() 25 .Search(Builders<MovieDocument>.Search.Compound() 26 .Must(Builders<MovieDocument>.Search.Range(movie => movie.Year, SearchRangeBuilder.Gte(2013).Lte(2015))) 27 .Should(Builders<MovieDocument>.Search.Text(movie => movie.Title, "snow", score: scoreFunction)), 28 new SearchHighlightOptions<MovieDocument>(movie => movie.Title), 29 indexName: "compound-query-custom-score-tutorial") 30 .Project<MovieDocument>(Builders<MovieDocument>.Projection 31 .Include(movie => movie.Genres) 32 .Include(movie => movie.Title) 33 .Include(movie => movie.Year) 34 .Exclude(movie => movie.Id) 35 .MetaSearchScore(movie => movie.Score) 36 .MetaSearchHighlights("highlights")) 37 .Limit(10) 38 .ToList(); 39 40 // print results 41 foreach (var movie in results) 42 { 43 Console.WriteLine(movie.ToJson()); 44 } 45 } 46 } 47 48 [ ]49 public class MovieDocument 50 { 51 [ ]52 public ObjectId Id { get; set; } 53 public string [] Genres { get; set; } 54 public IMDB Imdb { get; set; } 55 public string Title { get; set; } 56 public int Year { get; set; } 57 [ ]58 public List<SearchHighlight> Highlights { get; set; } 59 public double Score { get; set; } 60 } 61 62 [ ]63 public class IMDB 64 { 65 public double Rating { get; set; } 66 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Compile and run the
Program.cs
file.dotnet run compound-function-example.csproj { "genres" : ["Drama", "Mystery"], "title" : "The Snow White Murder Case", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3525336980819702, "texts" : [{ "type" : "Text", "value" : "The " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " White Murder Case" }] }], "score" : 10.454826354980469 } { "genres" : ["Action", "Drama", "History"], "title" : "Snow on the Blades", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3766303062438965, "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " on the Blades" }] }], "score" : 10.331723213195801 } { "genres" : ["Action", "Comedy", "Horror"], "title" : "Dead Snow 2: Red vs. Dead", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3924485445022583, "texts" : [{ "type" : "Text", "value" : "Dead " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " 2: Red vs. " }] }], "score" : 10.032526969909668 } { "genres" : ["Thriller"], "title" : "Snow in Paradise", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3828467130661011, "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " in Paradise" }] }], "score" : 8.3861465454101562 } { "genres" : ["Adventure", "Comedy", "Drama"], "title" : "The Secret Life of Walter Mitty", "year" : 2013, "highlights" : [], "score" : 1.0 } { "genres" : ["Action", "Adventure", "Sci-Fi"], "title" : "Jurassic World", "year" : 2015, "highlights" : [], "score" : 1.0 } { "genres" : ["Action", "Comedy", "Drama"], "title" : "Action Jackson", "year" : 2014, "highlights" : [], "score" : 1.0 } { "genres" : ["Crime", "Drama", "Thriller"], "title" : "In Secret", "year" : 2013, "highlights" : [], "score" : 1.0 } { "genres" : ["Drama", "Thriller"], "title" : "The Stanford Prison Experiment", "year" : 2015, "highlights" : [], "score" : 1.0 } { "genres" : ["Drama", "Sci-Fi"], "title" : "The Giver", "year" : 2014, "highlights" : [], "score" : 1.0 } The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using thefunction
option.
Run an Atlas Search compound query that alters the score using the constant
option.
Create a file named
compound-constant-query.go
.Copy and paste the code example into the
compound-constant-query.go
file.The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Uses the following compound clauses to query the collection:
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.Uses the following pipeline stages:
Iterates over the cursor to print the documents that match the query.
1 package main 2 3 import ( 4 "context" 5 "fmt" 6 "time" 7 8 "go.mongodb.org/mongo-driver/bson" 9 "go.mongodb.org/mongo-driver/mongo" 10 "go.mongodb.org/mongo-driver/mongo/options" 11 ) 12 13 func main() { 14 // connect to your Atlas cluster 15 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>")) 16 if err != nil { 17 panic(err) 18 } 19 defer client.Disconnect(context.TODO()) 20 21 // set namespace 22 collection := client.Database("sample_mflix").Collection("movies") 23 24 // define pipeline stages 25 searchStage := bson.D{{"$search", bson.M{ 26 "index": "compound-query-custom-score-tutorial", 27 "compound": bson.M{ 28 "filter": bson.M{ 29 "range": bson.M{ 30 "path": "year", "gte": 2013, "lte": 2015, 31 }, 32 }, 33 "should": bson.D{ 34 {"text", bson.M{ 35 "path": "title", "query": "snow", "score": bson.M{ 36 "constant": bson.D{{"value", 5}}, 37 }}}}, 38 }, 39 "highlight": bson.D{{"path", "title"}}, 40 }}} 41 limitStage := bson.D{{"$limit", 10}} 42 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"year", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}, {"highlights", bson.D{{"$meta", "searchHighlights"}}}}}} 43 44 // specify the amount of time the operation can run on the server 45 opts := options.Aggregate().SetMaxTime(5 * time.Second) 46 47 // run pipeline 48 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage}, opts) 49 if err != nil { 50 panic(err) 51 } 52 53 // print results 54 var results []bson.D 55 if err = cursor.All(context.TODO(), &results); err != nil { 56 panic(err) 57 } 58 for _, result := range results { 59 fmt.Println(result) 60 } 61 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the following command to query your collection:
go run compound-constant-query.go [{title Snow in Paradise} {year 2014} {score 5} {highlights [[{score 1.382846713066101} {path title} {texts [[{value Snow} {type hit}] [{value in Paradise} {type text}]]}]]}] [{title Dead Snow 2: Red vs. Dead} {year 2014} {score 5} {highlights [[{score 1.3924485445022583} {path title} {texts [[{value Dead } {type text}] [{value Snow} {type hit}] [{value 2: Red vs. } {type text}]]}]]}] [{title The Snow White Murder Case} {year 2014} {score 5} {highlights [[{score 1.3525336980819702} {path title} {texts [[{value The } {type text}] [{value Snow} {type hit}] [{value White Murder Case} {type text}]]}]]}] [{title Snow on the Blades} {year 2014} {score 5} {highlights [[{score 1.3766303062438965} {path title} {texts [[{value Snow} {type hit}] [{value on the Blades} {type text}]]}]]}] [{year 2013} {title The Secret Life of Walter Mitty} {score 0} {highlights []}] [{title Jurassic World} {year 2015} {score 0} {highlights []}] [{title Action Jackson} {year 2014} {score 0} {highlights []}] [{year 2013} {title In Secret} {score 0} {highlights []}] [{title The Stanford Prison Experiment} {year 2015} {score 0} {highlights []}] [{year 2014} {title The Giver} {score 0} {highlights []}] The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using theconstant
option.
Run an Atlas Search compound query that alters the score using the boost
option.
Create a file named
compound-boost-query.go
.Copy and paste the code example into the
compound-boost-query.go
file.The code examples perform the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Iterates over the cursor to print the documents that match the query.
The query uses the following pipeline stages:
$search
stage to query the collection. The query:Uses the following
compound
clauses to query the collection:Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.
$limit stage to limit the output to 10 results
$project stage to:
Exclude all fields except
title
andyear
Add two fields named
score
andhighlights
1 package main 2 3 import ( 4 "context" 5 "fmt" 6 "time" 7 8 "go.mongodb.org/mongo-driver/bson" 9 "go.mongodb.org/mongo-driver/mongo" 10 "go.mongodb.org/mongo-driver/mongo/options" 11 ) 12 13 // define structure of movies collection 14 type MovieCollection struct { 15 title string `bson:"Title,omitempty"` 16 } 17 18 func main() { 19 var err error 20 // connect to the Atlas cluster 21 ctx := context.Background() 22 client, err := mongo.Connect(ctx, options.Client().ApplyURI("<connection-string>")) 23 if err != nil { 24 panic(err) 25 } 26 defer client.Disconnect(ctx) 27 // set namespace 28 collection := client.Database("sample_mflix").Collection("movies") 29 // define pipeline 30 searchStage := bson.D{{"$search", bson.M{ 31 "index": "compound-query-custom-score-tutorial", 32 "compound": bson.M{ 33 "must": bson.M{ 34 "range": bson.M{ 35 "path": "year", "gte": 2013, "lte": 2015, 36 }, 37 }, 38 "should": bson.D{ 39 {"text", bson.M{ 40 "path": "title", "query": "snow", "score": bson.M{ 41 "boost": bson.D{{"value", 2}}, 42 }, 43 }}, 44 }, 45 }, 46 }}} 47 limitStage := bson.D{{"$limit", 10}} 48 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"year", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}}}} 49 // specify the amount of time the operation can run on the server 50 opts := options.Aggregate().SetMaxTime(5 * time.Second) 51 // run pipeline 52 cursor, err := collection.Aggregate(ctx, mongo.Pipeline{searchStage, limitStage, projectStage}, opts) 53 if err != nil { 54 panic(err) 55 } 56 // print results 57 var results []bson.D 58 if err = cursor.All(context.TODO(), &results); err != nil { 59 panic(err) 60 } 61 for _, result := range results { 62 fmt.Println(result) 63 } 64 } This query uses the following pipeline stages:
$search
stage to query the collection. The query:Uses the
compound
operator clauses with theboost
option to prioritize some fields more than other fields:must
clause with the text operator to prioritize the genrecomedy
the most, followed by the termsnow
in thetitle
field. Theboost
option applies weights to the fields.should
clause with the range operator to search for movies between the years2013
to2015
.
Note
The
boost
option applies different weights to the fields to prioritize the fields.
$limit stage to limit the output to 10 results
$project stage to:
Exclude all fields except
title
andyear
Add two fields named
score
andhighlights
1 package main 2 3 import ( 4 "context" 5 "fmt" 6 "time" 7 8 "go.mongodb.org/mongo-driver/bson" 9 "go.mongodb.org/mongo-driver/mongo" 10 "go.mongodb.org/mongo-driver/mongo/options" 11 ) 12 13 // define structure of movies collection 14 type MovieCollection struct { 15 title string `bson:"Title,omitempty"` 16 } 17 18 func main() { 19 var err error 20 // connect to the Atlas cluster 21 ctx := context.Background() 22 client, err := mongo.Connect(ctx, options.Client().ApplyURI("<connection-string>")) 23 if err != nil { 24 panic(err) 25 } 26 defer client.Disconnect(ctx) 27 // set namespace 28 collection := client.Database("sample_mflix").Collection("movies") 29 // define pipeline 30 searchStage := bson.D{{"$search", bson.M{ 31 "index": "compound-query-custom-score-tutorial", 32 "compound": bson.M{ 33 "must": bson.A{ 34 bson.M{ 35 "text": bson.M{ 36 "path": "genres", "query": "comedy", "score": bson.M{ 37 "boost": bson.D{{"value", 9}}, 38 }, 39 }, 40 }, 41 bson.M{ 42 "text": bson.M{ 43 "path": "title", "query": "snow", "score": bson.M{ 44 "boost": bson.D{{"value", 5}}, 45 }, 46 }, 47 }, 48 }, 49 "should": bson.M{ 50 "range": bson.M{ 51 "path": "year", "gte": 2013, "lte": 2015, "score": bson.M{ 52 "boost": bson.D{{"value", 3}}, 53 }, 54 }, 55 }, 56 }, 57 }}} 58 limitStage := bson.D{{"$limit", 10}} 59 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"year", 1}, {"genres", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}}}} 60 // specify the amount of time the operation can run on the server 61 opts := options.Aggregate().SetMaxTime(5 * time.Second) 62 // run pipeline 63 cursor, err := collection.Aggregate(ctx, mongo.Pipeline{searchStage, limitStage, projectStage}, opts) 64 if err != nil { 65 panic(err) 66 } 67 // print results 68 var results []bson.D 69 if err = cursor.All(context.TODO(), &results); err != nil { 70 panic(err) 71 } 72 for _, result := range results { 73 fmt.Println(result) 74 } 75 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the following command to query your collection:
go run compound-boost-query.go [{title Snow in Paradise} {year 2014} {score 6.7722930908203125} {highlights [[{score 1.382846713066101} {path title} {texts [[{value Snow} {type hit}] [{value in Paradise} {type text}]]}]]}] [{title Snow on the Blades} {year 2014} {score 6.063445568084717} {highlights [[{score 1.3766303062438965} {path title} {texts [[{value Snow} {type hit}] [{value on the Blades} {type text}]]}]]}] [{title The Snow White Murder Case} {year 2014} {score 5.509652137756348} {highlights [[{score 1.3525336980819702} {path title} {texts [[{value The } {type text}] [{value Snow} {type hit}] [{value White Murder Case} {type text}]]}]]}] [{title Dead Snow 2: Red vs. Dead} {year 2014} {score 5.065053939819336} {highlights [[{score 1.3924485445022583} {path title} {texts [[{value Dead } {type text}] [{value Snow} {type hit}] [{value 2: Red vs. } {type text}]]}]]}] [{year 2013} {title The Secret Life of Walter Mitty} {score 1} {highlights []}] [{title Jurassic World} {year 2015} {score 1} {highlights []}] [{title Action Jackson} {year 2014} {score 1} {highlights []}] [{year 2013} {title In Secret} {score 1} {highlights []}] [{title The Stanford Prison Experiment} {year 2015} {score 1} {highlights []}] [{year 2014} {title The Giver} {score 1} {highlights []}] The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using theboost
option.go run compound-boost-query.go [ { genres: [ 'Comedy', 'Horror' ], title: 'Dead Snow', year: 2009, score: 21.872983932495117 }, { year: 2000, genres: [ 'Adventure', 'Comedy', 'Family' ], title: 'Snow Day', score: 21.043487548828125 }, { genres: [ 'Adventure', 'Comedy', 'Family' ], title: 'Snow Dogs', year: 2002, score: 21.043487548828125 }, { year: 1999, genres: [ 'Comedy', 'Romance' ], title: 'Let It Snow', score: 19.523927688598633 }, { genres: [ 'Action', 'Comedy', 'Horror' ], title: 'Dead Snow 2: Red vs. Dead', year: 2014, score: 17.426334381103516 }, { genres: [ 'Comedy', 'Drama' ], title: 'Snow White and Russian Red', year: 2009, score: 16.367326736450195 }, { genres: [ 'Comedy', 'Drama', 'Romance' ], title: 'The Tiger and the Snow', year: 2005, score: 15.537829399108887 }, { genres: [ 'Adventure', 'Comedy', 'Family' ], title: 'Snow White and the Three Stooges', year: 1961, score: 14.4263334274292 } ]
Run an Atlas Search compound query that alters the score using the function
option.
Create a file named
compound-boost-query.go
.Copy and paste the code example into the
compound-function-query.go
file.The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Uses the following
compound
operator clauses:must
clause with the range operator to search for movies between the years2013
to2015
.should
clause with the text operator to query for the termsnow
in thetitle
field and alter thescore
with thefunction
option. Thefunction
option adds the following using an arithmetic expression:The relevance score of the query for the search term
The value of the numeric field named
imdb.rating
or the number2
for those documents that do not have theimdb.rating
field.
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.Uses the following pipeline stages:
Iterates over the cursor to print the documents that match the query.
1 package main 2 3 import ( 4 "context" 5 "fmt" 6 "time" 7 8 "go.mongodb.org/mongo-driver/bson" 9 "go.mongodb.org/mongo-driver/mongo" 10 "go.mongodb.org/mongo-driver/mongo/options" 11 ) 12 13 func main() { 14 // connect to your Atlas cluster 15 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>")) 16 if err != nil { 17 panic(err) 18 } 19 defer client.Disconnect(context.TODO()) 20 21 // set namespace 22 collection := client.Database("sample_mflix").Collection("movies") 23 24 // define pipeline 25 searchStage := bson.D{{"$search", bson.M{ 26 "index": "compound-query-custom-score-tutorial", 27 "compound": bson.M{ 28 "must": bson.M{ 29 "range": bson.M{ 30 "path": "year", "gte": 2013, "lte": 2015, 31 }, 32 }, 33 "should": bson.D{ 34 {"text", bson.M{ 35 "path": "title", "query": "snow", "score": bson.M{ 36 "function": bson.D{{"add", bson.A{ 37 bson.D{{"path", bson.D{ 38 {"value", "imdb.rating"}, {"undefined", 2}, 39 }}}, 40 bson.D{{"score", "relevance"}}, 41 }}}, 42 }}}}, 43 }, 44 "highlight": bson.D{{"path", "title"}}, 45 }}} 46 limitStage := bson.D{{"$limit", 10}} 47 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"year", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}, {"highlights", bson.D{{"$meta", "searchHighlights"}}}}}} 48 49 // specify the amount of time the operation can run on the server 50 opts := options.Aggregate().SetMaxTime(5 * time.Second) 51 52 // run pipeline 53 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage}, opts) 54 if err != nil { 55 panic(err) 56 } 57 58 // print results 59 var results []bson.D 60 if err = cursor.All(context.TODO(), &results); err != nil { 61 panic(err) 62 } 63 for _, result := range results { 64 fmt.Println(result) 65 } 66 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the following command to query your collection:
go run compound-function-query.go [{title The Snow White Murder Case} {year 2014} {score 10.454826354980469} {highlights [[{score 1.3525336980819702} {path title} {texts [[{value The } {type text}] [{value Snow} {type hit}] [{value White Murder Case} {type text}]]}]]}] [{title Snow on the Blades} {year 2014} {score 10.3317232131958} {highlights [[{score 1.3766303062438965} {path title} {texts [[{value Snow} {type hit}] [{value on the Blades} {type text}]]}]]}] [{title Dead Snow 2: Red vs. Dead} {year 2014} {score 10.032526969909668} {highlights [[{score 1.3924485445022583} {path title} {texts [[{value Dead } {type text}] [{value Snow} {type hit}] [{value 2: Red vs. } {type text}]]}]]}] [{title Snow in Paradise} {year 2014} {score 8.386146545410156} {highlights [[{score 1.382846713066101} {path title} {texts [[{value Snow} {type hit}] [{value in Paradise} {type text}]]}]]}] [{year 2013} {title The Secret Life of Walter Mitty} {score 1} {highlights []}] [{title Jurassic World} {year 2015} {score 1} {highlights []}] [{title Action Jackson} {year 2014} {score 1} {highlights []}] [{year 2013} {title In Secret} {score 1} {highlights []}] [{title The Stanford Prison Experiment} {year 2015} {score 1} {highlights []}] [{year 2014} {title The Giver} {score 1} {highlights []}] The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using thefunction
option.
Run an Atlas Search compound query that alters the score using the constant
option.
Create a file named
CompoundConstantQuery.java
.Copy and paste the following code into the file.
The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Uses the following compound clauses to query the collection:
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.Uses the following pipeline stages:
Iterates over the cursor to print the documents that match the query.
