How to Run Atlas Search Queries with a Date Range Filter
This tutorial describes how to create an index with dynamic mapping on
the sample_mflix.movies
collection. It shows how to run compound
queries against the released
field using the range and
near operators. It takes you through the following steps:
Set up an Atlas Search index with dynamic mapping for the
sample_mflix.movies
collection.Run Atlas Search compound queries against the
released
field in thesample_mflix.movies
collection.
Before you begin, ensure that your Atlas cluster meets the requirements described in the Prerequisites.
To create an Atlas Search index, you must have Project Data Access Admin
or higher access to the project.
Create the Atlas Search Index With Dynamic Mapping
In this section, we create an Atlas Search index that uses dynamic
mapping to index the fields in the
sample_mflix.movies
collection.
In Atlas, go to the Clusters page for your project.
If it's not already displayed, select the organization that contains your desired project from the Organizations menu in the navigation bar.
If it's not already displayed, select your desired project from the Projects menu in the navigation bar.
If it's not already displayed, click Clusters in the sidebar.
The Clusters page displays.
Go to the Atlas Search page for your cluster.
You can go the Atlas Search page from the sidebar, the Data Explorer, or your cluster details page.
In the sidebar, click Atlas Search under the Services heading.
From the Select data source dropdown, select your cluster and click Go to Atlas Search.
The Atlas Search page displays.
Click the Browse Collections button for your cluster.
Expand the database and select the collection.
Click the Search Indexes tab for the collection.
The Atlas Search page displays.
Click the cluster's name.
Click the Atlas Search tab.
The Atlas Search page displays.
Enter the Index Name, and set the Database and Collection.
In the Index Name field, enter
date-range-tutorial
.If you name your index
default
, you don't need to specify anindex
parameter in the $search pipeline stage. If you give a custom name to your index, you must specify this name in theindex
parameter.In the Database and Collection section, find the
sample_mflix
database, and select themovies
collection.
Specify an index definition.
You can create an Atlas Search index that uses dynamic mappings or static mappings. To learn more about dynamic and static mappings, see Static and Dynamic Mappings.
The following index definition dynamically indexes the fields of
supported types in the movies
collection. You can use the Atlas Search Visual Editor or the Atlas Search
JSON Editor in the Atlas user interface to create the
index.
Visual Editor
Click Next.
Review the
"date-range-tutorial"
index definition for themovies
collection.
JSON Editor
Click Next.
Review the index definition.
Your index definition should look similar to the following:
{ "mappings": { "dynamic": true } } The above index definition dynamically indexes the fields of supported types in each document in the
movies
collection.Click Next.
Run a Compound Query
➤ Use the Select your language drop-down menu to set the language of the example on this page.
You can use the compound operator to combine two or more
operators and clauses into a single query. This tutorial uses the
compound operator clauses to search for movies in the
specified date range. In this section, connect to your Atlas
cluster and run the sample queries using the compound
operator against the released
field in the sample_mflix.movies
collection.
In Atlas, go to the Clusters page for your project.
If it's not already displayed, select the organization that contains your desired project from the Organizations menu in the navigation bar.
If it's not already displayed, select your desired project from the Projects menu in the navigation bar.
If it's not already displayed, click Clusters in the sidebar.
The Clusters page displays.
Go to the Atlas Search page for your cluster.
You can go the Atlas Search page from the sidebar, the Data Explorer, or your cluster details page.
In the sidebar, click Atlas Search under the Services heading.
From the Select data source dropdown, select your cluster and click Go to Atlas Search.
The Atlas Search page displays.
Click the Browse Collections button for your cluster.
Expand the database and select the collection.
Click the Search Indexes tab for the collection.
The Atlas Search page displays.
Click the cluster's name.
Click the Atlas Search tab.
The Atlas Search page displays.
Run an Atlas Search compound
query with two clauses on the movies
collection.
The following example uses the compound
operator with subqueries
to search for movies between the years 2010
to 2015
. The
query uses the following clauses:
A
must
clause to search for movies released between2015-01-01
and2015-12-31
A
should
clause to specify preference for movies released near2012-07-01
, with a pivot distance of 1 month
The query includes a $limit
stage to limit the
output to 6 results and a $project
stage to:
Exclude all fields except
title
,released
, andgenres
fieldsAdd a field named
score
Copy and paste the following query into the Query Editor, and then click the Search button in the Query Editor.