1 import java.util.Arrays; 2 import java.util.List; 3 4 import static com.mongodb.client.model.Aggregates.limit; 5 import static com.mongodb.client.model.Aggregates.project; 6 import static com.mongodb.client.model.Projections.*; 7 import com.mongodb.client.MongoClient; 8 import com.mongodb.client.MongoClients; 9 import com.mongodb.client.MongoCollection; 10 import com.mongodb.client.MongoDatabase; 11 12 import org.bson.Document; 13 14 public class CompoundConstantQuery { 15 public static void main( String[] args ) { 16 // define clauses 17 List<Document> mustClauses = 18 List.of( 19 new Document( 20 "range", new Document("path", "year") 21 .append("gte", 2013) 22 .append("lte", 2015))); 23 List<Document> shouldClauses = 24 List.of( 25 new Document("text", 26 new Document("query", "snow") 27 .append("path", "title") 28 .append("score", new Document("constant", new Document("value", 5))))); 29 Document highlightOption = new Document("path", "title"); 30 // define query 31 Document agg = 32 new Document("$search", 33 new Document("index", "compound-query-custom-score-tutorial") 34 .append("compound", 35 new Document("must", mustClauses).append("should", shouldClauses)) 36 .append("highlight", highlightOption)); 37 // specify connection 38 String uri = "<connection-string>"; 39 // establish connection and set namespace 40 try (MongoClient mongoClient = MongoClients.create(uri)) { 41 MongoDatabase database = mongoClient.getDatabase("sample_mflix"); 42 MongoCollection<Document> collection = database.getCollection("movies"); 43 // run query and print results 44 collection.aggregate(Arrays.asList(agg, 45 limit(10), 46 project(fields( 47 excludeId(), 48 include("title", "year"), 49 computed("score", new Document("$meta", "searchScore")), 50 computed("highlights", new Document("$meta", "searchHighlights")))))) 51 .forEach(doc -> System.out.println(doc.toJson())); 52 } 53 } 54 } Note
To run the sample code in your Maven environment, add the following above the import statements in your file.
package com.mongodb.drivers; Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Compile and run
CompoundConstantQuery.java
file.javac CompoundConstantQuery.java java CompoundConstantQuery {"title": "Snow in Paradise", "year": 2014, "score": 5.0, "highlights": [{"score": 1.382846713066101, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " in Paradise", "type": "text"}]}]} {"title": "Dead Snow 2: Red vs. Dead", "year": 2014, "score": 5.0, "highlights": [{"score": 1.3924485445022583, "path": "title", "texts": [{"value": "Dead ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " 2: Red vs. ", "type": "text"}]}]} {"title": "The Snow White Murder Case", "year": 2014, "score": 5.0, "highlights": [{"score": 1.3525336980819702, "path": "title", "texts": [{"value": "The ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " White Murder Case", "type": "text"}]}]} {"title": "Snow on the Blades", "year": 2014, "score": 5.0, "highlights": [{"score": 1.3766303062438965, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " on the Blades", "type": "text"}]}]} {"year": 2013, "title": "The Secret Life of Walter Mitty", "score": 0.0, "highlights": []} {"title": "Jurassic World", "year": 2015, "score": 0.0, "highlights": []} {"title": "Action Jackson", "year": 2014, "score": 0.0, "highlights": []} {"year": 2013, "title": "In Secret", "score": 0.0, "highlights": []} {"title": "The Stanford Prison Experiment", "year": 2015, "score": 0.0, "highlights": []} {"year": 2014, "title": "The Giver", "score": 0.0, "highlights": []} The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using theconstant
option.
Run Atlas Search compound queries that alter the score using the boost
option.
Create a file named
CompoundBoostQuery.java
.Copy and paste the following code into the file.
The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Iterates over the cursor to print the documents that match the query.
The query uses the following pipeline stages:
$search
stage to query the collection. The query:Uses the following
compound
operator clauses:
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.
$limit stage to limit the output to 10 results
$project stage to:
Exclude all fields except
title
andyear
Add two fields named
score
andhighlights
1 import java.util.Arrays; 2 import java.util.List; 3 4 import static com.mongodb.client.model.Aggregates.limit; 5 import static com.mongodb.client.model.Aggregates.project; 6 import static com.mongodb.client.model.Projections.*; 7 import com.mongodb.client.MongoClient; 8 import com.mongodb.client.MongoClients; 9 import com.mongodb.client.MongoCollection; 10 import com.mongodb.client.MongoDatabase; 11 import org.bson.Document; 12 13 public class CompoundBoostQuery { 14 public static void main( String[] args ) { 15 // define clauses 16 List<Document> mustClauses = 17 List.of( 18 new Document( 19 "range", new Document("path", "year") 20 .append("gte", 2013) 21 .append("lte", 2015))); 22 List<Document> shouldClauses = 23 List.of( 24 new Document( 25 "text", 26 new Document("query", "snow") 27 .append("path", "title") 28 .append("score", new Document("boost", new Document("value", 2))))); 29 Document highlightOption = new Document("path", "title"); 30 // define query 31 Document agg = 32 new Document("$search", 33 new Document("index", "compound-query-custom-score-tutorial") 34 .append("compound", 35 new Document("must", mustClauses).append("should", shouldClauses)) 36 .append("highlight", highlightOption)); 37 // specify connection 38 String uri = "<connection-string>"; 39 // establish connection and set namespace 40 try (MongoClient mongoClient = MongoClients.create(uri)) { 41 MongoDatabase database = mongoClient.getDatabase("sample_mflix"); 42 MongoCollection<Document> collection = database.getCollection("movies"); 43 // run query and print results 44 collection.aggregate(Arrays.asList(agg, 45 limit(10), 46 project(fields( 47 excludeId(), 48 include("title", "year"), 49 computed("score", new Document("$meta", "searchScore")), 50 computed("highlights", new Document("$meta", "searchHighlights")))))) 51 .forEach(doc -> System.out.println(doc.toJson())); 52 } 53 } 54 } This query uses the following
compound
operator clauses with theboost
option to prioritize some fields more than other fields:must
clause with the text operator to prioritize the genrecomedy
the most, followed by the termsnow
in thetitle
field. Theboost
option applies weights to the fields.should
clause with the range operator to search for movies between the years2013
to2015
.
Note
The
boost
option applies different weights to the fields to prioritize the fields.1 import java.util.Arrays; 2 import static com.mongodb.client.model.Filters.eq; 3 import static com.mongodb.client.model.Aggregates.limit; 4 import static com.mongodb.client.model.Aggregates.project; 5 import static com.mongodb.client.model.Projections.computed; 6 import static com.mongodb.client.model.Projections.excludeId; 7 import static com.mongodb.client.model.Projections.fields; 8 import static com.mongodb.client.model.Projections.include; 9 import com.mongodb.client.MongoClient; 10 import com.mongodb.client.MongoClients; 11 import com.mongodb.client.MongoCollection; 12 import com.mongodb.client.MongoDatabase; 13 import org.bson.Document; 14 15 public class CompoundBoostQuery { 16 public static void main( String[] args ) { 17 Document agg = new Document("index", "compound-query-custom-score-tutorial") 18 .append("must", Arrays.asList(new Document("text", 19 new Document("path", "genres") 20 .append("query", "comedy") 21 .append("score", 22 new Document("boost", 23 new Document("value", 9)))), 24 new Document("text", 25 new Document("path", "title") 26 .append("query", "snow") 27 .append("score", 28 new Document("boost", 29 new Document("value", 5)))))) 30 .append("should", Arrays.asList(new Document("range", 31 new Document("path", "year") 32 .append("gte", 2013) 33 .append("lte", 2015) 34 .append("score", 35 new Document("boost", 36 new Document("value", 3)))))); 37 38 String uri = "<connection-string>"; 39 40 try (MongoClient mongoClient = MongoClients.create(uri)) { 41 MongoDatabase database = mongoClient.getDatabase("sample_mflix"); 42 MongoCollection<Document> collection = database.getCollection("movies"); 43 44 collection.aggregate(Arrays.asList( 45 eq("$search", eq("compound", agg)), 46 limit(10), 47 project(fields(excludeId(), include("title", "year","genres"), computed("score", new Document("$meta", "searchScore"))))) 48 ).forEach(doc -> System.out.println(doc.toJson())); 49 } 50 } 51 } Note
To run the sample code in your Maven environment, add the following above the import statements in your file.
package com.mongodb.drivers; Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Compile and run
CompoundBoostQuery.java
file.javac CompoundBoostQuery.java java CompoundBoostQuery {"title": "Snow in Paradise", "year": 2014, "score": 6.7722930908203125, "highlights": [{"score": 1.382846713066101, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " in Paradise", "type": "text"}]}]} {"title": "Snow on the Blades", "year": 2014, "score": 6.063445568084717, "highlights": [{"score": 1.3766303062438965, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " on the Blades", "type": "text"}]}]} {"title": "The Snow White Murder Case", "year": 2014, "score": 5.509652137756348, "highlights": [{"score": 1.3525336980819702, "path": "title", "texts": [{"value": "The ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " White Murder Case", "type": "text"}]}]} {"title": "Dead Snow 2: Red vs. Dead", "year": 2014, "score": 5.065053939819336, "highlights": [{"score": 1.3924485445022583, "path": "title", "texts": [{"value": "Dead ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " 2: Red vs. ", "type": "text"}]}]} {"year": 2013, "title": "The Secret Life of Walter Mitty", "score": 1.0, "highlights": []} {"title": "Jurassic World", "year": 2015, "score": 1.0, "highlights": []} {"title": "Action Jackson", "year": 2014, "score": 1.0, "highlights": []} {"year": 2013, "title": "In Secret", "score": 1.0, "highlights": []} {"title": "The Stanford Prison Experiment", "year": 2015, "score": 1.0, "highlights": []} {"year": 2014, "title": "The Giver", "score": 1.0, "highlights": []} The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using theboost
option.javac CompoundBoostQuery.java java CompoundBoostQuery { "genres": ["Comedy", "Horror"], "title": "Dead Snow", "year": 2009, "score": 21.872983932495117 } { "year": 2000, "genres": ["Adventure", "Comedy", "Family"], "title": "Snow Day", "score": 21.043487548828125 } { "genres": ["Adventure", "Comedy", "Family"], "title": "Snow Dogs", "year": 2002, "score": 21.043487548828125 } { "year": 1999, "genres": ["Comedy", "Romance"], "title": "Let It Snow", "score": 19.523927688598633 } { "genres": ["Action", "Comedy", "Horror"], "title": "Dead Snow 2: Red vs. Dead", "year": 2014, "score": 17.426334381103516 } { "genres": ["Comedy", "Drama"], "title": "Snow White and Russian Red", "year": 2009, "score": 16.367326736450195} { "genres": ["Comedy", "Drama", "Romance"], "title": "The Tiger and the Snow", "year": 2005, "score": 15.537829399108887 } { "genres": ["Adventure", "Comedy", "Family"], "title": "Snow White and the Three Stooges", "year": 1961, "score": 14.4263334274292 }
Run an Atlas Search compound query that alters the score using the function
option.
Create a file named
CompoundFunctionQuery.java
.Copy and paste the following code into the file.
The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Uses the following pipeline stages to query the collection:
must
clause with the range operator to search for movies between the years2013
to2015
.should
clause with the text operator to query for the termsnow
in thetitle
field and alter thescore
with thefunction
option. Thefunction
option adds the following using an arithmetic expression:The relevance score of the query for the search term
The value of the numeric field named
imdb.rating
or the number2
for those documents that do not have theimdb.rating
field.
Uses the following pipeline stages:
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.Iterates over the cursor to print the documents that match the query.
1 import java.util.Arrays; 2 import java.util.List; 3 4 import static com.mongodb.client.model.Aggregates.limit; 5 import static com.mongodb.client.model.Aggregates.project; 6 import static com.mongodb.client.model.Projections.*; 7 import com.mongodb.client.MongoClient; 8 import com.mongodb.client.MongoClients; 9 import com.mongodb.client.MongoCollection; 10 import com.mongodb.client.MongoDatabase; 11 import org.bson.Document; 12 13 public class CompoundFunctionQuery { 14 public static void main( String[] args ) { 15 // define clauses 16 List<Document> mustClauses = 17 List.of( 18 new Document("range", new Document("path", "year") 19 .append("gte", 2013) 20 .append("lte", 2015))); 21 List<Document> shouldClauses = 22 List.of( 23 new Document("text", 24 new Document("query", "snow") 25 .append("path", "title") 26 .append("score", new Document("function", 27 new Document("add", Arrays.asList( 28 new Document("path", new Document("value", "imdb.rating") 29 .append("undefined", 2)), new Document("score", "relevance"))))))); 30 Document highlightOption = new Document("path", "title"); 31 // define query 32 Document agg = 33 new Document("$search", 34 new Document("index", "compound-query-custom-score-tutorial") 35 .append("compound", 36 new Document("must", mustClauses).append("should", shouldClauses)) 37 .append("highlight", highlightOption)); 38 // specify connection 39 String uri = "<connection-string>"; 40 // establish connection and set namespace 41 try (MongoClient mongoClient = MongoClients.create(uri)) { 42 MongoDatabase database = mongoClient.getDatabase("sample_mflix"); 43 MongoCollection<Document> collection = database.getCollection("movies"); 44 // run query and print results 45 collection.aggregate(Arrays.asList(agg, 46 limit(10), 47 project(fields( 48 excludeId(), 49 include("title", "year"), 50 computed("score", new Document("$meta", "searchScore")), 51 computed("highlights", new Document("$meta", "searchHighlights")))))) 52 .forEach(doc -> System.out.println(doc.toJson())); 53 } 54 } 55 } Note
To run the sample code in your Maven environment, add the following above the import statements in your file.
package com.mongodb.drivers; Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Compile and run
CompoundFunctionQuery.java
file.javac CompoundFunctionQuery.java java CompoundFunctionQuery {"title": "The Snow White Murder Case", "year": 2014, "score": 10.454826354980469, "highlights": [{"score": 1.3525336980819702, "path": "title", "texts": [{"value": "The ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " White Murder Case", "type": "text"}]}]} {"title": "Snow on the Blades", "year": 2014, "score": 10.3317232131958, "highlights": [{"score": 1.3766303062438965, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " on the Blades", "type": "text"}]}]} {"title": "Dead Snow 2: Red vs. Dead", "year": 2014, "score": 10.032526969909668, "highlights": [{"score": 1.3924485445022583, "path": "title", "texts": [{"value": "Dead ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " 2: Red vs. ", "type": "text"}]}]} {"title": "Snow in Paradise", "year": 2014, "score": 8.386146545410156, "highlights": [{"score": 1.382846713066101, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " in Paradise", "type": "text"}]}]} {"year": 2013, "title": "The Secret Life of Walter Mitty", "score": 1.0, "highlights": []} {"title": "Jurassic World", "year": 2015, "score": 1.0, "highlights": []} {"title": "Action Jackson", "year": 2014, "score": 1.0, "highlights": []} {"year": 2013, "title": "In Secret", "score": 1.0, "highlights": []} {"title": "The Stanford Prison Experiment", "year": 2015, "score": 1.0, "highlights": []} {"year": 2014, "title": "The Giver", "score": 1.0, "highlights": []} The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using thefunction
option.
Run an Atlas Search compound query that alters the score using the constant
option.
Create a file named
CompoundConstantQuery.kt
.Copy and paste the following code into the file.
The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Uses the following compound clauses to query the collection:
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.Uses the following pipeline stages:
Prints the documents that match the query from the
AggregateFlow
instance.
1 import com.mongodb.client.model.Aggregates.limit 2 import com.mongodb.client.model.Aggregates.project 3 import com.mongodb.client.model.Projections.* 4 import com.mongodb.kotlin.client.coroutine.MongoClient 5 import kotlinx.coroutines.runBlocking 6 import org.bson.Document 7 8 fun main() { 9 // establish connection and set namespace 10 val uri = "<connection-string>" 11 val mongoClient = MongoClient.create(uri) 12 val database = mongoClient.getDatabase("sample_mflix") 13 val collection = database.getCollection<Document>("movies") 14 15 runBlocking { 16 // define clauses 17 val mustClauses = listOf( 18 Document( 19 "range", Document("path", "year") 20 .append("gte", 2013) 21 .append("lte", 2015) 22 ) 23 ) 24 25 val shouldClauses = listOf( 26 Document( 27 "text", 28 Document("query", "snow") 29 .append("path", "title") 30 .append("score", Document("constant", Document("value", 5))) 31 ) 32 ) 33 34 val highlightOption = Document("path", "title") 35 36 // define pipeline 37 val agg = Document( 38 "\$search", 39 Document("index", "compound-query-custom-score-tutorial") 40 .append( 41 "compound", 42 Document("must", mustClauses).append("should", shouldClauses) 43 ) 44 .append("highlight", highlightOption) 45 ) 46 47 val resultsFlow = collection.aggregate<Document>( 48 listOf( 49 agg, 50 limit(10), 51 project(fields( 52 excludeId(), 53 include("title", "year"), 54 computed("score", Document("\$meta", "searchScore")), 55 computed("highlights", Document("\$meta", "searchHighlights")) 56 )) 57 ) 58 ) 59 resultsFlow.collect { println(it) } 60 } 61 mongoClient.close() 62 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the
CompoundConstantQuery.kt
file.When you run the
CompoundConstantQuery.kt
program in your IDE, it prints the following documents:Document{{title=Snow in Paradise, year=2014, score=6.0, highlights=[Document{{score=1.382846713066101, path=title, texts=[Document{{value=Snow, type=hit}}, Document{{value= in Paradise, type=text}}]}}]}} Document{{title=Dead Snow 2: Red vs. Dead, year=2014, score=6.0, highlights=[Document{{score=1.3924485445022583, path=title, texts=[Document{{value=Dead , type=text}}, Document{{value=Snow, type=hit}}, Document{{value= 2: Red vs. , type=text}}]}}]}} Document{{title=The Snow White Murder Case, year=2014, score=6.0, highlights=[Document{{score=1.3525336980819702, path=title, texts=[Document{{value=The , type=text}}, Document{{value=Snow, type=hit}}, Document{{value= White Murder Case, type=text}}]}}]}} Document{{title=Snow on the Blades, year=2014, score=6.0, highlights=[Document{{score=1.3766303062438965, path=title, texts=[Document{{value=Snow, type=hit}}, Document{{value= on the Blades, type=text}}]}}]}} Document{{year=2013, title=The Secret Life of Walter Mitty, score=1.0, highlights=[]}} Document{{title=Jurassic World, year=2015, score=1.0, highlights=[]}} Document{{title=Action Jackson, year=2014, score=1.0, highlights=[]}} Document{{year=2013, title=In Secret, score=1.0, highlights=[]}} Document{{title=The Stanford Prison Experiment, year=2015, score=1.0, highlights=[]}} Document{{year=2014, title=The Giver, score=1.0, highlights=[]}} The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using theconstant
option.
Run Atlas Search compound queries that alter the score using the boost
option.
Create a file named
CompoundBoostQuery.kt
.Copy and paste the following code into the file.
The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Prints the documents that match the query from the
AggregateFlow
instance.
The query uses the following pipeline stages:
$search
stage to query the collection. The query:Uses the following
compound
operator clauses:
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.
$limit stage to limit the output to 10 results
$project stage to:
Exclude all fields except
title
andyear
Add two fields named
score
andhighlights
1 import com.mongodb.client.model.Aggregates.limit 2 import com.mongodb.client.model.Aggregates.project 3 import com.mongodb.client.model.Projections.* 4 import com.mongodb.kotlin.client.coroutine.MongoClient 5 import kotlinx.coroutines.runBlocking 6 import org.bson.Document 7 8 fun main() { 9 // establish connection and set namespace 10 val uri = "<connection-string>" 11 val mongoClient = MongoClient.create(uri) 12 13 val database = mongoClient.getDatabase("sample_mflix") 14 val collection = database.getCollection<Document>("movies") 15 16 runBlocking { 17 // define clauses 18 val mustClauses = listOf( 19 Document( 20 "range", Document("path", "year") 21 .append("gte", 2013) 22 .append("lte", 2015) 23 ) 24 ) 25 26 val shouldClauses = listOf( 27 Document( 28 "text", 29 Document("query", "snow") 30 .append("path", "title") 31 .append("score", Document("boost", Document("value", 2))) 32 ) 33 ) 34 35 val highlightOption = Document("path", "title") 36 37 // define pipeline 38 val agg = Document( 39 "\$search", 40 Document("index", "compound-query-custom-score-tutorial") 41 .append( 42 "compound", 43 Document("must", mustClauses).append("should", shouldClauses) 44 ) 45 .append("highlight", highlightOption) 46 ) 47 48 // run query and print results 49 val resultsFlow = collection.aggregate<Document>( 50 listOf( 51 agg, 52 limit(10), 53 project(fields( 54 excludeId(), 55 include("title", "year"), 56 computed("score", Document("\$meta", "searchScore")), 57 computed("highlights", Document("\$meta", "searchHighlights")) 58 )) 59 ) 60 ) 61 resultsFlow.collect { println(it) } 62 } 63 mongoClient.close() 64 } This query uses the following
compound
operator clauses with theboost
option to prioritize some fields more than other fields:must
clause with the text operator to prioritize the genrecomedy
the most, followed by the termsnow
in thetitle
field. Theboost
option applies weights to the fields.should
clause with the range operator to search for movies between the years2013
to2015
.
Note
The
boost
option applies different weights to the fields to prioritize the fields.1 import com.mongodb.client.model.Aggregates.limit 2 import com.mongodb.client.model.Aggregates.project 3 import com.mongodb.client.model.Projections.* 4 import com.mongodb.kotlin.client.coroutine.MongoClient 5 import kotlinx.coroutines.runBlocking 6 import org.bson.Document 7 8 fun main() { 9 // establish connection and set namespace 10 val uri = "<connection-string>" 11 val mongoClient = MongoClient.create(uri) 12 13 val database = mongoClient.getDatabase("sample_mflix") 14 val collection = database.getCollection<Document>("movies") 15 16 runBlocking { 17 // define pipeline 18 val agg = Document( 19 "\$search", 20 Document("index", "compound-query-custom-score-tutorial") 21 .append( 22 "compound", 23 Document( 24 "must", listOf( 25 Document( 26 "text", 27 Document("path", "genres") 28 .append("query", "comedy") 29 .append( 30 "score", 31 Document( 32 "boost", 33 Document("value", 9) 34 ) 35 ) 36 ), 37 Document( 38 "text", 39 Document("path", "title") 40 .append("query", "snow") 41 .append( 42 "score", 43 Document( 44 "boost", 45 Document("value", 5) 46 ) 47 ) 48 ) 49 ) 50 ) 51 .append( 52 "should", listOf( 53 Document( 54 "range", 55 Document("path", "year") 56 .append("gte", 2013) 57 .append("lte", 2015) 58 .append( 59 "score", 60 Document( 61 "boost", 62 Document("value", 3) 63 ) 64 ) 65 ) 66 ) 67 ) 68 ) 69 ) 70 71 // run query and print results 72 val resultsFlow = collection.aggregate<Document>( 73 listOf( 74 agg, 75 limit(10), 76 project(fields( 77 excludeId(), 78 include("title", "year","genres"), 79 computed("score", Document("\$meta", "searchScore")) 80 )) 81 ) 82 ) 83 resultsFlow.collect { println(it) } 84 } 85 mongoClient.close() 86 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the
CompoundBoostQuery.kt
file.When you run the
CompoundBoostQuery.kt
program in your IDE, it prints the following documents:Document{{title=Snow in Paradise, year=2014, score=6.784297466278076, highlights=[Document{{score=1.382846713066101, path=title, texts=[Document{{value=Snow, type=hit}}, Document{{value= in Paradise, type=text}}]}}]}} Document{{title=Snow on the Blades, year=2014, score=6.073266506195068, highlights=[Document{{score=1.3766303062438965, path=title, texts=[Document{{value=Snow, type=hit}}, Document{{value= on the Blades, type=text}}]}}]}} Document{{title=The Snow White Murder Case, year=2014, score=5.517906188964844, highlights=[Document{{score=1.3525336980819702, path=title, texts=[Document{{value=The , type=text}}, Document{{value=Snow, type=hit}}, Document{{value= White Murder Case, type=text}}]}}]}} Document{{title=Dead Snow 2: Red vs. Dead, year=2014, score=5.072136878967285, highlights=[Document{{score=1.3924485445022583, path=title, texts=[Document{{value=Dead , type=text}}, Document{{value=Snow, type=hit}}, Document{{value= 2: Red vs. , type=text}}]}}]}} Document{{year=2013, title=The Secret Life of Walter Mitty, score=1.0, highlights=[]}} Document{{title=Jurassic World, year=2015, score=1.0, highlights=[]}} Document{{title=Action Jackson, year=2014, score=1.0, highlights=[]}} Document{{year=2013, title=In Secret, score=1.0, highlights=[]}} Document{{title=The Stanford Prison Experiment, year=2015, score=1.0, highlights=[]}} Document{{year=2014, title=The Giver, score=1.0, highlights=[]}} The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using theboost
option.When you run the
CompoundBoostQuery.kt
program in your IDE, it prints the following documents:Document{{year=2000, genres=[Adventure, Comedy, Family], title=Snow Day, score=20.998544692993164}} Document{{genres=[Adventure, Comedy, Family], title=Snow Dogs, year=2002, score=20.998544692993164}} Document{{year=1999, genres=[Comedy, Romance], title=Let It Snow, score=19.45327377319336}} Document{{genres=[Action, Comedy, Horror], title=Dead Snow 2: Red vs. Dead, year=2014, score=17.361087799072266}} Document{{genres=[Comedy, Drama], title=Snow White and Russian Red, year=2009, score=16.287294387817383}} Document{{genres=[Comedy, Drama, Romance], title=The Tiger and the Snow, year=2005, score=15.475509643554688}} Document{{genres=[Adventure, Comedy, Family], title=Snow White and the Three Stooges, year=1961, score=14.361087799072266}}
Run an Atlas Search compound query that alters the score using the function
option.
Create a file named
CompoundFunctionQuery.kt
.Copy and paste the following code into the file.
The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Uses the following pipeline stages to query the collection:
must
clause with the range operator to search for movies between the years2013
to2015
.should
clause with the text operator to query for the termsnow
in thetitle
field and alter thescore
with thefunction
option. Thefunction
option adds the following using an arithmetic expression:The relevance score of the query for the search term
The value of the numeric field named
imdb.rating
or the number2
for those documents that do not have theimdb.rating
field.
Uses the following pipeline stages:
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.Prints the documents that match the query from the
AggregateFlow
instance.
1 import com.mongodb.client.model.Aggregates.limit 2 import com.mongodb.client.model.Aggregates.project 3 import com.mongodb.client.model.Projections.* 4 import com.mongodb.kotlin.client.coroutine.MongoClient 5 import kotlinx.coroutines.runBlocking 6 import org.bson.Document 7 8 fun main() { 9 // establish connection and set namespace 10 val uri = "<connection-string>" 11 val mongoClient = MongoClient.create(uri) 12 13 val database = mongoClient.getDatabase("sample_mflix") 14 val collection = database.getCollection<Document>("movies") 15 16 runBlocking { 17 // define clauses 18 val mustClauses = listOf( 19 Document( 20 "range", Document("path", "year") 21 .append("gte", 2013) 22 .append("lte", 2015) 23 ) 24 ) 25 26 val shouldClauses = listOf( 27 Document("text", Document("query", "snow") 28 .append("path", "title") 29 .append("score", 30 Document("function", Document("add", listOf( 31 Document("path", Document("value", "imdb.rating").append("undefined", 2)), 32 Document("score", "relevance") 33 ))) 34 ) 35 ) 36 ) 37 38 val highlightOption = Document("path", "title") 39 40 // define pipeline 41 val agg = Document( 42 "\$search", 43 Document("index", "compound-query-custom-score-tutorial") 44 .append( 45 "compound", 46 Document("must", mustClauses).append("should", shouldClauses) 47 ) 48 .append("highlight", highlightOption) 49 ) 50 51 // run query and print results 52 val resultsFlow = collection.aggregate<Document>( 53 listOf( 54 agg, 55 limit(10), 56 project(fields( 57 excludeId(), 58 include("title", "year"), 59 computed("score", Document("\$meta", "searchScore")), 60 computed("highlights", Document("\$meta", "searchHighlights")) 61 )) 62 ) 63 ) 64 resultsFlow.collect { println(it) } 65 } 66 mongoClient.close() 67 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the
CompoundFunctionQuery.kt
file.When you run the
CompoundFunctionQuery.kt
program in your IDE, it prints the following documents:Document{{title=The Snow White Murder Case, year=2014, score=10.458952903747559, highlights=[Document{{score=1.3525336980819702, path=title, texts=[Document{{value=The , type=text}}, Document{{value=Snow, type=hit}}, Document{{value= White Murder Case, type=text}}]}}]}} Document{{title=Snow on the Blades, year=2014, score=10.336633682250977, highlights=[Document{{score=1.3766303062438965, path=title, texts=[Document{{value=Snow, type=hit}}, Document{{value= on the Blades, type=text}}]}}]}} Document{{title=Dead Snow 2: Red vs. Dead, year=2014, score=10.036067962646484, highlights=[Document{{score=1.3924485445022583, path=title, texts=[Document{{value=Dead , type=text}}, Document{{value=Snow, type=hit}}, Document{{value= 2: Red vs. , type=text}}]}}]}} Document{{title=Snow in Paradise, year=2014, score=8.392148971557617, highlights=[Document{{score=1.382846713066101, path=title, texts=[Document{{value=Snow, type=hit}}, Document{{value= in Paradise, type=text}}]}}]}} Document{{year=2013, title=The Secret Life of Walter Mitty, score=1.0, highlights=[]}} Document{{title=Jurassic World, year=2015, score=1.0, highlights=[]}} Document{{title=Action Jackson, year=2014, score=1.0, highlights=[]}} Document{{year=2013, title=In Secret, score=1.0, highlights=[]}} Document{{title=The Stanford Prison Experiment, year=2015, score=1.0, highlights=[]}} Document{{year=2014, title=The Giver, score=1.0, highlights=[]}} The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using thefunction
option.
Run an Atlas Search compound query that alters the score using the constant
option.
Create a file named
compound-constant-query.js
.Copy and paste the code example into the
compound-constant-query.js
file.The code example performs the following tasks:
Imports
mongodb
, MongoDB's Node.js driver.Creates an instance of the
MongoClient
class to establish a connection to your Atlas cluster.Uses the following compound clauses to query the collection:
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.Uses the following pipeline stages:
Iterates over the cursor to print the documents that match the query.
1 const MongoClient = require("mongodb").MongoClient; 2 const assert = require("assert"); 3 4 const agg = [ 5 { 6 '$search': { 7 'index': 'compound-query-custom-score-tutorial', 8 'compound': { 9 'filter': [ 10 { 11 'range': { 12 'path': 'year', 13 'gte': 2013, 14 'lte': 2015 15 } 16 } 17 ], 18 'should': [ 19 { 20 'text': { 21 'query': 'snow', 22 'path': 'title', 23 'score': { 24 'constant': { 25 'value': 5 26 } 27 } 28 } 29 } 30 ] 31 }, 32 'highlight': { 33 'path': 'title' 34 } 35 } 36 }, { 37 '$limit': 10 38 }, { 39 '$project': { 40 '_id': 0, 41 'title': 1, 42 'year': 1, 43 'score': { 44 '$meta': 'searchScore' 45 }, 46 'highlights': { 47 '$meta': 'searchHighlights' 48 } 49 } 50 } 51 ]; 52 53 MongoClient.connect( 54 "<connection-string>", 55 { useNewUrlParser: true, useUnifiedTopology: true }, 56 async function (connectErr, client) { 57 assert.equal(null, connectErr); 58 const coll = client.db("sample_mflix").collection("movies"); 59 let cursor = await coll.aggregate(agg); 60 await cursor.forEach((doc) => console.log(doc)); 61 client.close(); 62 } 63 ); Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the following command to query your collection:
node compound-constant-query.js '{"title":"Snow in Paradise","year":2014,"score":5,"highlights":[{"score":1.382846713066101,"path":"title","texts":[{"value":"Snow","type":"hit"},{"value":" in Paradise","type":"text"}]}]}' '{"title":"Dead Snow 2: Red vs. Dead","year":2014,"score":5,"highlights":[{"score":1.3924485445022583,"path":"title","texts":[{"value":"Dead ","type":"text"},{"value":"Snow","type":"hit"},{"value":" 2: Red vs. ","type":"text"}]}]}' '{"title":"The Snow White Murder Case","year":2014,"score":5,"highlights":[{"score":1.3525336980819702,"path":"title","texts":[{"value":"The ","type":"text"},{"value":"Snow","type":"hit"},{"value":" White Murder Case","type":"text"}]}]}' '{"title":"Snow on the Blades","year":2014,"score":5,"highlights":[{"score":1.3766303062438965,"path":"title","texts":[{"value":"Snow","type":"hit"},{"value":" on the Blades","type":"text"}]}]}' '{"year":2013,"title":"The Secret Life of Walter Mitty","score":0,"highlights":[]}' '{"title":"Jurassic World","year":2015,"score":0,"highlights":[]}' '{"title":"Action Jackson","year":2014,"score":0,"highlights":[]}' '{"year":2013,"title":"In Secret","score":0,"highlights":[]}' '{"title":"The Stanford Prison Experiment","year":2015,"score":0,"highlights":[]}' '{"year":2014,"title":"The Giver","score":0,"highlights":[]}' The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using theconstant
option.
Run an Atlas Search compound query that alters the score using the boost
option.
Create a file named
compound-boost-query.js
.Copy and paste the code example into the
compound-boost-query.js
file.The code example performs the following tasks:
Imports
mongodb
, MongoDB's Node.js driver.Creates an instance of the
MongoClient
class to establish a connection to your Atlas cluster.Iterates over the cursor to print the documents that match the query.
The query uses the following pipeline stages:
$search
stage to query the collection. The query:Uses the following
compound
operator clauses:Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.
$limit stage to limit the output to 10 results
$project stage to:
Exclude all fields except
title
andyear
Add two fields named
score
andhighlights
1 const MongoClient = require("mongodb").MongoClient; 2 const assert = require("assert"); 3 4 const agg = [ 5 { 6 '$search': { 7 'index': 'compound-query-custom-score-tutorial', 8 'compound': { 9 'must': [ 10 { 11 'range': { 12 'path': 'year', 13 'gte': 2013, 14 'lte': 2015 15 } 16 } 17 ], 18 'should': [ 19 { 20 'text': { 21 'query': 'snow', 22 'path': 'title', 23 'score': { 24 'boost': { 25 'value': 2 26 } 27 } 28 } 29 } 30 ] 31 } 32 } 33 }, { 34 '$limit': 10 35 }, { 36 '$project': { 37 '_id': 0, 38 'title': 1, 39 'year': 1, 40 'score': { 41 '$meta': 'searchScore' 42 } 43 } 44 } 45 ]; 46 47 MongoClient.connect( 48 "<connection-string>", 49 { useNewUrlParser: true, useUnifiedTopology: true }, 50 async function (connectErr, client) { 51 assert.equal(null, connectErr); 52 const coll = client.db("sample_mflix").collection("movies"); 53 let cursor = await coll.aggregate(agg); 54 await cursor.forEach((doc) => console.log(doc)); 55 client.close(); 56 } 57 ); The query uses the following pipeline stages:
$search
stage to query the collection. The query:Uses the following
compound
operator clauses with theboost
option to prioritize some fields more than other fields:must
clause with the text operator to prioritize the genrecomedy
the most, followed by the termsnow
in thetitle
field. Theboost
option applies weights to the fields.should
clause with the range operator to search for movies between the years2013
to2015
.
Note
The
boost
option applies different weights to the fields to prioritize the fields.
1 const MongoClient = require("mongodb").MongoClient; 2 const assert = require("assert"); 3 4 const agg = [ 5 { 6 '$search': { 7 'index': 'compound-query-custom-score-tutorial', 8 'compound': { 9 'must': [ 10 { 11 'text': { 12 'path': 'genres', 13 'query': 'comedy', 14 'score': { 15 'boost': { 16 'value': 9 17 } 18 } 19 } 20 }, { 21 'text': { 22 'path': 'title', 23 'query': 'snow', 24 'score': { 25 'boost': { 26 'value': 5 27 } 28 } 29 } 30 } 31 ], 32 'should': [ 33 { 34 'range': { 35 'path': 'year', 36 'gte': 2013, 37 'lte': 2015, 38 'score': { 39 'boost': { 40 'value': 3 41 } 42 } 43 } 44 } 45 ] 46 } 47 } 48 }, { 49 '$limit': 10 50 }, { 51 '$project': { 52 '_id': 0, 53 'title': 1, 54 'year': 1, 55 'genres': 1, 56 'score': { 57 '$meta': 'searchScore' 58 } 59 } 60 } 61 ]; 62 63 MongoClient.connect( 64 "<connection-string>", 65 { useNewUrlParser: true, useUnifiedTopology: true }, 66 async function (connectErr, client) { 67 assert.equal(null, connectErr); 68 const coll = client.db("sample_mflix").collection("movies"); 69 let cursor = await coll.aggregate(agg); 70 await cursor.forEach((doc) => console.log(doc)); 71 client.close(); 72 } 73 ); Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the following command to query your collection:
node compound-boost-query.js '{"title":"Snow in Paradise","year":2014,"score":6.7722930908203125,"highlights":[{"score":1.382846713066101,"path":"title","texts":[{"value":"Snow","type":"hit"},{"value":" in Paradise","type":"text"}]}]}' '{"title":"Snow on the Blades","year":2014,"score":6.063445568084717,"highlights":[{"score":1.3766303062438965,"path":"title","texts":[{"value":"Snow","type":"hit"},{"value":" on the Blades","type":"text"}]}]}' '{"title":"The Snow White Murder Case","year":2014,"score":5.509652137756348,"highlights":[{"score":1.3525336980819702,"path":"title","texts":[{"value":"The ","type":"text"},{"value":"Snow","type":"hit"},{"value":" White Murder Case","type":"text"}]}]}' '{"title":"Dead Snow 2: Red vs. Dead","year":2014,"score":5.065053939819336,"highlights":[{"score":1.3924485445022583,"path":"title","texts":[{"value":"Dead ","type":"text"},{"value":"Snow","type":"hit"},{"value":" 2: Red vs. ","type":"text"}]}]}' '{"year":2013,"title":"The Secret Life of Walter Mitty","score":1,"highlights":[]}' '{"title":"Jurassic World","year":2015,"score":1,"highlights":[]}' '{"title":"Action Jackson","year":2014,"score":1,"highlights":[]}' '{"year":2013,"title":"In Secret","score":1,"highlights":[]}' '{"title":"The Stanford Prison Experiment","year":2015,"score":1,"highlights":[]}' '{"year":2014,"title":"The Giver","score":1,"highlights":[]}' The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using theboost
option.node compound-boost-query.js { genres: [ 'Comedy', 'Horror' ], title: 'Dead Snow', year: 2009, score: 21.872983932495117 } { year: 2000, genres: [ 'Adventure', 'Comedy', 'Family' ], title: 'Snow Day', score: 21.043487548828125 } { genres: [ 'Adventure', 'Comedy', 'Family' ], title: 'Snow Dogs', year: 2002, score: 21.043487548828125 } { year: 1999, genres: [ 'Comedy', 'Romance' ], title: 'Let It Snow', score: 19.523927688598633 } { genres: [ 'Action', 'Comedy', 'Horror' ], title: 'Dead Snow 2: Red vs. Dead', year: 2014, score: 17.426334381103516 } { genres: [ 'Comedy', 'Drama' ], title: 'Snow White and Russian Red', year: 2009, score: 16.367326736450195 } { genres: [ 'Comedy', 'Drama', 'Romance' ], title: 'The Tiger and the Snow', year: 2005, score: 15.537829399108887 } { genres: [ 'Adventure', 'Comedy', 'Family' ], title: 'Snow White and the Three Stooges', year: 1961, score: 14.4263334274292 }
Run an Atlas Search compound query that alters the score using the function
option.