1 [ 2 { 3 $search: { 4 "index": "date-range-tutorial", 5 "compound": { 6 "must": [{ 7 "range": { 8 "path": "released", 9 "gt": ISODate("2015-01-01T00:00:00.000Z"), 10 "lt": ISODate("2015-12-31T00:00:00.000Z") 11 } 12 }], 13 "should": [{ 14 "near": { 15 "path": "released", 16 "origin": ISODate("2015-07-01T00:00:00.000+00:00"), 17 "pivot": 2629800000 18 } 19 }] 20 } 21 } 22 } 23 ]
SCORE: 2 _id: "573a13c4f29313caabd6c383" fullplot: "When John Connor (Jason Clarke), leader of the human resistance, sends…" imdb: Object year: 2015 ... released: 2015-07-01T00:00:00.000+00:00 ... SCORE: 2 _id: "573a13d9f29313caabdaa9e2" fullplot: "Three years after Mike bowed out of the stripper life at the top of hi…" imdb: Object year: 2015 ... released: 2015-07-01T00:00:00.000+00:00 ... SCORE: 2 _id: "573a13e9f29313caabdcd223" plot: "A documentary about the power of transformation told through the eyes …" genres: Array runtime: 87 ... released: 2015-07-01T00:00:00.000+00:00 ... SCORE: 2 _id: "573a13f4f29313caabde1138" plot: "Dedicated home care nurse Vlasta lives for her husband Lada, her daugh…" genres: Array runtime: 92 ... released: 2015-07-01T00:00:00.000+00:00 ... SCORE: 2 _id: "573a13f9f29313caabdeb320" plot: "For anyone who has not fully understood the controversial Bitcoin yet,…" genres: Array runtime: 60 ... released: 2015-07-01T00:00:00.000+00:00 ... SCORE: 1.9681909084320068 _id: "573a13c2f29313caabd67986" plot: "A man wakes up alone in the middle of the desert with a black hood on …" genres: Array runtime: 90 ... released: 2015-07-02T00:00:00.000+00:00 ... SCORE: 1.9681909084320068 _id: "573a13f4f29313caabde14cf" plot: "In 1836 the Danish romantic visionary Wulff travels to Africa to creat…" genres: Array runtime: 114 ... released: 2015-07-02T00:00:00.000+00:00 ... SCORE: 1.9383430480957031 _id: "573a13d6f29313caabd9f77d" plot: "The plot of the film has a grandfather telling his grand kids the stor…" genres: Array runtime: 78 ... released: 2015-07-03T00:00:00.000+00:00 ... SCORE: 1.9383430480957031 _id: "573a13e3f29313caabdbfb00" plot: "The story of Amy Winehouse in her own words, featuring unseen archival…" genres: Array runtime: 128 ... released: 2015-07-02T00:00:00.000+00:00 ... SCORE: 1.9383430480957031 _id: "573a13e9f29313caabdcbe1e" plot: "A modern day train hopper fighting to become a successful musician, an…" genres: Array runtime: 90 ... released: 2015-07-02T00:00:00.000+00:00 ...
Expand your query results.
The Search Tester might not display all the fields in the documents it returns. To view all the fields, including the field that you specify in the query path, expand the document in the results.
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Run an Atlas Search compound
query with three clauses on the movies
collection.
The following example adds on to the previous example.
In addition to the must
and should
clauses, this query also
includes a mustNot
clause to specify that movies in the
documentary
genre must not be included in the results.
1 [ 2 { 3 $search: { 4 "index": "date-range-tutorial", 5 "compound": { 6 "must": [{ 7 "range": { 8 "path": "released", 9 "gt": ISODate("2015-01-01T00:00:00.000Z"), 10 "lt": ISODate("2015-12-31T00:00:00.000Z") 11 } 12 }], 13 "should": [{ 14 "near": { 15 "path": "released", 16 "origin": ISODate("2015-07-01T00:00:00.000+00:00"), 17 "pivot": 2629800000 18 } 19 }], 20 "mustNot": [{ 21 "text": { 22 "query": "documentary", 23 "path": "genres" 24 } 25 }] 26 } 27 } 28 } 29 ]
SCORE: 2 _id: "573a13c4f29313caabd6c383" fullplot: "When John Connor (Jason Clarke), leader of the human resistance, sends…" imdb: Object year: 2015 ... genres: 0: "Action" 1: "Adventure" 2: "Sci-Fi" ... released: 2015-07-01T00:00:00.000+00:00 ... SCORE: 2 _id: "573a13d9f29313caabdaa9e2" fullplot: "Three years after Mike bowed out of the stripper life at the top of hi…" imdb: Object year: 2015 ... genres: 0: "Comedy" 1: "Drama" 2: "Music" ... released: 2015-07-01T00:00:00.000+00:00 ... SCORE: 2 _id: "573a13f4f29313caabde1138" plot: "Dedicated home care nurse Vlasta lives for her husband Lada, her daugh…" genres: 0: "Comedy" 1: "Drama" runtime: 92 ... released: 2015-07-01T00:00:00.000+00:00 ... SCORE: 1.9681909084320068 _id: "573a13c2f29313caabd67986" plot: "A man wakes up alone in the middle of the desert with a black hood on …" genres: 0: "Drama" 1: "Mystery" 2: "Sci-Fi" runtime: 90 ... released: 2015-07-02T00:00:00.000+00:00 ... SCORE: 1.9681909084320068 _id: "573a13f4f29313caabde14cf" plot: "In 1836 the Danish romantic visionary Wulff travels to Africa to creat…" genres: 0: "Drama" 1: "History" 2: "Romance" runtime: 114 ... released: 2015-07-02T00:00:00.000+00:00 ... SCORE: 1.9383430480957031 _id: "573a13d6f29313caabd9f77d" plot: "The plot of the film has a grandfather telling his grand kids the stor…" genres: 0: "Animation" 1: "Family" runtime: 78 ... released: 2015-07-03T00:00:00.000+00:00 ... SCORE: 1.9383430480957031 _id: "573a13e9f29313caabdcbe1e" plot: "A modern day train hopper fighting to become a successful musician, an…" genres: 0: "Drama" runtime: 90 ... released: 2015-07-03T00:00:00.000+00:00 ... SCORE: 1.9383430480957031 _id: "573a13e9f29313caabdccb5b" plot: "A fancy garden party turns into upper class prey when a colony of kill…" genres: 0: "Comedy" 1: "Horror" runtime: 87 ... released: 2015-07-03T00:00:00.000+00:00 ... SCORE: 1.9102803468704224 _id: "573a13faf29313caabdec74f" countries: Array genres: 0: "Drama" runtime: 104 ... released: 2015-07-03T00:00:00.000+00:00 ... SCORE: 1.8838474750518799 _id: "573a13eef29313caabdd531d" plot: "A fantasy love story that drifts between this world and heaven. Chasuk…" genres: 0: "Comdedy" countries: Array ... released: 2015-06-27T00:00:00.000+00:00 ...
Expand your query results.
The Search Tester might not display all the fields in the documents it returns. To view all the fields, including the field that you specify in the query path, expand the document in the results.
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Connect to your cluster in mongosh
.