Create a file named
compound-function-query.js
.Copy and paste the code example into the
compound-function-query.js
file.The code example performs the following tasks:
Imports
mongodb
, MongoDB's Node.js driver.Creates an instance of the
MongoClient
class to establish a connection to your Atlas cluster.Uses the following compound clauses to query the collection:
must
clause with the range operator to search for movies between the years2013
to2015
.should
clause with the text operator to query for the termsnow
in thetitle
field and alter thescore
with thefunction
option. Thefunction
option adds the following using an arithmetic expression:The relevance score of the query for the search term
The value of the numeric field named
imdb.rating
or the number2
for those documents that do not have theimdb.rating
field.
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.Uses the following pipeline stages:
Iterates over the cursor to print the documents that match the query.
1 const MongoClient = require("mongodb").MongoClient; 2 const assert = require("assert"); 3 4 const agg = [ 5 { 6 '$search': { 7 'index': 'compound-query-custom-score-tutorial', 8 'compound': { 9 'must': [ 10 { 11 'range': { 12 'path': 'year', 13 'gte': 2013, 14 'lte': 2015 15 } 16 } 17 ], 18 'should': [ 19 { 20 'text': { 21 'query': 'snow', 22 'path': 'title', 23 'score': { 24 'function': { 25 'add': [ 26 { 27 'path': { 28 'value': 'imdb.rating', 29 'undefined': 2 30 } 31 }, { 32 'score': 'relevance' 33 } 34 ] 35 } 36 } 37 } 38 } 39 ] 40 } 41 } 42 }, { 43 '$limit': 10 44 }, { 45 '$project': { 46 '_id': 0, 47 'title': 1, 48 'year': 1, 49 'score': { 50 '$meta': 'searchScore' 51 }, 52 'highlights': { 53 '$meta': 'searchHighlights' 54 } 55 } 56 } 57 ]; 58 59 MongoClient.connect( 60 "<connection-string>", 61 { useNewUrlParser: true, useUnifiedTopology: true }, 62 async function (connectErr, client) { 63 assert.equal(null, connectErr); 64 const coll = client.db("sample_mflix").collection("movies"); 65 let cursor = await coll.aggregate(agg); 66 await cursor.forEach((doc) => console.log(doc)); 67 client.close(); 68 } 69 ); Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the following command to query your collection:
node compound-function-query.js '{"title":"The Snow White Murder Case","year":2014,"score":10.454826354980469,"highlights":[{"score":1.3525336980819702,"path":"title","texts":[{"value":"The ","type":"text"},{"value":"Snow","type":"hit"},{"value":" White Murder Case","type":"text"}]}]}' '{"title":"Snow on the Blades","year":2014,"score":10.3317232131958,"highlights":[{"score":1.3766303062438965,"path":"title","texts":[{"value":"Snow","type":"hit"},{"value":" on the Blades","type":"text"}]}]}' '{"title":"Dead Snow 2: Red vs. Dead","year":2014,"score":10.032526969909668,"highlights":[{"score":1.3924485445022583,"path":"title","texts":[{"value":"Dead ","type":"text"},{"value":"Snow","type":"hit"},{"value":" 2: Red vs. ","type":"text"}]}]}' '{"title":"Snow in Paradise","year":2014,"score":8.386146545410156,"highlights":[{"score":1.382846713066101,"path":"title","texts":[{"value":"Snow","type":"hit"},{"value":" in Paradise","type":"text"}]}]}' '{"year":2013,"title":"The Secret Life of Walter Mitty","score":1,"highlights":[]}' '{"title":"Jurassic World","year":2015,"score":1,"highlights":[]}' '{"title":"Action Jackson","year":2014,"score":1,"highlights":[]}' '{"year":2013,"title":"In Secret","score":1,"highlights":[]}' '{"title":"The Stanford Prison Experiment","year":2015,"score":1,"highlights":[]}' '{"year":2014,"title":"The Giver","score":1,"highlights":[]}' The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using thefunction
option.
Run an Atlas Search compound query that alters the score using the constant
option.
Create a file named
compound-constant-query.py
.Copy and paste the code example into the
compound-constant.py
file.The following code example:
Imports
pymongo
, MongoDB's Python driver, and thedns
module, which is required to connectpymongo
toAtlas
using a DNS seed list connection string.Creates an instance of the
MongoClient
class to establish a connection to your Atlas cluster.Uses the following compound clauses to query the collection:
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.Uses the following pipeline stages:
Iterates over the cursor to print the documents that match the query.
1 import pymongo 2 3 # connect to your Atlas cluster 4 client = pymongo.MongoClient('<connection-string>') 5 6 # define pipeline 7 pipeline = [ 8 {'$search': { 9 'index': 'compound-query-custom-score-tutorial', 10 'compound': { 11 'filter': [{'range': {'path': 'year', 'gte': 2013, 'lte': 2015}}], 12 'should': [{'text': {'query': 'snow', 'path': 'title', 'score': {'constant': {'value': 5}}}}]}, 13 'highlight': {'path': 'title'}}}, 14 {'$limit': 10}, 15 {'$project': {'_id': 0, 'title': 1, 'year': 1, 16 'score': {'$meta': 'searchScore'}, "highlights": {"$meta": "searchHighlights"}}} 17 ] 18 19 # run pipeline 20 result = client['sample_mflix']['movies'].aggregate(pipeline) 21 22 # print results 23 for i in result: 24 print(i) Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the following command to query your collection:
python compound-constant-query.py {'highlights': [{'path': 'title', 'score': 1.382846713066101, 'texts': [{'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' in Paradise'}]}], 'year': 2014, 'score': 5.0, 'title': 'Snow in Paradise'} {'highlights': [{'path': 'title', 'score': 1.3924485445022583, 'texts': [{'type': 'text', 'value': 'Dead '}, {'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' 2: Red vs. '}]}], 'year': 2014, 'score': 5.0, 'title': 'Dead Snow 2: Red vs. Dead'} {'highlights': [{'path': 'title', 'score': 1.3525336980819702, 'texts': [{'type': 'text', 'value': 'The '}, {'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' White Murder Case'}]}], 'year': 2014, 'score': 5.0, 'title': 'The Snow White Murder Case'} {'highlights': [{'path': 'title', 'score': 1.3766303062438965, 'texts': [{'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' on the Blades'}]}], 'year': 2014, 'score': 5.0, 'title': 'Snow on the Blades'} {'highlights': [], 'title': 'The Secret Life of Walter Mitty', 'score': 0.0, 'year': 2013} {'highlights': [], 'year': 2015, 'score': 0.0, 'title': 'Jurassic World'} {'highlights': [], 'year': 2014, 'score': 0.0, 'title': 'Action Jackson'} {'highlights': [], 'title': 'In Secret', 'score': 0.0, 'year': 2013} {'highlights': [], 'year': 2015, 'score': 0.0, 'title': 'The Stanford Prison Experiment'} {'highlights': [], 'title': 'The Giver', 'score': 0.0, 'year': 2014} The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using theconstant
option.
Run an Atlas Search compound query that alters the score using the boost
option.
Create a file named
compound-boost-query.py
.Copy and paste the code example into the
compound-boost-query.py
file.The following code example:
Imports
pymongo
, MongoDB's Python driver, and thedns
module, which is required to connectpymongo
toAtlas
using a DNS seed list connection string.Creates an instance of the
MongoClient
class to establish a connection to your Atlas cluster.Iterates over the cursor to print the documents that match the query.
The query uses the following pipeline stages:
$search
stage to query the collection. The query:Uses the following
compound
operator clauses:must
clause with the range operator to search for movies between the years2013
to2015
.should
clause with the text operator to query for the termsnow
in thetitle
field and alter thescore
with theboost
option. Theboost
option multiplies the base score in the results for the search term by2
.
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.
$limit stage to limit the output to 10 results
$project stage to:
Exclude all fields except
title
andyear
Add two fields named
score
andhighlights
1 import pymongo 2 3 # connect to your Atlas cluster 4 client = pymongo.MongoClient('<connection-string>') 5 6 # define pipeline 7 pipeline = [ 8 {'$search': { 9 'index': 'compound-query-custom-score-tutorial', 10 'compound': { 11 'must': [{'range': {'path': 'year', 'gte': 2013, 'lte': 2015}}], 12 'should': [{'text': {'query': 'snow', 'path': 'title', 'score': {'boost': {'value': 2}}}}]}, 13 'highlight': {'path': 'title'}}}, 14 {'$limit': 10}, 15 {'$project': {'_id': 0, 'title': 1, 'year': 1, 'score': {'$meta': 'searchScore'}, "highlights": {"$meta": "searchHighlights"}}} 16 ] 17 18 # run pipeline 19 result = client['sample_mflix']['movies'].aggregate(pipeline) 20 21 # print results 22 for i in result: 23 print(i) The query uses the following pipeline stages:
$search
stage to query the collection. The query uses the followingcompound
operator clauses with theboost
option to prioritize some fields more than other fields:must
clause with the text operator to prioritize the genrecomedy
the most, followed by the termsnow
in thetitle
field. Theboost
option applies weights to the fields.should
clause with the range operator to search for movies between the years2013
to2015
.
Note
The
boost
option applies different weights to the fields to prioritize the fields.$limit
stage to limit the output to10
results.$project
stage to:Exclude all fields except
title
,year
, andgenres
Add a field named
score
import pymongo import dns client = pymongo.MongoClient('<connection-string>') result = client['sample_mflix']['movies'].aggregate([ { '$search': { 'index': 'compound-query-custom-score-tutorial', 'compound': { 'must': [ { 'text': { 'path': 'genres', 'query': 'comedy', 'score': { 'boost': { 'value': 9 } } } }, { 'text': { 'path': 'title', 'query': 'snow', 'score': { 'boost': { 'value': 5 } } } } ], 'should': [ { 'range': { 'path': 'year', 'gte': 2013, 'lte': 2015, 'score': { 'boost': { 'value': 3 } } } } ] } } }, { '$limit': 10 }, { '$project': { '_id': 0, 'title': 1, 'year': 1, 'genres': 1, 'score': { '$meta': 'searchScore' } } } ]) for i in result: print(i) Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the following command to query your collection:
python compound-boost-query.py {'highlights': [{'path': 'title', 'score': 1.382846713066101, 'texts': [{'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' in Paradise'}]}], 'year': 2014, 'score': 6.7722930908203125, 'title': 'Snow in Paradise'} {'highlights': [{'path': 'title', 'score': 1.3766303062438965, 'texts': [{'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' on the Blades'}]}], 'year': 2014, 'score': 6.063445568084717, 'title': 'Snow on the Blades'} {'highlights': [{'path': 'title', 'score': 1.3525336980819702, 'texts': [{'type': 'text', 'value': 'The '}, {'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' White Murder Case'}]}], 'year': 2014, 'score': 5.509652137756348, 'title': 'The Snow White Murder Case'} {'highlights': [{'path': 'title', 'score': 1.3924485445022583, 'texts': [{'type': 'text', 'value': 'Dead '}, {'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' 2: Red vs. '}]}], 'year': 2014, 'score': 5.065053939819336, 'title': 'Dead Snow 2: Red vs. Dead'} {'highlights': [], 'title': 'The Secret Life of Walter Mitty', 'score': 1.0, 'year': 2013} {'highlights': [], 'year': 2015, 'score': 1.0, 'title': 'Jurassic World'} {'highlights': [], 'year': 2014, 'score': 1.0, 'title': 'Action Jackson'} {'highlights': [], 'title': 'In Secret', 'score': 1.0, 'year': 2013} {'highlights': [], 'year': 2015, 'score': 1.0, 'title': 'The Stanford Prison Experiment'} {'highlights': [], 'title': 'The Giver', 'score': 1.0, 'year': 2014} The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using theboost
option.python compound-boost-query.py { 'genres': ['Comedy', 'Horror'], 'title': 'Dead Snow', 'year': 2009, 'score': 21.872983932495117 } { 'year': 2000, 'genres': ['Adventure', 'Comedy', 'Family'], 'title': 'Snow Day', 'score': 21.043487548828125 } { 'genres': ['Adventure', 'Comedy', 'Family'], 'title': 'Snow Dogs', 'year': 2002, 'score': 21.043487548828125 } { 'year': 1999, 'genres': ['Comedy', 'Romance'], 'title': 'Let It Snow', 'score': 19.523927688598633 } { 'genres': ['Action', 'Comedy', 'Horror'], 'title': 'Dead Snow 2: Red vs. Dead', 'year': 2014, 'score': 17.426334381103516 } { 'genres': ['Comedy', 'Drama'], 'title': 'Snow White and Russian Red', 'year': 2009, 'score': 16.367326736450195 } { 'genres': ['Comedy', 'Drama', 'Romance'], 'title': 'The Tiger and the Snow', 'year': 2005, 'score': 15.537829399108887 } { 'genres': ['Adventure', 'Comedy', 'Family'], 'title': 'Snow White and the Three Stooges', 'year': 1961, 'score': 14.4263334274292 }
Run an Atlas Search compound query that alters the score using the function
option.
Create a file named
compound-function-query.py
.Copy and paste the code example into the
compound-function-query.py
file.The following code example:
Imports
pymongo
, MongoDB's Python driver, and thedns
module, which is required to connectpymongo
toAtlas
using a DNS seed list connection string.Creates an instance of the
MongoClient
class to establish a connection to your Atlas cluster.Uses the following compound clauses to query the collection:
must
clause with the range operator to search for movies between the years2013
to2015
.should
clause with the text operator to query for the termsnow
in thetitle
field and alter thescore
with thefunction
option. Thefunction
option adds the following using an arithmetic expression:The relevance score of the query for the search term
The value of the numeric field named
imdb.rating
or the number2
for those documents that do not have theimdb.rating
field.
Specifies the highlight option to return snippets of text from the
title
field that match the query. The snippets contain matching text specified withtype: 'hit'
, and adjacent text specified withtype: 'text'
.Uses the following pipeline stages:
Iterates over the cursor to print the documents that match the query.
1 import pymongo 2 3 # connect to your Atlas cluster 4 client = pymongo.MongoClient('<connection-string>') 5 6 # define pipeline 7 pipeline = [ 8 {'$search': { 9 'index': 'compound-query-custom-score-tutorial', 10 'compound': { 11 'must': [{'range': {'path': 'year', 'gte': 2013, 'lte': 2015}}], 12 'should': [{'text': {'query': 'snow', 'path': 'title', 13 'score': {'function': { 14 'add': [{'path': {'value': 'imdb.rating','undefined': 2}}, {'score': 'relevance'}]}}}}]}, 15 'highlight': {'path': 'title'}}}, 16 {'$limit': 10}, 17 {'$project': {'_id': 0, 'title': 1, 'year': 1, 'score': {'$meta': 'searchScore'}, "highlights": {"$meta": "searchHighlights"}}} 18 ] 19 20 # run pipeline 21 result = client['sample_mflix']['movies'].aggregate(pipeline) 22 23 # print results 24 for i in result: 25 print(i) Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the following command to query your collection:
python compound-function-query.py {'highlights': [{'path': 'title', 'score': 1.3525336980819702, 'texts': [{'type': 'text', 'value': 'The '}, {'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' White Murder Case'}]}], 'year': 2014, 'score': 10.454826354980469, 'title': 'The Snow White Murder Case'} {'highlights': [{'path': 'title', 'score': 1.3766303062438965, 'texts': [{'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' on the Blades'}]}], 'year': 2014, 'score': 10.3317232131958, 'title': 'Snow on the Blades'} {'highlights': [{'path': 'title', 'score': 1.3924485445022583, 'texts': [{'type': 'text', 'value': 'Dead '}, {'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' 2: Red vs. '}]}], 'year': 2014, 'score': 10.032526969909668, 'title': 'Dead Snow 2: Red vs. Dead'} {'highlights': [{'path': 'title', 'score': 1.382846713066101, 'texts': [{'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' in Paradise'}]}], 'year': 2014, 'score': 8.386146545410156, 'title': 'Snow in Paradise'} {'highlights': [], 'title': 'The Secret Life of Walter Mitty', 'score': 1.0, 'year': 2013} {'highlights': [], 'year': 2015, 'score': 1.0, 'title': 'Jurassic World'} {'highlights': [], 'year': 2014, 'score': 1.0, 'title': 'Action Jackson'} {'highlights': [], 'title': 'In Secret', 'score': 1.0, 'year': 2013} {'highlights': [], 'year': 2015, 'score': 1.0, 'title': 'The Stanford Prison Experiment'} {'highlights': [], 'title': 'The Giver', 'score': 1.0, 'year': 2014} The first four documents in the results have a higher score because the
should
clause in the query specifies a preference for documents withsnow
in the title. Theshould
clause also alters the score for the query termsnow
using thefunction
option.
Run a Compound Query to Bury Results
In this section, you connect to your Atlas cluster and run
the sample queries against the title
, plot
, and genres
fields in the movies
collection in the sample_mflix
database.
The sample queries use nested compound operator clauses to
perform the following searches:
Search for all movies containing the word "ghost", but reduce the score of comedy movies by 50%.
Search for all movies containing the word "ghost", but reduce the score of movies with specified ObjectIds by 50%.
Run an Atlas Search query with the compound
operator on the movies
collection.
Copy and paste the following query into the Query Editor.
The query uses the
$search
compound
operatorshould
clause to nestcompound
operator queries that perform the following actions:Searches for movies that contain the term
ghost
in the plot or title (must
clause) and aren't in thecomedy
genre (mustNot
clause).Searches for movies that contain the term
ghost
in the plot or title (must
clause), but reduces (boost
) the score by 50% (0.5
) for movies in thecomedy
genre with the termghost
in the title or plot.
1 [ 2 { 3 "$search": { 4 "index": "compound-query-custom-score-tutorial", 5 "compound": { 6 "should":[ { 7 "compound":{ 8 "must":[ 9 { 10 "text": { 11 "query": "ghost", 12 "path": ["plot","title"] 13 } 14 } 15 ], 16 "mustNot":[ 17 { 18 "text": { 19 "query": "Comedy", 20 "path": ["genres"] 21 } 22 } 23 ] 24 } 25 }, 26 { 27 "compound":{ 28 "must":[ 29 { 30 "text": { 31 "query": "ghost", 32 "path": ["plot","title"] 33 } 34 } 35 ], 36 "filter":[ 37 { 38 "text": { 39 "query": "Comedy", 40 "path": ["genres"] 41 } 42 } 43 ], 44 "score":{ "boost": { "value": 0.5} } 45 } 46 } 47 ] 48 } 49 } 50 } 51 ] The query uses the
$search
compound
operatorshould
clause to nestcompound
operator queries that perform the following actions:Searches for movies that contain the term
ghost
in the plot or title (must
clause), but doesn't have the specified ObjectIds (mustNot
clause).Searches for movies that contain the term
ghost
in the plot or title (must
clause), but reduces (boost
) the score by 50% (0.5
) for movies with the specified ObjectIds (filter
clause).
1 [ 2 { 3 "$search": { 4 "index": "compound-query-custom-score-tutorial", 5 "compound": { 6 "should":[ 7 { 8 "compound":{ 9 "must":[ 10 { 11 "text": { 12 "query": "ghost", 13 "path": ["plot","title"] 14 } 15 } 16 ], 17 "mustNot":[ 18 { 19 "in": { 20 "value": [ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2')], 21 "path": "_id" 22 } 23 } 24 ] 25 } 26 }, 27 { 28 "compound":{ 29 "must":[ 30 { 31 "text": { 32 "query": "ghost", 33 "path": ["plot","title"] 34 } 35 } 36 ], 37 "filter":[ 38 { 39 "in": { 40 "value": [ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2')], 41 "path": "_id" 42 } 43 } 44 ], 45 "score":{ "boost": { "value": 0.5} } 46 } 47 } 48 ] 49 } 50 } 51 } 52 ] Click the Search button in the Query Editor.
1 SCORE: 5.909613132476807 2 _id: “573a139af29313caabcefcce” 3 plot: "Adaption of the famous Oscar Wilde tale about a young American girl th…" 4 genres: Array (3) 5 runtime: 92 6 7 SCORE: 5.367666244506836 8 _id: “573a13d8f29313caabda5dc1” 9 plot: "The Little Ghost lives in the castle over looking a small town and awa…" 10 genres: Array (2) 11 runtime: 92 12 13 SCORE: 4.676314353942871 14 _id: “573a13c0f29313caabd6139d” 15 plot: "Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal …" 16 genres: Array (2) 17 runtime: 107 18 19 SCORE: 3.9638845920562744 20 _id: “573a1398f29313caabcebf6f” 21 plot: "After an accident leaves a young man dead, his spirit stays behind to …" 22 genres: Array (3) 23 runtime: 127 24 25 SCORE: 3.9638845920562744 26 _id: “573a13cdf29313caabd83c08” 27 plot: "A man tries to solve his lover's murder by communicating with her spir…" 28 genres: Array (3) 29 runtime: 115 30 31 SCORE: 3.9638845920562744 32 _id: “573a13cef29313caabd873a2” 33 plot: "A man tries to solve his lover's murder by communicating with her spir…" 34 genres: Array (3) 35 runtime: 115 36 37 SCORE: 3.526711940765381 38 _id: “573a13c3f29313caabd6a149” 39 plot: "What kind of scenes in a horror film scares you the most? When a ghost…" 40 genres: Array (2) 41 runtime: 95 42 43 SCORE: 3.3177831172943115 44 _id: “573a1397f29313caabce7ea1” 45 plot: "Four successful elderly gentlemen, members of the Chowder Society, sha…" 46 genres: Array (3) 47 runtime: 110 48 49 SCORE: 3.3177831172943115 50 _id: “573a13a4f29313caabd117df” 51 fullplot: "When the motorcyclist Johnny Blaze finds that his father Barton Blaze …" 52 imdb: Object 53 year: 2007 54 55 SCORE: 3.3177831172943115 56 _id: “573a13a6f29313caabd185dc” 57 fullplot: "After discovering a passenger ship missing since 1962 floating adrift …" 58 imdb: Object 59 year: 2002 The movie documents in the results contain the query term
ghost
in theplot
ortitle
field and aren't in theComedy
genre. Atlas Search didn't return documents in theComedy
genre with the termghost
in theplot
ortitle
field because those documents didn't rank in the top 10 documents since the query reduced the score of those documents by 50%.1 SCORE: 5.909613132476807 2 _id: “573a139af29313caabcefcce” 3 plot: "Adaption of the famous Oscar Wilde tale about a young American girl th…" 4 genres: Array (3) 5 runtime: 92 6 7 SCORE: 5.367666244506836 8 _id: “573a13d8f29313caabda5dc1” 9 plot: "The Little Ghost lives in the castle over looking a small town and awa…" 10 genres: Array (2) 11 runtime: 92 12 13 SCORE: 4.676314353942871 14 _id: “573a13c0f29313caabd6139d” 15 plot: "Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal …" 16 genres: Array (2) 17 runtime: 107 18 19 SCORE: 3.9638845920562744 20 _id: “573a1398f29313caabcebf6f” 21 plot: "After an accident leaves a young man dead, his spirit stays behind to …" 22 genres: Array (3) 23 runtime: 127 24 25 SCORE: 3.526711940765381 26 _id: “573a13c3f29313caabd6a149” 27 plot: "What kind of scenes in a horror film scares you the most? When a ghost…" 28 genres:Array (2) 29 runtime: 95 30 31 SCORE: 3.5241782665252686 32 _id: “573a1398f29313caabce912c” 33 plot: "Three unemployed parapsychology professors set up shop as a unique gho…" 34 genres: Array (2) 35 runtime: 105 36 37 SCORE: 3.5241782665252686 38 _id: “573a139cf29313caabcf5a48” 39 plot: "Casper, a ghost, teams up with Wendy, a witch, against an evil warlock…" 40 genres: Array (3) 41 runtime: 90 42 43 SCORE: 3.4605300426483154 44 _id: “573a13bdf29313caabd58274” 45 plot: "Banku, his mother, Anjali Sharma and father move in to their new house…" 46 genres: Array (3) 47 runtime: 150 48 49 SCORE: 3.3177831172943115 50 _id: “573a1397f29313caabce7ea1” 51 plot: "Four successful elderly gentlemen, members of the Chowder Society, sha…" 52 genres: Array (3) 53 runtime: 110 54 55 SCORE: 3.3177831172943115 56 _id: “573a1398f29313caabcebf79” 57 plot: "Elliot Hopper is a widower with three children, he is currently workin…" 58 genres: Array (3) 59 runtime: 83 The movie documents in the results contain the query term
ghost
in theplot
ortitle
field and don't have the specified ObjectIds in the_id
field. Atlas Search didn't return the documents with the specified ObjectsIds, even though they contain the query termghost
in thetitle
field, because the query reduced the score of these documents by 50% and so, these documents didn't rank in the top 10 documents.
Connect to your cluster in mongosh
.
Open mongosh
in a terminal window and connect to your cluster.
For detailed instructions on connecting, see
Connect via mongosh
.
Run the following Atlas Search compound
operator queries on the movies
collection.
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
1 db.movies.aggregate([ 2 { 3 "$search": { 4 "index": "compound-query-custom-score-tutorial", 5 "compound": { 6 "should": [ 7 { 8 "compound":{ 9 "must": [ 10 { 11 "text": { 12 "query": "ghost", 13 "path": ["plot","title"] 14 } 15 } 16 ], 17 "mustNot": [ 18 { 19 "text": { 20 "query": "Comedy", 21 "path": ["genres"] 22 } 23 } 24 ] 25 } 26 }, 27 { 28 "compound":{ 29 "must":[ 30 { 31 "text": { 32 "query": "ghost", 33 "path": ["plot","title"] 34 } 35 } 36 ], 37 "filter": [ 38 { 39 "text": { 40 "query": "Comedy", 41 "path": ["genres"] 42 } 43 } 44 ], 45 "score": { "boost": { "value": 0.5} } 46 } 47 } 48 ] 49 } 50 } 51 }, 52 { 53 "$limit": 10 54 }, 55 { 56 "$project": { 57 "_id": 1, 58 "title": 1, 59 "plot": 1, 60 "genres": 1, 61 "score": { "$meta": "searchScore" } 62 } 63 } 64 ])
1 [ 2 { 3 _id: ObjectId('573a139af29313caabcefcce'), 4 plot: 'Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.', 5 genres: [ 'Family', 'Drama', 'Fantasy' ], 6 title: 'The Canterville Ghost', 7 score: 5.909613132476807 8 }, 9 { 10 _id: ObjectId('573a13d8f29313caabda5dc1'), 11 plot: 'The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!', 12 genres: [ 'Family', 'Fantasy' ], 13 title: 'The Little Ghost', 14 score: 5.367666244506836 15 }, 16 { 17 _id: ObjectId('573a13c0f29313caabd6139d'), 18 plot: 'Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.', 19 genres: [ 'Horror', 'Thriller' ], 20 title: 'Death of a Ghost Hunter', 21 score: 4.676314353942871 22 }, 23 { 24 _id: ObjectId('573a1398f29313caabcebf6f'), 25 plot: 'After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.', 26 genres: [ 'Drama', 'Fantasy', 'Romance' ], 27 title: 'Ghost', 28 score: 3.9638845920562744 29 }, 30 { 31 _id: ObjectId('573a13cdf29313caabd83c08'), 32 plot: "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", 33 genres: [ 'Drama', 'Fantasy', 'Mystery' ], 34 title: 'Ghost', 35 score: 3.9638845920562744 36 }, 37 { 38 _id: ObjectId('573a13cef29313caabd873a2'), 39 plot: "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", 40 genres: [ 'Drama', 'Fantasy', 'Mystery' ], 41 title: 'Ghost', 42 score: 3.9638845920562744 43 }, 44 { 45 _id: ObjectId('573a13c3f29313caabd6a149'), 46 plot: 'What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...', 47 genres: [ 'Horror', 'Thriller' ], 48 title: 'Coming Soon', 49 score: 3.526711940765381 50 }, 51 { 52 _id: ObjectId('573a1397f29313caabce7ea1'), 53 plot: "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...", 54 genres: [ 'Drama', 'Horror', 'Thriller' ], 55 title: 'Ghost Story', 56 score: 3.3177831172943115 57 }, 58 { 59 _id: ObjectId('573a13a4f29313caabd117df'), 60 plot: 'Stunt motorcyclist Johnny Blaze gives up his soul to become a hellblazing vigilante, to fight against power hungry Blackheart, the son of the devil himself.', 61 genres: [ 'Action', 'Fantasy', 'Thriller' ], 62 title: 'Ghost Rider', 63 score: 3.3177831172943115 64 }, 65 { 66 _id: ObjectId('573a13a6f29313caabd185dc'), 67 plot: 'A salvage crew that discovers a long-lost 1962 passenger ship floating lifeless in a remote region of the Bering Sea soon notices, as they prepare to tow it back to land, that "strange things" happen...', 68 genres: [ 'Horror', 'Mystery' ], 69 title: 'Ghost Ship', 70 score: 3.3177831172943115 71 } 72 ]
The movie documents in the results contain the query term ghost
in
the plot
or title
field and aren't in the Comedy
genre.
Atlas Search didn't return documents in the Comedy
genre with the term
ghost
in the plot
or title
field because those documents
didn't rank in the top 10 documents since the query reduced the score
of those documents by 50%.
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
1 db.movies.aggregate([ 2 { 3 "$search": { 4 "compound": { 5 "index": "compound-query-custom-score-tutorial", 6 "should": [ 7 { 8 "compound": { 9 "must": [ 10 { 11 "text": { 12 "query": "ghost", 13 "path": ["plot","title"] 14 } 15 } 16 ], 17 "mustNot": [ 18 { 19 "in": { 20 "value": [ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2')], 21 "path": "_id" 22 } 23 } 24 ] 25 } 26 }, 27 { 28 "compound": { 29 "must": [ 30 { 31 "text": { 32 "query": "ghost", 33 "path": ["plot","title"] 34 } 35 } 36 ], 37 "filter": [ 38 { 39 "in": { 40 "value": [ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2')], 41 "path": "_id" 42 } 43 } 44 ], 45 "score": { "boost": { "value": 0.5} } 46 } 47 } 48 ] 49 } 50 } 51 }, 52 { 53 "$limit": 10 54 }, 55 { 56 "$project": { 57 "_id": 1, 58 "title": 1, 59 "plot": 1, 60 "score": { "$meta": "searchScore" } 61 } 62 } 63 ])
1 [ 2 { 3 _id: ObjectId('573a139af29313caabcefcce'), 4 plot: 'Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.', 5 genres: [ 'Family', 'Drama', 'Fantasy' ], 6 title: 'The Canterville Ghost', 7 score: 5.909613132476807 8 }, 9 { 10 _id: ObjectId('573a13d8f29313caabda5dc1'), 11 plot: 'The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!', 12 genres: [ 'Family', 'Fantasy' ], 13 title: 'The Little Ghost', 14 score: 5.367666244506836 15 }, 16 { 17 _id: ObjectId('573a13c0f29313caabd6139d'), 18 plot: 'Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.', 19 genres: [ 'Horror', 'Thriller' ], 20 title: 'Death of a Ghost Hunter', 21 score: 4.676314353942871 22 }, 23 { 24 _id: ObjectId('573a1398f29313caabcebf6f'), 25 plot: 'After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.', 26 genres: [ 'Drama', 'Fantasy', 'Romance' ], 27 title: 'Ghost', 28 score: 3.9638845920562744 29 }, 30 { 31 _id: ObjectId('573a13c3f29313caabd6a149'), 32 plot: 'What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...', 33 genres: [ 'Horror', 'Thriller' ], 34 title: 'Coming Soon', 35 score: 3.526711940765381 36 }, 37 { 38 _id: ObjectId('573a1398f29313caabce912c'), 39 plot: 'Three unemployed parapsychology professors set up shop as a unique ghost removal service.', 40 genres: [ 'Comedy', 'Fantasy' ], 41 title: 'Ghostbusters', 42 score: 3.5241782665252686 43 }, 44 { 45 _id: ObjectId('573a139cf29313caabcf5a48'), 46 plot: 'Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.', 47 genres: [ 'Adventure', 'Comedy', 'Family' ], 48 title: 'Casper Meets Wendy', 49 score: 3.5241782665252686 50 }, 51 { 52 _id: ObjectId('573a13bdf29313caabd58274'), 53 plot: 'Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...', 54 genres: [ 'Comedy', 'Drama', 'Fantasy' ], 55 title: 'Bhoothnath', 56 score: 3.4605300426483154 57 }, 58 { 59 _id: ObjectId('573a1397f29313caabce7ea1'), 60 plot: "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...", 61 genres: [ 'Drama', 'Horror', 'Thriller' ], 62 title: 'Ghost Story', 63 score: 3.3177831172943115 64 }, 65 { 66 _id: ObjectId('573a1398f29313caabcebf79'), 67 plot: 'Elliot Hopper is a widower with three children, he is currently working on a deal. It seems like his wife illness was very costly and this deal could put them out of the red. However he ...', 68 genres: [ 'Comedy', 'Family', 'Fantasy' ], 69 title: 'Ghost Dad', 70 score: 3.3177831172943115 71 } 72 ]
The movie documents in the results contain the query term ghost
in
the plot
or title
field and don't have the specified
ObjectIds in the _id
field. Atlas Search didn't return the documents with
the specified ObjectsIds, even though they contain the query term
ghost
in the title
field, because the query reduced the score
of these documents by 50% and so, these documents didn't rank in the
top 10 documents.
Connect to your cluster in MongoDB Compass.
Open MongoDB Compass and connect to your cluster. For detailed instructions on connecting, see Connect via Compass.
Run the following Atlas Search queries on the movies
collection.
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
To run this query, perform the following steps in MongoDB Compass:
Click the Aggregations tab.
Click Select..., then configure each of the following pipeline stages by selecting the stage from the dropdown and adding the query for that stage.
Tip
Click Add Stage to add additional stages.