Open mongosh
in a terminal window and
connect to your cluster. For detailed instructions on connecting,
see Connect via mongosh
.
Use the sample_mflix
database.
Run the following command at mongosh
prompt:
use sample_mflix
Run an Atlas Search compound
query with two clauses on the movies
collection.
The following example uses the compound
operator with subqueries
to search for movies between the years 2010
to 2015
. The
query uses the following clauses:
A
must
clause to search for movies released between2015-01-01
and2015-12-31
A
should
clause to specify preference for movies released near2012-07-01
, with a pivot distance of 1 month
The query includes a $limit
stage to limit the
output to 6 results and a $project
stage to:
Exclude all fields except
title
,released
, andgenres
fieldsAdd a field named
score
db.movies.aggregate([ { "$search": { "index": "date-range-tutorial", "compound": { "must": [{ "range": { "path": "released", "gt": ISODate("2015-01-01T00:00:00.000Z"), "lt": ISODate("2015-12-31T00:00:00.000Z") } }], "should": [{ "near": { "path": "released", "origin": ISODate("2015-07-01T00:00:00.000+00:00"), "pivot": 2629800000 } }] } } }, { "$limit": 6 }, { "$project": { "_id": 0, "title": 1, "released": 1, "genres": 1, "score": { "$meta": "searchScore" } } } ])
[ { "genres": [ "Action", "Adventure", "Sci-Fi" ], "title": "Terminator Genisys", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Comedy", "Drama", "Music" ], "title": "Magic Mike XXL", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Documentary", "Biography", "Drama" ], "title": "Mala Mala", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Comedy", "Drama" ], "title": "Home Care", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Documentary", "News" ], "title": "Bitcoin: The End of Money as We Know It", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Drama", "Mystery", "Sci-Fi" ], "title": "Pig", "released": ISODate("2015-07-02T00:00:00.000Z"), "score": 1.9681909084320068 } ]
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Run an Atlas Search compound
query with three clauses on the movies
collection.
The following example adds on to the previous example.
In addition to the must
and should
clauses, this query also
includes a mustNot
clause to specify that movies in the
documentary
genre must not be included in the results.
db.movies.aggregate([ { "$search": { "compound": { "must": [{ "range": { "path": "released", "gt": ISODate("2015-01-01T00:00:00.000Z"), "lt": ISODate("2015-12-31T00:00:00.000Z") } }], "should": [{ "near": { "path": "released", "origin": ISODate("2015-07-01T00:00:00.000+00:00"), "pivot": 2629800000 } }], "mustNot": [{ "text": { "query": "documentary", "path": "genres" } }] } } }, { "$limit": 10 }, { "$project": { "_id": 0, "title": 1, "released": 1, "genres": 1, "score": { "$meta": "searchScore" } } } ])
[ { "genres": [ "Action", "Adventure", "Sci-Fi" ], "title": "Terminator Genisys", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Comedy", "Drama", "Music" ], "title": "Magic Mike XXL", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Comedy", "Drama" ], "title": "Home Care", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Drama", "Mystery", "Sci-Fi" ], "title": "Pig", "released": ISODate("2015-07-02T00:00:00.000Z"), "score": 1.9681909084320068 }, { "genres": [ "Drama", "History", "Romance" ], "title": "Gold Coast", "released": ISODate("2015-07-02T00:00:00.000Z"), "score": 1.9681909084320068 }, { "genres": [ "Animation", "Family" ], "title": "Zarafa", "released": ISODate("2015-07-03T00:00:00.000Z"), "score": 1.9383430480957031 } ]
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Connect to your cluster in MongoDB Compass.
Open MongoDB Compass and connect to your cluster. For detailed instructions on connecting, see Connect via Compass.
Run an Atlas Search compound
query with two clauses on the movies
collection.
The following example uses the compound
operator with subqueries
to search for movies between the years 2010
to 2015
. The
query uses the following clauses:
A
must
clause to search for movies released between2015-01-01
and2015-12-31
A
should
clause to specify preference for movies released near2012-07-01
, with a pivot distance of 1 month
The query includes a $limit
stage to limit the
output to 6 results and a $project
stage to:
Exclude all fields except
title
,released
, andgenres
fieldsAdd a field named
score
To run this query in MongoDB Compass:
Click the Aggregations tab.
Click Select..., then configure each of the following pipeline stages by selecting the stage from the dropdown and adding the query for that stage. Click Add Stage to add additional stages.
Pipeline Stage | Query | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
| |||||||||||||||||||
|
| |||||||||||||||||||
|
|
If you enabled Auto Preview, MongoDB Compass displays the
following documents next to the $project
pipeline stage:
{ "genres": [ "Action", "Adventure", "Sci-Fi" ], "title": "Terminator Genisys", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Comedy", "Drama", "Music" ], "title": "Magic Mike XXL", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Documentary", "Biography", "Drama" ], "title": "Mala Mala", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Comedy", "Drama" ], "title": "Home Care", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Documentary", "News" ], "title": "Bitcoin: The End of Money as We Know It", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Drama", "Mystery", "Sci-Fi" ], "title": "Pig", "released": ISODate("2015-07-02T00:00:00.000Z"), "score": 1.9681909084320068 }
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Run an Atlas Search compound
query with three clauses on the movies
collection.
The following example adds on to the previous example.
In addition to the must
and should
clauses, this query also
includes a mustNot
clause to specify that movies in the
documentary
genre must not be included in the results.
To run this query in MongoDB Compass:
Click the Aggregations tab.
Click Select..., then configure each of the following pipeline stages by selecting the stage from the dropdown and adding the query for that stage. Click Add Stage to add additional stages.