Pipeline StageQuery$search
{ "index": "compound-query-custom-score-tutorial", "compound": { "should": [ { "compound":{ "must": [ { "text": { "query": "ghost", "path": ["plot","title"] } } ], "mustNot": [ { "text": { "query": "Comedy", "path": ["genres"] } } ] } }, { "compound":{ "must":[ { "text": { "query": "ghost", "path": ["plot","title"] } } ], "filter": [ { "text": { "query": "Comedy", "path": ["genres"] } } ], "score": { "boost": { "value": 0.5} } } } ] } } $limit
10 $project
{ "_id": 1, "title": 1, "plot": 1, "genres": 1, "score": { "$meta": "searchScore" } } If you enabled Auto Preview, MongoDB Compass displays the following documents next to the
$project
pipeline stage:1 _id: ObjectId('573a139af29313caabcefcce'), 2 plot: 'Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.', 3 genres: [ 'Family', 'Drama', 'Fantasy' ], 4 title: 'The Canterville Ghost', 5 score: 5.909613132476807 6 7 _id: ObjectId('573a13d8f29313caabda5dc1'), 8 plot: 'The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!', 9 genres: [ 'Family', 'Fantasy' ], 10 title: 'The Little Ghost', 11 score: 5.367666244506836 12 13 _id: ObjectId('573a13c0f29313caabd6139d'), 14 plot: 'Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.', 15 genres: [ 'Horror', 'Thriller' ], 16 title: 'Death of a Ghost Hunter', 17 score: 4.676314353942871 18 19 _id: ObjectId('573a1398f29313caabcebf6f'), 20 plot: 'After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.', 21 genres: [ 'Drama', 'Fantasy', 'Romance' ], 22 title: 'Ghost', 23 score: 3.9638845920562744 24 25 _id: ObjectId('573a13cdf29313caabd83c08'), 26 plot: "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", 27 genres: [ 'Drama', 'Fantasy', 'Mystery' ], 28 title: 'Ghost', 29 score: 3.9638845920562744 30 31 _id: ObjectId('573a13cef29313caabd873a2'), 32 plot: "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", 33 genres: [ 'Drama', 'Fantasy', 'Mystery' ], 34 title: 'Ghost', 35 score: 3.9638845920562744 36 37 _id: ObjectId('573a13c3f29313caabd6a149'), 38 plot: 'What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...', 39 genres: [ 'Horror', 'Thriller' ], 40 title: 'Coming Soon', 41 score: 3.526711940765381 42 43 _id: ObjectId('573a1397f29313caabce7ea1'), 44 plot: "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...", 45 genres: [ 'Drama', 'Horror', 'Thriller' ], 46 title: 'Ghost Story', 47 score: 3.3177831172943115 48 49 _id: ObjectId('573a13a4f29313caabd117df'), 50 plot: 'Stunt motorcyclist Johnny Blaze gives up his soul to become a hellblazing vigilante, to fight against power hungry Blackheart, the son of the devil himself.', 51 genres: [ 'Action', 'Fantasy', 'Thriller' ], 52 title: 'Ghost Rider', 53 score: 3.3177831172943115 54 55 _id: ObjectId('573a13a6f29313caabd185dc'), 56 plot: 'A salvage crew that discovers a long-lost 1962 passenger ship floating lifeless in a remote region of the Bering Sea soon notices, as they prepare to tow it back to land, that "strange things" happen...', 57 genres: [ 'Horror', 'Mystery' ], 58 title: 'Ghost Ship', 59 score: 3.3177831172943115 The movie documents in the results contain the query term
ghost
in theplot
ortitle
field and aren't in theComedy
genre. Atlas Search didn't return documents in theComedy
genre with the termghost
in theplot
ortitle
field because those documents didn't rank in the top 10 documents since the query reduced the score of those documents by 50%.Pipeline StageQuery$search
{ "index": "compound-query-custom-score-tutorial", "compound": { "should": [ { "compound":{ "must": [ { "text": { "query": "ghost", "path": ["plot","title"] } } ], "mustNot": [ { "in": { "value": [ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2')], "path": "_id" } } ] } }, { "compound":{ "must":[ { "text": { "query": "ghost", "path": ["plot","title"] } } ], "filter": [ { "in": { "value": [ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2')], "path": "_id" } } ], "score": { "boost": { "value": 0.5} } } } ] } } $limit
10 $project
{ "_id": 1, "title": 1, "plot": 1, "score": { "$meta": "searchScore" } } If you enabled Auto Preview, MongoDB Compass displays the following documents next to the
$project
pipeline stage:1 _id: ObjectId('573a139af29313caabcefcce'), 2 plot: 'Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.', 3 title: 'The Canterville Ghost', 4 score: 5.909613132476807 5 6 _id: ObjectId('573a13d8f29313caabda5dc1'), 7 plot: 'The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!', 8 title: 'The Little Ghost', 9 score: 5.367666244506836 10 11 _id: ObjectId('573a13c0f29313caabd6139d'), 12 plot: 'Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.', 13 title: 'Death of a Ghost Hunter', 14 score: 4.676314353942871 15 16 _id: ObjectId('573a1398f29313caabcebf6f'), 17 plot: 'After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.', 18 title: 'Ghost', 19 score: 3.9638845920562744 20 21 _id: ObjectId('573a13c3f29313caabd6a149'), 22 plot: 'What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...', 23 title: 'Coming Soon', 24 score: 3.526711940765381 25 26 _id: ObjectId('573a1398f29313caabce912c'), 27 plot: 'Three unemployed parapsychology professors set up shop as a unique ghost removal service.', 28 title: 'Ghostbusters', 29 score: 3.5241782665252686 30 31 _id: ObjectId('573a139cf29313caabcf5a48'), 32 plot: 'Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.', 33 title: 'Casper Meets Wendy', 34 score: 3.5241782665252686 35 36 _id: ObjectId('573a13bdf29313caabd58274'), 37 plot: 'Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...', 38 title: 'Bhoothnath', 39 score: 3.4605300426483154 40 41 _id: ObjectId('573a1397f29313caabce7ea1'), 42 plot: "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...", 43 title: 'Ghost Story', 44 score: 3.3177831172943115 45 46 _id: ObjectId('573a1398f29313caabcebf79'), 47 plot: 'Elliot Hopper is a widower with three children, he is currently working on a deal. It seems like his wife illness was very costly and this deal could put them out of the red. However he ...', 48 title: 'Ghost Dad', 49 score: 3.3177831172943115 The movie documents in the results contain the query term
ghost
in theplot
ortitle
field and don't have the specified ObjectIds in the_id
field. Atlas Search didn't return the documents with the specified ObjectsIds, even though they contain the query termghost
in thetitle
field, because the query reduced the score of these documents by 50% and so, these documents didn't rank in the top 10 documents.
Set up and initialize the .NET/C# project for the query.
Create a new directory called
compound-bury-results
and initialize your project with the dotnet new command.mkdir compound-bury-results cd compound-bury-results dotnet new console Add the .NET/C# Driver to your project as a dependency.
dotnet add package MongoDB.Driver
Copy and paste the query into the Program.cs
file.
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
1 using MongoDB.Bson; 2 using MongoDB.Bson.Serialization.Attributes; 3 using MongoDB.Bson.Serialization.Conventions; 4 using MongoDB.Driver; 5 using MongoDB.Driver.Search; 6 7 public class BuryGenreCompoundExample 8 { 9 private const string MongoConnectionString = "<connection-string>"; 10 11 public static void Main(string[] args) 12 { 13 // allow automapping of the camelCase database fields to our MovieDocument 14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() }; 15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true); 16 17 // connect to your Atlas cluster 18 var mongoClient = new MongoClient(MongoConnectionString); 19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix"); 20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies"); 21 22 // define and run pipeline 23 var results = moviesCollection.Aggregate() 24 .Search(Builders<MovieDocument>.Search.Compound() 25 .Should(Builders<MovieDocument>.Search.Compound() 26 .Must(Builders<MovieDocument>.Search.Text( 27 Builders<MovieDocument>.SearchPath.Multi(movie => movie.Title, movie => movie.Plot), "ghost")) 28 .MustNot(Builders<MovieDocument>.Search.Text(movie => movie.Genres, "Comedy")) 29 ) 30 .Should(Builders<MovieDocument>.Search.Compound() 31 .Must(Builders<MovieDocument>.Search.Text( 32 Builders<MovieDocument>.SearchPath.Multi(movie => movie.Title, movie => movie.Plot), "ghost")) 33 .Filter(Builders<MovieDocument>.Search.Text(movie => movie.Genres, "Comedy", score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(0.5))) 34 ), 35 indexName: "compound-query-custom-score-tutorial") 36 .Project<MovieDocument>(Builders<MovieDocument>.Projection 37 .Include(movie => movie.Plot) 38 .Include(movie => movie.Title) 39 .Include(movie => movie.Id) 40 .Include(movie => movie.Genres) 41 .MetaSearchScore("score")) 42 .Limit(10) 43 .ToList(); 44 45 // print results 46 foreach (var movie in results) 47 { 48 Console.WriteLine(movie.ToJson()); 49 } 50 } 51 } 52 53 [ ]54 public class MovieDocument 55 { 56 [ ]57 public ObjectId Id { get; set; } 58 public string Plot { get; set; } 59 public string Title { get; set; } 60 public string[] Genres { get; set; } 61 public double Score { get; set; } 62 }
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
1 using MongoDB.Bson; 2 using MongoDB.Bson.Serialization.Attributes; 3 using MongoDB.Bson.Serialization.Conventions; 4 using MongoDB.Driver; 5 using MongoDB.Driver.Search; 6 7 public class BuryDocumentCompoundExample 8 { 9 private const string MongoConnectionString = "<connection-string>"; 10 11 public static void Main(string[] args) 12 { 13 // allow automapping of the camelCase database fields to our MovieDocument 14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() }; 15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true); 16 17 // connect to your Atlas cluster 18 var mongoClient = new MongoClient(MongoConnectionString); 19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix"); 20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies"); 21 22 string id1 = "573a13cef29313caabd873a2"; 23 string id2 = "573a13cdf29313caabd83c08"; 24 25 // define and run pipeline 26 var results = moviesCollection.Aggregate() 27 .Search(Builders<MovieDocument>.Search.Compound() 28 .Should(Builders<MovieDocument>.Search.Compound() 29 .Must(Builders<MovieDocument>.Search.Text( 30 Builders<MovieDocument>.SearchPath.Multi(movie => movie.Title, movie => movie.Plot), "ghost")) 31 .MustNot(Builders<MovieDocument>.Search.In(movie => movie.Id, new[] {ObjectId.Parse(id1), ObjectId.Parse(id2)})) 32 ) 33 .Should(Builders<MovieDocument>.Search.Compound() 34 .Must(Builders<MovieDocument>.Search.Text( 35 Builders<MovieDocument>.SearchPath.Multi(movie => movie.Title, movie => movie.Plot), "ghost")) 36 .Filter(Builders<MovieDocument>.Search.In(movie => movie.Id, new[] {ObjectId.Parse(id1), ObjectId.Parse(id2)}, score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(0.5))) 37 ), 38 indexName: "compound-query-custom-score-tutorial") 39 .Project<MovieDocument>(Builders<MovieDocument>.Projection 40 .Include(movie => movie.Plot) 41 .Include(movie => movie.Title) 42 .Include(movie => movie.Id) 43 .MetaSearchScore("score")) 44 .Limit(10) 45 .ToList(); 46 47 // print results 48 foreach (var movie in results) 49 { 50 Console.WriteLine(movie.ToJson()); 51 } 52 } 53 } 54 55 [ ]56 public class MovieDocument 57 { 58 [ ]59 public ObjectId Id { get; set; } 60 public string Plot { get; set; } 61 public string Title { get; set; } 62 public double Score { get; set; } 63 }
Replace the <connection-string>
in the query and then save the file.
Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.
Compile and run the Program.cs
file.
dotnet run compound-bury-results.csproj
{ "_id" : ObjectId("573a139af29313caabcefcce"), "plot" : "Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.", "title" : "The Canterville Ghost", "genres" : ["Family", "Drama", "Fantasy"], "score" : 5.9096131324768066 } { "_id" : ObjectId("573a13d8f29313caabda5dc1"), "plot" : "The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!", "title" : "The Little Ghost", "genres" : ["Family", "Fantasy"], "score" : 5.3676662445068359 } { "_id" : ObjectId("573a13c0f29313caabd6139d"), "plot" : "Renowned \"ghost hunter\", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.", "title" : "Death of a Ghost Hunter", "genres" : ["Horror", "Thriller"], "score" : 4.6763143539428711 } { "_id" : ObjectId("573a1398f29313caabcebf6f"), "plot" : "After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.", "title" : "Ghost", "genres" : ["Drama", "Fantasy", "Romance"], "score" : 3.9638845920562744 } { "_id" : ObjectId("573a13cdf29313caabd83c08"), "plot" : "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", "title" : "Ghost", "genres" : ["Drama", "Fantasy", "Mystery"], "score" : 3.9638845920562744 } { "_id" : ObjectId("573a13cef29313caabd873a2"), "plot" : "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", "title" : "Ghost", "genres" : ["Drama", "Fantasy", "Mystery"], "score" : 3.9638845920562744 } { "_id" : ObjectId("573a13c3f29313caabd6a149"), "plot" : "What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...", "title" : "Coming Soon", "genres" : ["Horror", "Thriller"], "score" : 3.5267119407653809 } { "_id" : ObjectId("573a1398f29313caabce912c"), "plot" : "Three unemployed parapsychology professors set up shop as a unique ghost removal service.", "title" : "Ghostbusters", "genres" : ["Comedy", "Fantasy"], "score" : 3.5241782665252686 } { "_id" : ObjectId("573a139cf29313caabcf5a48"), "plot" : "Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.", "title" : "Casper Meets Wendy", "genres" : ["Adventure", "Comedy", "Family"], "score" : 3.5241782665252686 } { "_id" : ObjectId("573a13bdf29313caabd58274"), "plot" : "Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...", "title" : "Bhoothnath", "genres" : ["Comedy", "Drama", "Fantasy"], "score" : 3.4605300426483154 }
The movie documents in the results contain the query term ghost
in
the plot
or title
field and aren't in the Comedy
genre.
Atlas Search didn't return documents in the Comedy
genre with the term
ghost
in the plot
or title
field because those documents
didn't rank in the top 10 documents since the query reduced the score
of those documents by 50%.
dotnet run compound-bury-results.csproj
{ "_id" : ObjectId("573a139af29313caabcefcce"), "plot" : "Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.", "title" : "The Canterville Ghost", "score" : 5.9096131324768066 } { "_id" : ObjectId("573a13d8f29313caabda5dc1"), "plot" : "The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!", "title" : "The Little Ghost", "score" : 5.3676662445068359 } { "_id" : ObjectId("573a13c0f29313caabd6139d"), "plot" : "Renowned \"ghost hunter\", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.", "title" : "Death of a Ghost Hunter", "score" : 4.6763143539428711 } { "_id" : ObjectId("573a1398f29313caabcebf6f"), "plot" : "After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.", "title" : "Ghost", "score" : 3.9638845920562744 } { "_id" : ObjectId("573a13cdf29313caabd83c08"), "plot" : "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", "title" : "Ghost", "score" : 3.9638845920562744 } { "_id" : ObjectId("573a13cef29313caabd873a2"), "plot" : "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", "title" : "Ghost", "score" : 3.9638845920562744 } { "_id" : ObjectId("573a13c3f29313caabd6a149"), "plot" : "What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...", "title" : "Coming Soon", "score" : 3.5267119407653809 } { "_id" : ObjectId("573a1398f29313caabce912c"), "plot" : "Three unemployed parapsychology professors set up shop as a unique ghost removal service.", "title" : "Ghostbusters", "score" : 3.5241782665252686 } { "_id" : ObjectId("573a139cf29313caabcf5a48"), "plot" : "Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.", "title" : "Casper Meets Wendy", "score" : 3.5241782665252686 } { "_id" : ObjectId("573a13bdf29313caabd58274"), "plot" : "Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...", "title" : "Bhoothnath", "score" : 3.4605300426483154 }
The movie documents in the results contain the query term ghost
in
the plot
or title
field and don't have the specified
ObjectIds in the _id
field. Atlas Search didn't return the documents with
the specified ObjectsIds, even though they contain the query term
ghost
in the title
field, because the query reduced the score
of these documents by 50% and so, these documents didn't rank in the
top 10 documents.
Copy and paste the query into the compound-bury-results.go
file.
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
1 package main 2 3 import ( 4 "context" 5 "fmt" 6 "time" 7 8 "go.mongodb.org/mongo-driver/bson" 9 "go.mongodb.org/mongo-driver/mongo" 10 "go.mongodb.org/mongo-driver/mongo/options" 11 ) 12 13 // define structure of movies collection 14 type MovieCollection struct { 15 title string `bson:"Title,omitempty"` 16 plot string `bson:"Plot,omitempty"` 17 } 18 19 func main() { 20 var err error 21 // connect to the Atlas cluster 22 ctx := context.Background() 23 client, err := mongo.Connect(ctx, options.Client().ApplyURI("<connection-string>")) 24 if err != nil { 25 panic(err) 26 } 27 defer client.Disconnect(ctx) 28 // set namespace 29 collection := client.Database("sample_mflix").Collection("movies") 30 // define pipeline 31 searchStage := bson.D{{"$search", bson.D{ 32 {"index", "compound-query-custom-score-tutorial"}, 33 {"compound", bson.D{ 34 {"should", bson.A{ 35 bson.D{{"compound", bson.D{ 36 {"must", bson.A{ 37 bson.D{{"text", bson.D{ 38 {"query", "ghost"}, 39 {"path", bson.A{ "plot", "title" }}, 40 }}}, 41 }}, 42 {"mustNot", bson.A{ 43 bson.D{{"text", bson.D{ 44 {"query", "Comedy"}, 45 {"path", bson.A{ "genres" }}, 46 }}}, 47 }}, 48 }}}, 49 bson.D{{"compound", bson.D{ 50 {"must", bson.A{ 51 bson.D{{"text", bson.D{ 52 {"query", "ghost"}, 53 {"path", bson.A{ "plot", "title" }}, 54 }}}, 55 }}, 56 {"filter", bson.A{ 57 bson.D{{"text", bson.D{ 58 {"query", "Comedy"}, 59 {"path", bson.A{ "genres" }}, 60 }}}, 61 }}, 62 {"score", bson.D{{"boost", bson.D{{"value", 0.5}}}}}, 63 }}}, 64 }}, 65 }}, 66 }}} 67 limitStage := bson.D{{"$limit", 10}} 68 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"plot", 1}, {"_id", 0}, {"genres", 1}, {"score", bson.D{{"$meta", "searchScore"}}}}}} 69 // specify the amount of time the operation can run on the server 70 opts := options.Aggregate().SetMaxTime(5 * time.Second) 71 // run pipeline 72 cursor, err := collection.Aggregate(ctx, mongo.Pipeline{searchStage, limitStage, projectStage}, opts) 73 if err != nil { 74 panic(err) 75 } 76 // print results 77 var results []bson.D 78 if err = cursor.All(context.TODO(), &results); err != nil { 79 panic(err) 80 } 81 for _, result := range results { 82 fmt.Println(result) 83 } 84 }
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
1 package main 2 3 import ( 4 "context" 5 "fmt" 6 "time" 7 "log" 8 9 "go.mongodb.org/mongo-driver/bson" 10 "go.mongodb.org/mongo-driver/mongo" 11 "go.mongodb.org/mongo-driver/mongo/options" 12 "go.mongodb.org/mongo-driver/bson/primitive" 13 ) 14 15 // define structure of movies collection 16 type MovieCollection struct { 17 title string `bson:"Title,omitempty"` 18 plot string `bson:"Plot,omitempty"` 19 } 20 21 func main() { 22 var err error 23 // connect to the Atlas cluster 24 ctx := context.Background() 25 client, err := mongo.Connect(ctx, options.Client().ApplyURI("<connection-string>")) 26 if err != nil { 27 panic(err) 28 } 29 defer client.Disconnect(ctx) 30 // set namespace 31 collection := client.Database("sample_mflix").Collection("movies") 32 // define variable 33 var objectIDFromHex = func(hex string) primitive.ObjectID { 34 objectID, err := primitive.ObjectIDFromHex(hex) 35 if err != nil { 36 log.Fatal(err) 37 } 38 return objectID 39 } 40 // define pipeline 41 searchStage := bson.D{{"$search", bson.D{ 42 {"index", "compound-query-custom-score-tutorial"}, 43 {"compound", bson.D{ 44 {"should", bson.A{ 45 bson.D{{"compound", bson.D{ 46 {"must", bson.A{ 47 bson.D{{"text", bson.D{ 48 {"query", "ghost"}, 49 {"path", bson.A{ "plot", "title" }}, 50 }}}, 51 }}, 52 {"mustNot", bson.A{ 53 bson.D{{"in", bson.D{ 54 {"value", bson.A{objectIDFromHex("573a13cdf29313caabd83c08"), objectIDFromHex("573a13cef29313caabd873a2") }}, 55 {"path", "_id"}, 56 }}}, 57 }}, 58 }}}, 59 bson.D{{"compound", bson.D{ 60 {"must", bson.A{ 61 bson.D{{"text", bson.D{ 62 {"query", "ghost"}, 63 {"path", bson.A{ "plot", "title" }}, 64 }}}, 65 }}, 66 {"filter", bson.A{ 67 bson.D{{"in", bson.D{ 68 {"value", bson.A{ objectIDFromHex("573a13cdf29313caabd83c08"), objectIDFromHex("573a13cef29313caabd873a2")}}, 69 {"path", "_id"}, 70 }}}, 71 }}, 72 {"score", bson.D{{"boost", bson.D{{"value", 0.5}}}}}, 73 }}}, 74 }}, 75 }}, 76 }}} 77 78 limitStage := bson.D{{"$limit", 10}} 79 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"plot", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}}}} 80 // specify the amount of time the operation can run on the server 81 opts := options.Aggregate().SetMaxTime(5 * time.Second) 82 // run pipeline 83 cursor, err := collection.Aggregate(ctx, mongo.Pipeline{searchStage, limitStage, projectStage}, opts) 84 if err != nil { 85 panic(err) 86 } 87 // print results 88 var results []bson.D 89 if err = cursor.All(context.TODO(), &results); err != nil { 90 panic(err) 91 } 92 for _, result := range results { 93 fmt.Println(result) 94 } 95 }
Replace the <connection-string>
in the query and then save the file.
Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.
Run the command to query your collection.
go run compound-bury-results.go
[{plot Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.} {genres [Family Drama Fantasy]} {title The Canterville Ghost} {score 5.909613132476807}] [{plot The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!} {genres [Family Fantasy]} {title The Little Ghost} {score 5.367666244506836}] [{plot Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.} {genres [Horror Thriller]} {title Death of a Ghost Hunter} {score 4.676314353942871}] [{plot After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.} {genres [Drama Fantasy Romance]} {title Ghost} {score 3.9638845920562744}] [{plot A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.} {genres [Drama Fantasy Mystery]} {title Ghost} {score 3.9638845920562744}] [{plot A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.} {genres [Drama Fantasy Mystery]} {title Ghost} {score 3.9638845920562744}] [{plot What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...} {genres [Horror Thriller]} {title Coming Soon} {score 3.526711940765381}] [{plot Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...} {genres [Drama Horror Thriller]} {title Ghost Story} {score 3.3177831172943115}] [{plot Stunt motorcyclist Johnny Blaze gives up his soul to become a hellblazing vigilante, to fight against power hungry Blackheart, the son of the devil himself.} {genres [Action Fantasy Thriller]} {title Ghost Rider} {score 3.3177831172943115}] [{plot A salvage crew that discovers a long-lost 1962 passenger ship floating lifeless in a remote region of the Bering Sea soon notices, as they prepare to tow it back to land, that "strange things" happen...} {genres [Horror Mystery]} {title Ghost Ship} {score 3.3177831172943115}]
The movie documents in the results contain the query term ghost
in
the plot
or title
field and aren't in the Comedy
genre.
Atlas Search didn't return documents in the Comedy
genre with the term
ghost
in the plot
or title
field because those documents
didn't rank in the top 10 documents since the query reduced the score
of those documents by 50%.
go run compound-bury-results.go
[{plot Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.} {title The Canterville Ghost} {score 5.909613132476807}] [{plot The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!} {title The Little Ghost} {score 5.367666244506836}] [{plot Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.} {title Death of a Ghost Hunter} {score 4.676314353942871}] [{plot After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.} {title Ghost} {score 3.9638845920562744}] [{plot What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...} {title Coming Soon} {score 3.526711940765381}] [{plot Three unemployed parapsychology professors set up shop as a unique ghost removal service.} {title Ghostbusters} {score 3.5241782665252686}] [{plot Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.} {title Casper Meets Wendy} {score 3.5241782665252686}] [{plot Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...} {title Bhoothnath} {score 3.4605300426483154}] [{plot Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...} {title Ghost Story} {score 3.3177831172943115}] [{plot Elliot Hopper is a widower with three children, he is currently working on a deal. It seems like his wife illness was very costly and this deal could put them out of the red. However he ...} {title Ghost Dad} {score 3.3177831172943115}]
The movie documents in the results contain the query term ghost
in
the plot
or title
field and don't have the specified
ObjectIds in the _id
field. Atlas Search didn't return the documents with
the specified ObjectsIds, even though they contain the query term
ghost
in the title
field, because the query reduced the score
of these documents by 50% and so, these documents didn't rank in the
top 10 documents.
Copy and paste the query into the CompoundBuryQuery.java
file.
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
1 import java.util.Arrays; 2 import static com.mongodb.client.model.Aggregates.limit; 3 import static com.mongodb.client.model.Aggregates.project; 4 import static com.mongodb.client.model.Projections.*; 5 import com.mongodb.client.MongoClient; 6 import com.mongodb.client.MongoClients; 7 import com.mongodb.client.MongoCollection; 8 import com.mongodb.client.MongoDatabase; 9 10 import org.bson.Document; 11 12 public class CompoundBuryQuery { 13 public static void main( String[] args ) { 14 // define query 15 Document agg = 16 new Document("$search", 17 new Document("index", "compound-query-custom-score-tutorial") 18 .append("compound", 19 new Document("should", Arrays.asList(new Document("compound", 20 new Document("must", Arrays.asList(new Document("text", 21 new Document("query", "ghost") 22 .append("path", Arrays.asList("plot", "title"))))) 23 .append("mustNot", Arrays.asList(new Document("text", 24 new Document("query", "Comedy") 25 .append("path", Arrays.asList("genres"))))) 26 ), 27 new Document("compound", 28 new Document("must", Arrays.asList(new Document("text", 29 new Document("query", "ghost") 30 .append("path", Arrays.asList("plot", "title"))))) 31 .append("filter", Arrays.asList(new Document("text", 32 new Document("query", "Comedy") 33 .append("path", Arrays.asList("genres"))))) 34 .append("score", new Document("boost", 35 new Document("value", 0.5d)))))) 36 ) 37 ); 38 // specify connection 39 String uri = "<connection-string>"; 40 // establish connection and set namespace 41 try (MongoClient mongoClient = MongoClients.create(uri)) { 42 MongoDatabase database = mongoClient.getDatabase("sample_mflix"); 43 MongoCollection<Document> collection = database.getCollection("movies"); 44 // run query and print results 45 collection.aggregate(Arrays.asList(agg, 46 limit(10), 47 project(fields( 48 include("title", "plot", "genres", "_id"), 49 computed("score", new Document("$meta", "searchScore")))))) 50 .forEach(doc -> System.out.println(doc.toJson())); 51 } 52 } 53 }
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
1 import java.util.Arrays; 2 import static com.mongodb.client.model.Aggregates.limit; 3 import static com.mongodb.client.model.Aggregates.project; 4 import static com.mongodb.client.model.Projections.*; 5 import com.mongodb.client.MongoClient; 6 import com.mongodb.client.MongoClients; 7 import com.mongodb.client.MongoCollection; 8 import com.mongodb.client.MongoDatabase; 9 import org.bson.types.ObjectId; 10 11 import org.bson.Document; 12 13 public class CompoundBuryQuery { 14 public static void main( String[] args ) { 15 // define query 16 Document agg = 17 new Document("$search", 18 new Document("index", "compound-query-custom-score-tutorial") 19 .append("compound", 20 new Document("should", Arrays.asList( 21 new Document("compound", 22 new Document("must", Arrays.asList(new Document("text", 23 new Document("query", "ghost") 24 .append("path", Arrays.asList("plot", "title"))))) 25 .append("mustNot", Arrays.asList(new Document("in", 26 new Document("value", Arrays.asList(new ObjectId("573a13cdf29313caabd83c08"), 27 new ObjectId("573a13cef29313caabd873a2"))) 28 .append("path", "_id"))))), 29 new Document("compound", 30 new Document("must", Arrays.asList(new Document("text", 31 new Document("query", "ghost") 32 .append("path", Arrays.asList("plot", "title"))))) 33 .append("filter", Arrays.asList(new Document("in", 34 new Document("value", Arrays.asList(new ObjectId("573a13cdf29313caabd83c08"), 35 new ObjectId("573a13cef29313caabd873a2"))) 36 .append("path", "_id")))) 37 .append("score", new Document("boost", 38 new Document("value", 0.5d))))) 39 ) 40 ) 41 ); 42 // specify connection 43 String uri = "<connection-string>"; 44 // establish connection and set namespace 45 try (MongoClient mongoClient = MongoClients.create(uri)) { 46 MongoDatabase database = mongoClient.getDatabase("sample_mflix"); 47 MongoCollection<Document> collection = database.getCollection("movies"); 48 // run query and print results 49 collection.aggregate(Arrays.asList(agg, 50 limit(10), 51 project(fields( 52 include("title", "plot", "_id"), 53 computed("score", new Document("$meta", "searchScore")))))) 54 .forEach(doc -> System.out.println(doc.toJson())); 55 } 56 } 57 }
Replace the <connection-string>
in the query and then save the file.
Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.
Compile and run the CompoundBuryQuery.java
file.
javac CompoundBuryQuery.java
{"_id": {"$oid": "573a139af29313caabcefcce"}, "plot": "Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.", "genres": ["Family", "Drama", "Fantasy"], "title": "The Canterville Ghost", "score": 5.909613132476807} {"_id": {"$oid": "573a13d8f29313caabda5dc1"}, "plot": "The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!", "genres": ["Family", "Fantasy"], "title": "The Little Ghost", "score": 5.367666244506836} {"_id": {"$oid": "573a13c0f29313caabd6139d"}, "plot": "Renowned \"ghost hunter\", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.", "genres": ["Horror", "Thriller"], "title": "Death of a Ghost Hunter", "score": 4.676314353942871} {"_id": {"$oid": "573a1398f29313caabcebf6f"}, "plot": "After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.", "genres": ["Drama", "Fantasy", "Romance"], "title": "Ghost", "score": 3.9638845920562744} {"_id": {"$oid": "573a13cdf29313caabd83c08"}, "plot": "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", "genres": ["Drama", "Fantasy", "Mystery"], "title": "Ghost", "score": 3.9638845920562744} {"_id": {"$oid": "573a13cef29313caabd873a2"}, "plot": "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", "genres": ["Drama", "Fantasy", "Mystery"], "title": "Ghost", "score": 3.9638845920562744} {"_id": {"$oid": "573a13c3f29313caabd6a149"}, "plot": "What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...", "genres": ["Horror", "Thriller"], "title": "Coming Soon", "score": 3.526711940765381} {"_id": {"$oid": "573a1397f29313caabce7ea1"}, "plot": "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...", "genres": ["Drama", "Horror", "Thriller"], "title": "Ghost Story", "score": 3.3177831172943115} {"_id": {"$oid": "573a13a4f29313caabd117df"}, "plot": "Stunt motorcyclist Johnny Blaze gives up his soul to become a hellblazing vigilante, to fight against power hungry Blackheart, the son of the devil himself.", "genres": ["Action", "Fantasy", "Thriller"], "title": "Ghost Rider", "score": 3.3177831172943115} {"_id": {"$oid": "573a13a6f29313caabd185dc"}, "plot": "A salvage crew that discovers a long-lost 1962 passenger ship floating lifeless in a remote region of the Bering Sea soon notices, as they prepare to tow it back to land, that \"strange things\" happen...", "genres": ["Horror", "Mystery"], "title": "Ghost Ship", "score": 3.3177831172943115}
The movie documents in the results contain the query term ghost
in
the plot
or title
field and aren't in the Comedy
genre.
Atlas Search didn't return documents in the Comedy
genre with the term
ghost
in the plot
or title
field because those documents
didn't rank in the top 10 documents since the query reduced the score
of those documents by 50%.
javac CompoundBuryQuery.java
{"_id": {"$oid": "573a139af29313caabcefcce"}, "plot": "Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.", "title": "The Canterville Ghost", "score": 5.909613132476807} {"_id": {"$oid": "573a13d8f29313caabda5dc1"}, "plot": "The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!", "title": "The Little Ghost", "score": 5.367666244506836} {"_id": {"$oid": "573a13c0f29313caabd6139d"}, "plot": "Renowned \"ghost hunter\", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.", "title": "Death of a Ghost Hunter", "score": 4.676314353942871} {"_id": {"$oid": "573a1398f29313caabcebf6f"}, "plot": "After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.", "title": "Ghost", "score": 3.9638845920562744} {"_id": {"$oid": "573a13c3f29313caabd6a149"}, "plot": "What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...", "title": "Coming Soon", "score": 3.526711940765381} {"_id": {"$oid": "573a1398f29313caabce912c"}, "plot": "Three unemployed parapsychology professors set up shop as a unique ghost removal service.", "title": "Ghostbusters", "score": 3.5241782665252686} {"_id": {"$oid": "573a139cf29313caabcf5a48"}, "plot": "Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.", "title": "Casper Meets Wendy", "score": 3.5241782665252686} {"_id": {"$oid": "573a13bdf29313caabd58274"}, "plot": "Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...", "title": "Bhoothnath", "score": 3.4605300426483154} {"_id": {"$oid": "573a1397f29313caabce7ea1"}, "plot": "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...", "title": "Ghost Story", "score": 3.3177831172943115} {"_id": {"$oid": "573a1398f29313caabcebf79"}, "plot": "Elliot Hopper is a widower with three children, he is currently working on a deal. It seems like his wife illness was very costly and this deal could put them out of the red. However he ...", "title": "Ghost Dad", "score": 3.3177831172943115}
The movie documents in the results contain the query term ghost
in
the plot
or title
field and don't have the specified
ObjectIds in the _id
field. Atlas Search didn't return the documents with
the specified ObjectsIds, even though they contain the query term
ghost
in the title
field, because the query reduced the score
of these documents by 50% and so, these documents didn't rank in the
top 10 documents.
Copy and paste the following code into the CompoundBuryQuery.kt
file.
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
1 import com.mongodb.client.model.Aggregates.limit 2 import com.mongodb.client.model.Aggregates.project 3 import com.mongodb.client.model.Projections.* 4 import com.mongodb.kotlin.client.coroutine.MongoClient 5 import kotlinx.coroutines.runBlocking 6 import org.bson.Document 7 8 fun main() { 9 // establish connection and set namespace 10 val uri = "<connection-string>" 11 val mongoClient = MongoClient.create(uri) 12 val database = mongoClient.getDatabase("sample_mflix") 13 val collection = database.getCollection<Document>("movies") 14 15 runBlocking { 16 // define clauses 17 val mustClause = listOf( 18 Document("text", 19 Document("query", "ghost") 20 .append("path", listOf("plot","title")) 21 ) 22 ) 23 24 val mustNotClauseAndFilterClause = listOf( 25 Document("text", 26 Document("query", "Comedy") 27 .append("path", listOf("genres")) 28 ) 29 ) 30 31 val compound1 = Document("must", mustClause) 32 .append("mustNot", mustNotClauseAndFilterClause) 33 34 val compound2 = Document("must", mustClause) 35 .append("filter", mustNotClauseAndFilterClause) 36 .append("score", 37 Document("boost", 38 Document("value", 0.5) 39 ) 40 ) 41 42 val agg = Document("\$search", 43 Document("index", "compound-query-custom-score-tutorial") 44 .append("compound", Document("should", listOf( 45 Document("compound", compound1), 46 Document("compound", compound2) 47 ))) 48 ) 49 50 val resultsFlow = collection.aggregate<Document>( 51 listOf( 52 agg, 53 limit(10), 54 project(fields( 55 include("title", "plot", "genres"), 56 computed("score", Document("\$meta", "searchScore")) 57 )) 58 ) 59 ) 60 resultsFlow.collect { println(it) } 61 } 62 mongoClient.close() 63 }
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
1 import com.mongodb.client.model.Aggregates.limit 2 import com.mongodb.client.model.Aggregates.project 3 import com.mongodb.client.model.Projections.* 4 import com.mongodb.kotlin.client.coroutine.MongoClient 5 import kotlinx.coroutines.runBlocking 6 import org.bson.Document 7 import org.bson.types.ObjectId 8 9 fun main() { 10 // establish connection and set namespace 11 val uri = "<connection-string>" 12 val mongoClient = MongoClient.create(uri) 13 val database = mongoClient.getDatabase("sample_mflix") 14 val collection = database.getCollection<Document>("movies") 15 16 runBlocking { 17 // define clauses 18 val mustClause = listOf( 19 Document("text", 20 Document("query", "ghost") 21 .append("path", listOf("plot","title")) 22 ) 23 ) 24 25 val mustNotClauseAndFilterClause = listOf( 26 Document("in", 27 Document("value", listOf(ObjectId("573a13cdf29313caabd83c08"), ObjectId("573a13cef29313caabd873a2"))) 28 .append("path", "_id") 29 ) 30 ) 31 32 val compound1 = Document("must", mustClause) 33 .append("mustNot", mustNotClauseAndFilterClause) 34 35 val compound2 = Document("must", mustClause) 36 .append("filter", mustNotClauseAndFilterClause) 37 .append("score", 38 Document("boost", 39 Document("value", 0.5) 40 ) 41 ) 42 43 val agg = Document("\$search", 44 Document("index", "compound-query-custom-score-tutorial") 45 .append("compound", Document("should", listOf( 46 Document("compound", compound1), 47 Document("compound", compound2) 48 ))) 49 ) 50 51 val resultsFlow = collection.aggregate<Document>( 52 listOf( 53 agg, 54 limit(10), 55 project(fields( 56 include("title", "plot", "_id"), 57 computed("score", Document("\$meta", "searchScore")) 58 )) 59 ) 60 ) 61 resultsFlow.collect { println(it) } 62 } 63 mongoClient.close() 64 }
Replace the <connection-string>
in the query and then save the file.
Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.
Run the CompoundBuryQuery.kt
file.
When you run the CompoundBuryQuery.kt
program in your IDE, it prints
the following documents:
dotnet run compound-bury-results.csproj
Document{{_id=573a139af29313caabcefcce, plot=Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness., genres=[Family, Drama, Fantasy], title=The Canterville Ghost, score=5.909613132476807}} Document{{_id=573a13d8f29313caabda5dc1, plot=The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!, genres=[Family, Fantasy], title=The Little Ghost, score=5.367666244506836}} Document{{_id=573a13c0f29313caabd6139d, plot=Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror., genres=[Horror, Thriller], title=Death of a Ghost Hunter, score=4.676314353942871}} Document{{_id=573a1398f29313caabcebf6f, plot=After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic., genres=[Drama, Fantasy, Romance], title=Ghost, score=3.9638845920562744}} Document{{_id=573a13cdf29313caabd83c08, plot=A man tries to solve his lover's murder by communicating with her spirit through the help of a medium., genres=[Drama, Fantasy, Mystery], title=Ghost, score=3.9638845920562744}} Document{{_id=573a13cef29313caabd873a2, plot=A man tries to solve his lover's murder by communicating with her spirit through the help of a medium., genres=[Drama, Fantasy, Mystery], title=Ghost, score=3.9638845920562744}} Document{{_id=573a13c3f29313caabd6a149, plot=What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ..., genres=[Horror, Thriller], title=Coming Soon, score=3.526711940765381}} Document{{_id=573a1397f29313caabce7ea1, plot=Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ..., genres=[Drama, Horror, Thriller], title=Ghost Story, score=3.3177831172943115}} Document{{_id=573a13a4f29313caabd117df, plot=Stunt motorcyclist Johnny Blaze gives up his soul to become a hellblazing vigilante, to fight against power hungry Blackheart, the son of the devil himself., genres=[Action, Fantasy, Thriller], title=Ghost Rider, score=3.3177831172943115}} Document{{_id=573a13a6f29313caabd185dc, plot=A salvage crew that discovers a long-lost 1962 passenger ship floating lifeless in a remote region of the Bering Sea soon notices, as they prepare to tow it back to land, that "strange things" happen..., genres=[Horror, Mystery], title=Ghost Ship, score=3.3177831172943115}}
The movie documents in the results contain the query term ghost
in
the plot
or title
field and aren't in the Comedy
genre.