Pipeline Stage | Query | |||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|
| |||||||||||||||||||||||||
|
| |||||||||||||||||||||||||
|
|
If you enabled Auto Preview, MongoDB Compass displays the
following documents next to the $project
pipeline stage:
{ "genres": [ "Action", "Adventure", "Sci-Fi" ], "title": "Terminator Genisys", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Comedy", "Drama", "Music" ], "title": "Magic Mike XXL", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Comedy", "Drama" ], "title": "Home Care", "released": ISODate("2015-07-01T00:00:00.000Z"), "score": 2 }, { "genres": [ "Drama", "Mystery", "Sci-Fi" ], "title": "Pig", "released": ISODate("2015-07-02T00:00:00.000Z"), "score": 1.9681909084320068 }, { "genres": [ "Drama", "History", "Romance" ], "title": "Gold Coast", "released": ISODate("2015-07-02T00:00:00.000Z"), "score": 1.9681909084320068 }, { "genres": [ "Animation", "Family" ], "title": "Zarafa", "released": ISODate("2015-07-03T00:00:00.000Z"), "score": 1.9383430480957031 }
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Set up and initialize the .NET/C# project for the query.
Create a new directory called
date-range-example
and initialize your project with thedotnet new
command.mkdir date-range-example cd date-range-example dotnet new console Add the .NET/C# Driver to your project as a dependency.
dotnet add package MongoDB.Driver
Create and run an Atlas Search queries with the compound
operator with two clauses in the Program.cs
file.
Replace the contents of the
Program.cs
file with the following code.The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Uses the following
compound
operator clauses to query the collection:A
must
clause to search for movies released between2015-01-01
and2015-12-31
A
should
clause to specify preference for movies released near2012-07-01
, with a pivot distance of 1 month
The query includes a
$limit
stage to limit the output to 6 results and a$project
stage to:Exclude all fields except
title
,released
, andgenres
fieldsAdd a field named
score
Iterates over the cursor to print the documents that match the query.
1 using MongoDB.Bson; 2 using MongoDB.Bson.Serialization.Attributes; 3 using MongoDB.Bson.Serialization.Conventions; 4 using MongoDB.Driver; 5 using MongoDB.Driver.Search; 6 7 public class DateRangeExample 8 { 9 private const string MongoConnectionString = "<connection-string>"; 10 11 public static void Main(string[] args) 12 { 13 // allow automapping of the camelCase database fields to our MovieDocument 14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() }; 15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true); 16 17 // connect to your Atlas cluster 18 var mongoClient = new MongoClient(MongoConnectionString); 19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix"); 20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies"); 21 22 // declare data for compound query 23 var startDate = new DateTime(2015, 01, 01, 0, 0, 0, DateTimeKind.Utc); 24 var endDate = new DateTime(2015, 12, 31, 0, 0, 0, DateTimeKind.Utc); 25 var nearDate = new DateTime(2015, 07, 01, 0, 0, 0, DateTimeKind.Utc); 26 27 // define and run pipeline 28 var results = moviesCollection.Aggregate() 29 .Search(Builders<MovieDocument>.Search.Compound() 30 .Must(Builders<MovieDocument>.Search.Range(movie => movie.Released, SearchRangeBuilder.Gt(startDate).Lt(endDate))) 31 .Should(Builders<MovieDocument>.Search.Near(movie => movie.Released, nearDate, 2629800000)), 32 indexName: "date-range-tutorial") 33 .Project<MovieDocument>(Builders<MovieDocument>.Projection 34 .Include(movie => movie.Genres) 35 .Include(movie => movie.Released) 36 .Include(movie => movie.Title) 37 .Exclude(movie => movie.Id) 38 .MetaSearchScore(movie => movie.Score)) 39 .Limit(6) 40 .ToList(); 41 42 // print results 43 foreach (var movie in results) 44 { 45 Console.WriteLine(movie.ToJson()); 46 } 47 } 48 } 49 50 [ ]51 public class MovieDocument 52 { 53 [ ]54 public ObjectId Id { get; set; } 55 public string [] Genres { get; set; } 56 public DateTime Released { get; set; } 57 public string Title { get; set; } 58 public double Score { get; set; } 59 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Compile and run the
Program.cs
file.dotnet run date-range-example.csproj { "genres" : ["Action", "Adventure", "Sci-Fi"], "released" : ISODate("2015-07-01T00:00:00Z"), "title" : "Terminator Genisys", "score" : 2.0 } { "genres" : ["Comedy", "Drama", "Music"], "released" : ISODate("2015-07-01T00:00:00Z"), "title" : "Magic Mike XXL", "score" : 2.0 } { "genres" : ["Documentary", "Biography", "Drama"], "released" : ISODate("2015-07-01T00:00:00Z"), "title" : "Mala Mala", "score" : 2.0 } { "genres" : ["Comedy", "Drama"], "released" : ISODate("2015-07-01T00:00:00Z"), "title" : "Home Care", "score" : 2.0 } { "genres" : ["Documentary", "News"], "released" : ISODate("2015-07-01T00:00:00Z"), "title" : "Bitcoin: The End of Money as We Know It", "score" : 2.0 } { "genres" : ["Drama", "Mystery", "Sci-Fi"], "released" : ISODate("2015-07-02T00:00:00Z"), "title" : "Pig", "score" : 1.9681909084320068 }
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Create and run an Atlas Search queries with the compound
operator with three clauses in the Program.cs
file.
Replace the contents of the
Program.cs
file with the following code.The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Adds on to the previous example.
In addition to the
must
andshould
clauses, this query also includes amustNot
clause to specify that movies in thedocumentary
genre must not be included in the results.Iterates over the cursor to print the documents that match the query.
1 using MongoDB.Bson; 2 using MongoDB.Bson.Serialization.Attributes; 3 using MongoDB.Bson.Serialization.Conventions; 4 using MongoDB.Driver; 5 using MongoDB.Driver.Search; 6 7 public class DateRangeComplexExample 8 { 9 private const string MongoConnectionString = "<connection-string>"; 10 11 public static void Main(string[] args) 12 { 13 // allow automapping of the camelCase database fields to our MovieDocument 14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() }; 15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true); 16 17 // connect to your Atlas cluster 18 var mongoClient = new MongoClient(MongoConnectionString); 19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix"); 20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies"); 21 22 // declare data for compound query 23 var startDate = new DateTime(2015, 01, 01, 0, 0, 0, DateTimeKind.Utc); 24 var endDate = new DateTime(2015, 12, 31, 0, 0, 0, DateTimeKind.Utc); 25 var nearDate = new DateTime(2015, 07, 01, 0, 0, 0, DateTimeKind.Utc); 26 27 // define and run pipeline 28 var results = moviesCollection.Aggregate() 29 .Search(Builders<MovieDocument>.Search.Compound() 30 .Must(Builders<MovieDocument>.Search.Range(movie => movie.Released, SearchRangeBuilder.Gt(startDate).Lt(endDate))) 31 .Should(Builders<MovieDocument>.Search.Near(movie => movie.Released, nearDate, 2629800000)) 32 .MustNot(Builders<MovieDocument>.Search.Text(movie => movie.Genres, "Documentary")), 33 indexName: "date-range-tutorial") 34 .Project<MovieDocument>(Builders<MovieDocument>.Projection 35 .Include(movie => movie.Genres) 36 .Include(movie => movie.Released) 37 .Include(movie => movie.Title) 38 .Exclude(movie => movie.Id) 39 .MetaSearchScore(movie => movie.Score)) 40 .Limit(6) 41 .ToList(); 42 43 // print results 44 foreach (var movie in results) 45 { 46 Console.WriteLine(movie.ToJson()); 47 } 48 } 49 } 50 51 [ ]52 public class MovieDocument 53 { 54 [ ]55 public ObjectId Id { get; set; } 56 public string [] Genres { get; set; } 57 public DateTime Released { get; set; } 58 public string Title { get; set; } 59 public double Score { get; set; } 60 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Compile and run the
Program.cs
file.dotnet run date-range-example.csproj { "genres" : ["Action", "Adventure", "Sci-Fi"], "released" : ISODate("2015-07-01T00:00:00Z"), "title" : "Terminator Genisys", "score" : 2.0 } { "genres" : ["Comedy", "Drama", "Music"], "released" : ISODate("2015-07-01T00:00:00Z"), "title" : "Magic Mike XXL", "score" : 2.0 } { "genres" : ["Comedy", "Drama"], "released" : ISODate("2015-07-01T00:00:00Z"), "title" : "Home Care", "score" : 2.0 } { "genres" : ["Drama", "Mystery", "Sci-Fi"], "released" : ISODate("2015-07-02T00:00:00Z"), "title" : "Pig", "score" : 1.9681909084320068 } { "genres" : ["Drama", "History", "Romance"], "released" : ISODate("2015-07-02T00:00:00Z"), "title" : "Gold Coast", "score" : 1.9681909084320068 } { "genres" : ["Animation", "Family"], "released" : ISODate("2015-07-03T00:00:00Z"), "title" : "Zarafa", "score" : 1.9383430480957031 }
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Run an Atlas Search compound
query with two clauses on the movies
collection.
Create a file named
date-range.go
.Copy and paste the following code into the
date-range.go
file.The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Uses the following
compound
operator clauses to query the collection:A
must
clause to search for movies released between2015-01-01
and2015-12-31
A
should
clause to specify preference for movies released near2012-07-01
, with a pivot distance of 1 month
The query includes a
$limit
stage to limit the output to 6 results and a$project
stage to:Exclude all fields except
title
,released
, andgenres
fieldsAdd a field named
score
Iterates over the cursor to print the documents that match the query.
1 package main 2 3 import ( 4 "context" 5 "fmt" 6 "time" 7 8 "go.mongodb.org/mongo-driver/bson" 9 "go.mongodb.org/mongo-driver/mongo" 10 "go.mongodb.org/mongo-driver/mongo/options" 11 ) 12 13 func main() { 14 // connect to your Atlas cluster 15 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>")) 16 if err != nil { 17 panic(err) 18 } 19 defer client.Disconnect(context.TODO()) 20 21 // set namespace 22 collection := client.Database("sample_mflix").Collection("movies") 23 24 // define pipeline stages 25 searchStage := bson.D{{"$search", bson.M{ 26 "index": "date-range-tutorial", 27 "compound": bson.M{ 28 "must": bson.M{ 29 "range": bson.M{ 30 "path": "released", 31 "gt": time.Date(2015, time.January, 1, 0, 0, 0, 0, time.UTC), 32 "lt": time.Date(2015, time.December, 31, 0, 0, 0, 0, time.UTC), 33 }}, 34 "should": bson.D{ 35 {"near", bson.M{ 36 "path": "released", 37 "origin": time.Date(2015, time.July, 1, 0, 0, 0, 0, time.UTC), 38 "pivot": 2629800000, 39 }}}, 40 }}}} 41 projectStage := bson.D{{"$project", bson.D{{"_id", 0}, {"title", 1}, {"released", 1}, {"genres", 1}, {"score", bson.D{{"$meta", "searchScore"}}}}}} 42 limitStage := bson.D{{"$limit", 6}} 43 44 // run pipeline 45 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, projectStage, limitStage}) 46 if err != nil { 47 panic(err) 48 } 49 50 // print results 51 var results []bson.D 52 if err = cursor.All(context.TODO(), &results); err != nil { 53 panic(err) 54 } 55 for _, result := range results { 56 fmt.Println(result) 57 } 58 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the following command to query your collection:
go run date-range.go [{genres [Action Adventure Sci-Fi]} {title Terminator Genisys} {released 1435708800000} {score 2}] [{genres [Comedy Drama Music]} {title Magic Mike XXL} {released 1435708800000} {score 2}] [{genres [Documentary Biography Drama]} {title Mala Mala} {released 1435708800000} {score 2}] [{genres [Comedy Drama]} {title Home Care} {released 1435708800000} {score 2}] [{genres [Documentary News]} {title Bitcoin: The End of Money as We Know It} {released 1435708800000} {score 2}] [{genres [Drama Mystery Sci-Fi]} {title Pig} {released 1435795200000} {score 1.9681909084320068}] For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Run an Atlas Search compound
query with three clauses on the movies
collection.