Atlas Search didn't return documents in the Comedy
genre with the term
ghost
in the plot
or title
field because those documents
didn't rank in the top 10 documents since the query reduced the score
of those documents by 50%.
dotnet run compound-bury-results.csproj
Document{{_id=573a139af29313caabcefcce, plot=Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness., title=The Canterville Ghost, score=5.909613132476807}} Document{{_id=573a13d8f29313caabda5dc1, plot=The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!, title=The Little Ghost, score=5.367666244506836}} Document{{_id=573a13c0f29313caabd6139d, plot=Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror., title=Death of a Ghost Hunter, score=4.676314353942871}} Document{{_id=573a1398f29313caabcebf6f, plot=After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic., title=Ghost, score=3.9638845920562744}} Document{{_id=573a13c3f29313caabd6a149, plot=What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ..., title=Coming Soon, score=3.526711940765381}} Document{{_id=573a1398f29313caabce912c, plot=Three unemployed parapsychology professors set up shop as a unique ghost removal service., title=Ghostbusters, score=3.5241782665252686}} Document{{_id=573a139cf29313caabcf5a48, plot=Casper, a ghost, teams up with Wendy, a witch, against an evil warlock., title=Casper Meets Wendy, score=3.5241782665252686}} Document{{_id=573a13bdf29313caabd58274, plot=Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy..., title=Bhoothnath, score=3.4605300426483154}} Document{{_id=573a1397f29313caabce7ea1, plot=Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ..., title=Ghost Story, score=3.3177831172943115}} Document{{_id=573a1398f29313caabcebf79, plot=Elliot Hopper is a widower with three children, he is currently working on a deal. It seems like his wife illness was very costly and this deal could put them out of the red. However he ..., title=Ghost Dad, score=3.3177831172943115}}
The movie documents in the results contain the query term ghost
in
the plot
or title
field and don't have the specified
ObjectIds in the _id
field. Atlas Search didn't return the documents with
the specified ObjectsIds, even though they contain the query term
ghost
in the title
field, because the query reduced the score
of these documents by 50% and so, these documents didn't rank in the
top 10 documents.
Copy and paste the sample query into the compound-bury-results.js
file.
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
1 const { MongoClient } = require("mongodb"); 2 3 // connect to your Atlas cluster 4 const uri = "<connection-string>"; 5 const client = new MongoClient(uri); 6 7 async function run() { 8 try { 9 await client.connect(); 10 11 // set namespace 12 const database = client.db("sample_mflix"); 13 const coll = database.collection("movies"); 14 15 // define pipeline 16 const agg = [ 17 { 18 "$search": { 19 "index": "compound-query-custom-score-tutorial", 20 "compound": { 21 "should": [ 22 { 23 "compound": { 24 "must": [ 25 { 26 "text": { 27 "query": "ghost", 28 "path": [ 29 "plot", "title" 30 ] 31 } 32 } 33 ], 34 "mustNot": [ 35 { 36 "text": { 37 "query": "Comedy", 38 "path": [ 39 "genres" 40 ] 41 } 42 } 43 ] 44 } 45 }, { 46 "compound": { 47 "must": [ 48 { 49 "text": { 50 "query": "ghost", 51 "path": [ 52 "plot", "title" 53 ] 54 } 55 } 56 ], 57 "filter": [ 58 { 59 "text": { 60 "query": "Comedy", 61 "path": [ 62 "genres" 63 ] 64 } 65 } 66 ], 67 "score": { "boost": { "value": 0.5 } } 68 } 69 } 70 ] 71 } 72 } 73 }, { 74 "$limit": 10 75 }, { 76 "$project": { 77 "_id": 1, 78 "title": 1, 79 "plot": 1, 80 "genres": 1, 81 "score": { "$meta": "searchScore" } 82 } 83 } 84 ]; 85 86 // run pipeline 87 const result = coll.aggregate(agg); 88 89 // print results 90 await result.forEach((doc) => console.dir(JSON.stringify(doc))); 91 } finally { 92 await client.close(); 93 } 94 } 95 run().catch(console.dir);
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
1 const { MongoClient } = require("mongodb"); 2 const { ObjectId } = require("mongodb"); 3 4 // connect to your Atlas cluster 5 const uri = "<connection-string>"; 6 const client = new MongoClient(uri); 7 8 async function run() { 9 try { 10 await client.connect(); 11 12 // set namespace 13 const database = client.db("sample_mflix"); 14 const coll = database.collection("movies"); 15 16 // define pipeline 17 const agg = [ 18 { 19 '$search': { 20 'index': 'compound-query-custom-score-tutorial', 21 'compound': { 22 'should': [ 23 { 24 'compound': { 25 'must': [ 26 { 27 'text': { 28 'query': 'ghost', 29 'path': [ 'plot', 'title' ] 30 } 31 } 32 ], 33 'mustNot': [ 34 { 35 'in': { 36 'value': [ new ObjectId('573a13cdf29313caabd83c08'), new ObjectId('573a13cef29313caabd873a2') ], 37 'path': '_id' 38 } 39 } 40 ] 41 } 42 }, { 43 'compound': { 44 'must': [ 45 { 46 'text': { 47 'query': 'ghost', 48 'path': [ 'plot', 'title' ] 49 } 50 } 51 ], 52 'filter': [ 53 { 54 'in': { 55 'value': [ new ObjectId('573a13cdf29313caabd83c08'), new ObjectId('573a13cef29313caabd873a2') ], 56 'path': '_id' 57 } 58 } 59 ], 60 'score': { 61 'boost': { 'value': 0.5 } 62 } 63 } 64 } 65 ] 66 } 67 } 68 }, { 69 '$limit': 10 70 }, { 71 '$project': { 72 '_id': 1, 73 'title': 1, 74 'plot': 1, 75 'score': { '$meta': 'searchScore' } 76 } 77 } 78 ]; 79 80 // run pipeline 81 const result = coll.aggregate(agg); 82 83 // print results 84 await result.forEach((doc) => console.dir(JSON.stringify(doc))); 85 } finally { 86 await client.close(); 87 } 88 } 89 run().catch(console.dir);
Replace the <connection-string>
in the query and then save the file.
Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.
Query your collection.
Run the following command to query your collection:
node compound-bury-results.js
{"_id":"573a139af29313caabcefcce","plot":"Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.","genres":["Family","Drama","Fantasy"],"title":"The Canterville Ghost","score":5.909613132476807} {"_id":"573a13d8f29313caabda5dc1","plot":"The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!","genres":["Family","Fantasy"],"title":"The Little Ghost","score":5.367666244506836} {"_id":"573a13c0f29313caabd6139d","plot":"Renowned \\"ghost hunter\\", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.","genres":["Horror","Thriller"],"title":"Death of a Ghost Hunter","score":4.676314353942871} {"_id":"573a1398f29313caabcebf6f","plot":"After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.","genres":["Drama","Fantasy","Romance"],"title":"Ghost","score":3.9638845920562744} {"_id":"573a13cdf29313caabd83c08","plot":"A man tries to solve his lovers murder by communicating with her spirit through the help of a medium.","genres":["Drama","Fantasy","Mystery"],"title":"Ghost","score":3.9638845920562744} {"_id":"573a13cef29313caabd873a2","plot":"A man tries to solve his lovers murder by communicating with her spirit through the help of a medium.","genres":["Drama","Fantasy","Mystery"],"title":"Ghost","score":3.9638845920562744} {"_id":"573a13c3f29313caabd6a149","plot":"What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...","genres":["Horror","Thriller"],"title":"Coming Soon","score":3.526711940765381} {"_id":"573a1397f29313caabce7ea1","plot":"Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderleys twin sons dies in a bizarre accident, the group ...","genres":["Drama","Horror","Thriller"],"title":"Ghost Story","score":3.3177831172943115} {"_id":"573a13a4f29313caabd117df","plot":"Stunt motorcyclist Johnny Blaze gives up his soul to become a hellblazing vigilante, to fight against power hungry Blackheart, the son of the devil himself.","genres":["Action","Fantasy","Thriller"],"title":"Ghost Rider","score":3.3177831172943115} {"_id":"573a13a6f29313caabd185dc","plot":"A salvage crew that discovers a long-lost 1962 passenger ship floating lifeless in a remote region of the Bering Sea soon notices, as they prepare to tow it back to land, that \\"strange things\\" happen...","genres":["Horror","Mystery"],"title":"Ghost Ship","score":3.3177831172943115}
The movie documents in the results contain the query term ghost
in
the plot
or title
field and aren't in the Comedy
genre.
Atlas Search didn't return documents in the Comedy
genre with the term
ghost
in the plot
or title
field because those documents
didn't rank in the top 10 documents since the query reduced the score
of those documents by 50%.
node compound-bury-results.js
{"_id":"573a139af29313caabcefcce","plot":"Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.","title":"The Canterville Ghost","score":5.909613132476807} {"_id":"573a13d8f29313caabda5dc1","plot":"The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!","title":"The Little Ghost","score":5.367666244506836} {"_id":"573a13c0f29313caabd6139d","plot":"Renowned \\"ghost hunter\\", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.","title":"Death of a Ghost Hunter","score":4.676314353942871} {"_id":"573a1398f29313caabcebf6f","plot":"After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.","title":"Ghost","score":3.9638845920562744} {"_id":"573a13c3f29313caabd6a149","plot":"What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...","title":"Coming Soon","score":3.526711940765381} {"_id":"573a1398f29313caabce912c","plot":"Three unemployed parapsychology professors set up shop as a unique ghost removal service.","title":"Ghostbusters","score":3.5241782665252686} {"_id":"573a139cf29313caabcf5a48","plot":"Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.","title":"Casper Meets Wendy","score":3.5241782665252686} {"_id":"573a13bdf29313caabd58274","plot":"Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...","title":"Bhoothnath","score":3.4605300426483154} {"_id":"573a1397f29313caabce7ea1","plot":"Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderleys twin sons dies in a bizarre accident, the group ...","title":"Ghost Story","score":3.3177831172943115} {"_id":"573a1398f29313caabcebf79","plot":"Elliot Hopper is a widower with three children, he is currently working on a deal. It seems like his wife illness was very costly and this deal could put them out of the red. However he ...","title":"Ghost Dad","score":3.3177831172943115}
The movie documents in the results contain the query term ghost
in
the plot
or title
field and don't have the specified
ObjectIds in the _id
field. Atlas Search didn't return the documents with
the specified ObjectsIds, even though they contain the query term
ghost
in the title
field, because the query reduced the score
of these documents by 50% and so, these documents didn't rank in the
top 10 documents.
Copy and paste the query into the compound-bury-results.py
file.
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
1 import pymongo 2 import dns 3 4 client = pymongo.MongoClient('<connection-string>') 5 result = client['sample_mflix']['movies'].aggregate([ 6 { 7 '$search': { 8 'index': 'compound-query-custom-score-tutorial', 9 'compound': { 10 'should': [ 11 { 12 'compound': { 13 'must': [ 14 { 15 'text': { 16 'query': 'ghost', 17 'path': [ 'plot', 'title' ] 18 } 19 } 20 ], 21 'mustNot': [ 22 { 23 'text': { 24 'query': 'Comedy', 25 'path': [ 'genres' ] 26 } 27 } 28 ] 29 } 30 }, { 31 'compound': { 32 'must': [ 33 { 34 'text': { 35 'query': 'ghost', 36 'path': [ 'plot', 'title' ] 37 } 38 } 39 ], 40 'filter': [ 41 { 42 'text': { 43 'query': 'Comedy', 44 'path': [ 'genres' ] 45 } 46 } 47 ], 48 'score': { 'boost': { 'value': 0.5 } } 49 } 50 } 51 ] 52 } 53 } 54 }, { 55 '$limit': 10 56 }, { 57 '$project': { 58 '_id': 1, 59 'title': 1, 60 'plot': 1, 61 'genres': 1, 62 'score': { '$meta': 'searchScore' } 63 } 64 } 65 ]) 66 67 for i in result: 68 print(i)
This query uses the following pipeline stages:
| |
Limits the number of results to | |
|
1 import pymongo 2 import dns 3 from bson import ObjectId 4 5 client = pymongo.MongoClient('<connection-string>') 6 result = client['sample_mflix']['movies'].aggregate([ 7 { 8 '$search': { 9 'index': 'compound-query-custom-score-tutorial', 10 'compound': { 11 'should': [ 12 { 13 'compound': { 14 'must': [ 15 { 16 'text': { 17 'query': 'ghost', 18 'path': [ 'plot', 'title' ] 19 } 20 } 21 ], 22 'mustNot': [ 23 { 24 'in': { 25 'value': [ ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2') ], 26 'path': '_id' 27 } 28 } 29 ] 30 } 31 }, { 32 'compound': { 33 'must': [ 34 { 35 'text': { 36 'query': 'ghost', 37 'path': [ 'plot', 'title' ] 38 } 39 } 40 ], 41 'filter': [ 42 { 43 'in': { 44 'value': [ ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2') ], 45 'path': '_id' 46 } 47 } 48 ], 49 'score': { 'boost': { 'value': 0.5 } } 50 } 51 } 52 ] 53 } 54 } 55 }, { 56 '$limit': 10 57 }, { 58 '$project': { 59 '_id': 1, 60 'title': 1, 61 'plot': 1, 62 'score': { '$meta': 'searchScore' } 63 } 64 } 65 ]) 66 67 for i in result: 68 print(i)
Replace the <connection-string>
in the query and then save the file.
Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.
Run the command to query your collection.
python compound-bury-results.csproj
{'_id': ObjectId('573a139af29313caabcefcce'), 'plot': 'Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.', 'genres': ['Family', 'Drama', 'Fantasy'], 'title': 'The Canterville Ghost', 'score': 5.909613132476807} {'_id': ObjectId('573a13d8f29313caabda5dc1'), 'plot': 'The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!', 'genres': ['Family', 'Fantasy'], 'title': 'The Little Ghost', 'score': 5.367666244506836} {'_id': ObjectId('573a13c0f29313caabd6139d'), 'plot': 'Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.', 'genres': ['Horror', 'Thriller'], 'title': 'Death of a Ghost Hunter', 'score': 4.676314353942871} {'_id': ObjectId('573a1398f29313caabcebf6f'), 'plot': 'After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.', 'genres': ['Drama', 'Fantasy', 'Romance'], 'title': 'Ghost', 'score': 3.9638845920562744} {'_id': ObjectId('573a13cdf29313caabd83c08'), 'plot': "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", 'genres': ['Drama', 'Fantasy', 'Mystery'], 'title': 'Ghost', 'score': 3.9638845920562744} {'_id': ObjectId('573a13cef29313caabd873a2'), 'plot': "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", 'genres': ['Drama', 'Fantasy', 'Mystery'], 'title': 'Ghost', 'score': 3.9638845920562744} {'_id': ObjectId('573a13c3f29313caabd6a149'), 'plot': 'What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...', 'genres': ['Horror', 'Thriller'], 'title': 'Coming Soon', 'score': 3.526711940765381} {'_id': ObjectId('573a1397f29313caabce7ea1'), 'plot': "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...", 'genres': ['Drama', 'Horror', 'Thriller'], 'title': 'Ghost Story', 'score': 3.3177831172943115} {'_id': ObjectId('573a13a4f29313caabd117df'), 'plot': 'Stunt motorcyclist Johnny Blaze gives up his soul to become a hellblazing vigilante, to fight against power hungry Blackheart, the son of the devil himself.', 'genres': ['Action', 'Fantasy', 'Thriller'], 'title': 'Ghost Rider', 'score': 3.3177831172943115} {'_id': ObjectId('573a13a6f29313caabd185dc'), 'plot': 'A salvage crew that discovers a long-lost 1962 passenger ship floating lifeless in a remote region of the Bering Sea soon notices, as they prepare to tow it back to land, that "strange things" happen...', 'genres': ['Horror', 'Mystery'], 'title': 'Ghost Ship', 'score': 3.3177831172943115}
The movie documents in the results contain the query term ghost
in
the plot
or title
field and aren't in the Comedy
genre.
Atlas Search didn't return documents in the Comedy
genre with the term
ghost
in the plot
or title
field because those documents
didn't rank in the top 10 documents since the query reduced the score
of those documents by 50%.
python compound-bury-results.csproj
{'_id': ObjectId('573a139af29313caabcefcce'), 'plot': 'Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.', 'title': 'The Canterville Ghost', 'score': 5.909613132476807} {'_id': ObjectId('573a13d8f29313caabda5dc1'), 'plot': 'The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!', 'title': 'The Little Ghost', 'score': 5.367666244506836} {'_id': ObjectId('573a13c0f29313caabd6139d'), 'plot': 'Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.', 'title': 'Death of a Ghost Hunter', 'score': 4.676314353942871} {'_id': ObjectId('573a1398f29313caabcebf6f'), 'plot': 'After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.', 'title': 'Ghost', 'score': 3.9638845920562744} {'_id': ObjectId('573a13c3f29313caabd6a149'), 'plot': 'What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...', 'title': 'Coming Soon', 'score': 3.526711940765381} {'_id': ObjectId('573a1398f29313caabce912c'), 'plot': 'Three unemployed parapsychology professors set up shop as a unique ghost removal service.', 'title': 'Ghostbusters', 'score': 3.5241782665252686} {'_id': ObjectId('573a139cf29313caabcf5a48'), 'plot': 'Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.', 'title': 'Casper Meets Wendy', 'score': 3.5241782665252686} {'_id': ObjectId('573a13bdf29313caabd58274'), 'plot': 'Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...', 'title': 'Bhoothnath', 'score': 3.4605300426483154} {'_id': ObjectId('573a1397f29313caabce7ea1'), 'plot': "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...", 'title': 'Ghost Story', 'score': 3.3177831172943115} {'_id': ObjectId('573a1398f29313caabcebf79'), 'plot': 'Elliot Hopper is a widower with three children, he is currently working on a deal. It seems like his wife illness was very costly and this deal could put them out of the red. However he ...', 'title': 'Ghost Dad', 'score': 3.3177831172943115}
The movie documents in the results contain the query term ghost
in
the plot
or title
field and don't have the specified
ObjectIds in the _id
field. Atlas Search didn't return the documents with
the specified ObjectsIds, even though they contain the query term
ghost
in the title
field, because the query reduced the score
of these documents by 50% and so, these documents didn't rank in the
top 10 documents.
Continue Learning
To learn more about compound queries using Atlas Search, take
Unit 9 of the Intro To MongoDB Course on MongoDB University. The 1.5
hour unit includes an overview of Atlas Search and lessons on creating Atlas Search
indexes, running $search
queries using compound operators,
and grouping results using facet.