Create a file named
date-range-complex.go
.Copy and paste the following code into the
date-range-complex.go
file.The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Adds on to the previous example.
In addition to the
must
andshould
clauses, this query also includes amustNot
clause to specify that movies in thedocumentary
genre must not be included in the results.Iterates over the cursor to print the documents that match the query.
1 package main 2 3 import ( 4 "context" 5 "fmt" 6 "time" 7 8 "go.mongodb.org/mongo-driver/bson" 9 "go.mongodb.org/mongo-driver/mongo" 10 "go.mongodb.org/mongo-driver/mongo/options" 11 ) 12 13 func main() { 14 // connect to your Atlas cluster 15 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>")) 16 if err != nil { 17 panic(err) 18 } 19 defer client.Disconnect(context.TODO()) 20 21 // set namespace 22 collection := client.Database("sample_mflix").Collection("movies") 23 24 // define pipeline stages 25 searchStage := bson.D{{"$search", bson.M{ 26 "index": "date-range-tutorial", 27 "compound": bson.M{ 28 "must": bson.M{ 29 "range": bson.M{ 30 "path": "released", 31 "gt": time.Date(2015, time.January, 1, 0, 0, 0, 0, time.UTC), 32 "lt": time.Date(2015, time.December, 31, 0, 0, 0, 0, time.UTC), 33 }}, 34 "should": bson.D{ 35 {"near", bson.M{ 36 "path": "released", 37 "origin": time.Date(2015, time.July, 1, 0, 0, 0, 0, time.UTC), 38 "pivot": 2629800000, 39 }}}, 40 "mustNot": bson.D{ 41 {"text", bson.M{ 42 "path": "genres", "query": "Documentary", 43 }}}, 44 }}}} 45 projectStage := bson.D{{"$project", bson.D{{"_id", 0}, {"title", 1}, {"released", 1}, {"genres", 1}, {"score", bson.D{{"$meta", "searchScore"}}}}}} 46 limitStage := bson.D{{"$limit", 6}} 47 48 // run pipeline 49 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, projectStage, limitStage}) 50 if err != nil { 51 panic(err) 52 } 53 54 // print results 55 var results []bson.D 56 if err = cursor.All(context.TODO(), &results); err != nil { 57 panic(err) 58 } 59 for _, result := range results { 60 fmt.Println(result) 61 } 62 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the following command to query your collection:
go run date-range-complex.go [{genres [Action Adventure Sci-Fi]} {title Terminator Genisys} {released 1435708800000} {score 2}] [{genres [Comedy Drama Music]} {title Magic Mike XXL} {released 1435708800000} {score 2}] [{genres [Comedy Drama]} {title Home Care} {released 1435708800000} {score 2}] [{genres [Drama Mystery Sci-Fi]} {title Pig} {released 1435795200000} {score 1.9681909084320068}] [{genres [Drama History Romance]} {title Gold Coast} {released 1435795200000} {score 1.9681909084320068}] [{genres [Animation Family]} {title Zarafa} {released 1435881600000} {score 1.9383430480957031}] For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Run an Atlas Search compound
query with two clauses on the movies
collection.
Create a file named
DateRange.java
.Copy and paste the following code into the
DateRange.java
file.The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Uses the following
compound
operator clauses to query the collection:A
must
clause to search for movies released between2015-01-01
and2015-12-31
A
should
clause to specify preference for movies released near2012-07-01
, with a pivot distance of 1 month
The query includes a
$limit
stage to limit the output to 6 results and a$project
stage to:Exclude all fields except
title
,released
, andgenres
fieldsAdd a field named
score
Iterates over the cursor to print the documents that match the query.
1 import java.util.Arrays; 2 import java.util.List; 3 4 import static com.mongodb.client.model.Aggregates.limit; 5 import static com.mongodb.client.model.Aggregates.project; 6 import static com.mongodb.client.model.Projections.*; 7 import com.mongodb.client.MongoClient; 8 import com.mongodb.client.MongoClients; 9 import com.mongodb.client.MongoCollection; 10 import com.mongodb.client.MongoDatabase; 11 import org.bson.Document; 12 13 import java.time.Instant; 14 import java.util.Date; 15 16 public class DateRange { 17 public static void main( String[] args ) { 18 // define clauses 19 List<Document> mustClauses = 20 List.of( new Document( 21 "range", new Document("path", "released") 22 .append("gt", Date.from(Instant.parse("2015-01-01T00:00:00.000Z"))) 23 .append("lt", Date.from(Instant.parse("2015-12-31T00:00:00.000Z"))))); 24 List<Document> shouldClauses = 25 List.of( 26 new Document( 27 "near", 28 new Document("pivot", 2629800000L) 29 .append("path", "released") 30 .append("origin", Date.from(Instant.parse("2015-07-01T00:00:00.000+00:00"))))); 31 // define query 32 Document agg = 33 new Document( "$search", 34 new Document("index", "date-range-tutorial") 35 .append( "compound", 36 new Document().append("must", mustClauses) 37 .append("should", shouldClauses))); 38 // specify connection 39 String uri = "<connection-string>"; 40 41 // establish connection and set namespace 42 try (MongoClient mongoClient = MongoClients.create(uri)) { 43 MongoDatabase database = mongoClient.getDatabase("sample_mflix"); 44 MongoCollection<Document> collection = database.getCollection("movies"); 45 46 // run query and print results 47 collection.aggregate(Arrays.asList(agg, 48 project(fields( 49 excludeId(), 50 include("title", "released", "genres"), 51 computed("score", new Document("$meta", "searchScore")))), 52 limit(6))) 53 .forEach(doc -> System.out.println(doc.toJson())); 54 } 55 } 56 } Note
To run the sample code in your Maven environment, add the following code above the import statements in your file.
package com.mongodb.drivers; Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Compile and run the
DateRange.java
file.javac DateRange.java java DateRange {"genres": ["Action", "Adventure", "Sci-Fi"], "title": "Terminator Genisys", "released": {"$date": "2015-07-01T00:00:00Z"}, "score": 2.0} {"genres": ["Comedy", "Drama", "Music"], "title": "Magic Mike XXL", "released": {"$date": "2015-07-01T00:00:00Z"}, "score": 2.0} {"genres": ["Documentary", "Biography", "Drama"], "title": "Mala Mala", "released": {"$date": "2015-07-01T00:00:00Z"}, "score": 2.0} {"genres": ["Comedy", "Drama"], "title": "Home Care", "released": {"$date": "2015-07-01T00:00:00Z"}, "score": 2.0} {"genres": ["Documentary", "News"], "title": "Bitcoin: The End of Money as We Know It", "released": {"$date": "2015-07-01T00:00:00Z"}, "score": 2.0} {"genres": ["Drama", "Mystery", "Sci-Fi"], "title": "Pig", "released": {"$date": "2015-07-02T00:00:00Z"}, "score": 1.9681909084320068}
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Run an Atlas Search compound
query with three clauses on the movies
collection.
Create a file named
DateRangeComplex.java
.Copy and paste the following code into the
DateRangeComplex.java
file.The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Adds on to the previous example.
In addition to the
must
andshould
clauses, this query also includes amustNot
clause to specify that movies in thedocumentary
genre must not be included in the results.Iterates over the cursor to print the documents that match the query.
1 import java.util.Arrays; 2 import java.util.List; 3 4 import static com.mongodb.client.model.Aggregates.limit; 5 import static com.mongodb.client.model.Aggregates.project; 6 import static com.mongodb.client.model.Projections.*; 7 import com.mongodb.client.MongoClient; 8 import com.mongodb.client.MongoClients; 9 import com.mongodb.client.MongoCollection; 10 import com.mongodb.client.MongoDatabase; 11 import org.bson.Document; 12 13 import java.time.Instant; 14 import java.util.Date; 15 16 public class DateRangeComplex { 17 public static void main( String[] args ) { 18 // define clauses 19 List<Document> mustClauses = 20 List.of( new Document( 21 "range", new Document("path", "released") 22 .append("gt", Date.from(Instant.parse("2015-01-01T00:00:00.000Z"))) 23 .append("lt", Date.from(Instant.parse("2015-12-31T00:00:00.000Z"))))); 24 List<Document> shouldClauses = 25 List.of( 26 new Document( 27 "near", 28 new Document("pivot", 2629800000L) 29 .append("path", "released") 30 .append("origin", Date.from(Instant.parse("2015-07-01T00:00:00.000+00:00"))))); 31 List<Document> mustNotClauses = 32 List.of( 33 new Document( 34 "text", 35 new Document("query", "Documentary") 36 .append("path", "genres"))); 37 // define query 38 Document agg = 39 new Document( "$search", 40 new Document("index", "date-range-tutorial") 41 .append( "compound", 42 new Document().append("must", mustClauses) 43 .append("should", shouldClauses) 44 .append("mustNot", mustNotClauses))); 45 // specify connection 46 String uri = "<connection-string>"; 47 48 // establish connection and set namespace 49 try (MongoClient mongoClient = MongoClients.create(uri)) { 50 MongoDatabase database = mongoClient.getDatabase("sample_mflix"); 51 MongoCollection<Document> collection = database.getCollection("movies"); 52 53 // run query and print results 54 collection.aggregate(Arrays.asList(agg, 55 project(fields( 56 excludeId(), 57 include("title", "released", "genres"), 58 computed("score", new Document("$meta", "searchScore")))), 59 limit(6))) 60 .forEach(doc -> System.out.println(doc.toJson())); 61 } 62 } 63 } Note
To run the sample code in your Maven environment, add the following code above the import statements in your file.
package com.mongodb.drivers; Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Compile and run the
DateRangeComplex.java
file.javac DateRangeComplex.java java DateRangeComplex {"genres": ["Action", "Adventure", "Sci-Fi"], "title": "Terminator Genisys", "released": {"$date": "2015-07-01T00:00:00Z"}, "score": 2.0} {"genres": ["Comedy", "Drama", "Music"], "title": "Magic Mike XXL", "released": {"$date": "2015-07-01T00:00:00Z"}, "score": 2.0} {"genres": ["Comedy", "Drama"], "title": "Home Care", "released": {"$date": "2015-07-01T00:00:00Z"}, "score": 2.0} {"genres": ["Drama", "Mystery", "Sci-Fi"], "title": "Pig", "released": {"$date": "2015-07-02T00:00:00Z"}, "score": 1.9681909084320068} {"genres": ["Drama", "History", "Romance"], "title": "Gold Coast", "released": {"$date": "2015-07-02T00:00:00Z"}, "score": 1.9681909084320068} {"genres": ["Animation", "Family"], "title": "Zarafa", "released": {"$date": "2015-07-03T00:00:00Z"}, "score": 1.9383430480957031}
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Run an Atlas Search compound
query with two clauses on the movies
collection.
Create a file named
DateRange.kt
.Copy and paste the following code into the
DateRange.kt
file.The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Uses the following
compound
operator clauses to query the collection:A
must
clause to search for movies released between2015-01-01
and2015-12-31
A
should
clause to specify preference for movies released near2012-07-01
, with a pivot distance of 1 month
The query includes a
$limit
stage to limit the output to 6 results and a$project
stage to:Exclude all fields except
title
,released
, andgenres
fieldsAdd a field named
score
Prints the documents that match the query from the
AggregateFlow
instance.
1 import com.mongodb.client.model.Aggregates.limit 2 import com.mongodb.client.model.Aggregates.project 3 import com.mongodb.client.model.Projections.* 4 import com.mongodb.kotlin.client.coroutine.MongoClient 5 import kotlinx.coroutines.runBlocking 6 import org.bson.Document 7 import java.time.Instant 8 import java.util.* 9 10 fun main() { 11 // establish connection and set namespace 12 val uri = "<connection-string>" 13 val mongoClient = MongoClient.create(uri) 14 val database = mongoClient.getDatabase("sample_mflix") 15 val collection = database.getCollection<Document>("movies") 16 17 runBlocking { 18 // define clauses 19 val mustClauses = listOf( 20 Document( 21 "range", Document("path", "released") 22 .append("gt", Date.from(Instant.parse("2015-01-01T00:00:00.000Z"))) 23 .append("lt", Date.from(Instant.parse("2015-12-31T00:00:00.000Z"))) 24 ) 25 ) 26 27 val shouldClauses = listOf( 28 Document( 29 "near", 30 Document("pivot", 2629800000L) 31 .append("path", "released") 32 .append("origin", Date.from(Instant.parse("2015-07-01T00:00:00.000+00:00"))) 33 ) 34 ) 35 36 // define query 37 val agg = Document( 38 "\$search", 39 Document("index", "date-range-tutorial") 40 .append( 41 "compound", 42 Document().append("must", mustClauses) 43 .append("should", shouldClauses) 44 ) 45 ) 46 47 // run query and print results 48 val resultsFlow = collection.aggregate<Document>( 49 listOf( 50 agg, 51 limit(6), 52 project(fields( 53 excludeId(), 54 include("title", "released", "genres"), 55 computed("score", Document("\$meta", "searchScore")) 56 )) 57 ) 58 ) 59 resultsFlow.collect { println(it) } 60 } 61 mongoClient.close() 62 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the
DateRange.kt
file.When you run the
DateRange.kt
program in your IDE, it prints the following documents:Document{{genres=[Action, Adventure, Sci-Fi], title=Terminator Genisys, released=Tue Jun 30 20:00:00 EDT 2015, score=2.0}} Document{{genres=[Comedy, Drama, Music], title=Magic Mike XXL, released=Tue Jun 30 20:00:00 EDT 2015, score=2.0}} Document{{genres=[Documentary, News], title=Bitcoin: The End of Money as We Know It, released=Tue Jun 30 20:00:00 EDT 2015, score=2.0}} Document{{genres=[Documentary, Biography, Drama], title=Mala Mala, released=Tue Jun 30 20:00:00 EDT 2015, score=2.0}} Document{{genres=[Comedy, Drama], title=Home Care, released=Tue Jun 30 20:00:00 EDT 2015, score=2.0}} Document{{genres=[Drama, Mystery, Sci-Fi], title=Pig, released=Wed Jul 01 20:00:00 EDT 2015, score=1.9681909084320068}}
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Run an Atlas Search compound
query with three clauses on the movies
collection.
Create a file named
DateRangeComplex.kt
.Copy and paste the following code into the
DateRangeComplex.kt
file.The code example performs the following tasks:
Imports
mongodb
packages and dependencies.Establishes a connection to your Atlas cluster.
Adds on to the previous example.
In addition to the
must
andshould
clauses, this query also includes amustNot
clause to specify that movies in thedocumentary
genre must not be included in the results.Prints the documents that match the query from the
AggregateFlow
instance.
1 import com.mongodb.client.model.Aggregates.limit 2 import com.mongodb.client.model.Aggregates.project 3 import com.mongodb.client.model.Projections.* 4 import com.mongodb.kotlin.client.coroutine.MongoClient 5 import kotlinx.coroutines.runBlocking 6 import org.bson.Document 7 import java.time.Instant 8 import java.util.* 9 10 fun main() { 11 // establish connection and set namespace 12 val uri = "<connection-string>" 13 val mongoClient = MongoClient.create(uri) 14 val database = mongoClient.getDatabase("sample_mflix") 15 val collection = database.getCollection<Document>("movies") 16 17 runBlocking { 18 // define clauses 19 val mustClauses = listOf( 20 Document( 21 "range", Document("path", "released") 22 .append("gt", Date.from(Instant.parse("2015-01-01T00:00:00.000Z"))) 23 .append("lt", Date.from(Instant.parse("2015-12-31T00:00:00.000Z"))) 24 ) 25 ) 26 27 val shouldClauses = listOf( 28 Document( 29 "near", 30 Document("pivot", 2629800000L) 31 .append("path", "released") 32 .append("origin", Date.from(Instant.parse("2015-07-01T00:00:00.000+00:00"))) 33 ) 34 ) 35 36 val mustNotClauses = listOf( 37 Document( 38 "text", 39 Document("query", "Documentary") 40 .append("path", "genres") 41 ) 42 ) 43 44 // define query 45 val agg = Document( 46 "\$search", 47 Document("index", "date-range-tutorial") 48 .append( 49 "compound", 50 Document().append("must", mustClauses) 51 .append("should", shouldClauses) 52 .append("mustNot", mustNotClauses) 53 ) 54 ) 55 56 // run query and print results 57 val resultsFlow = collection.aggregate<Document>( 58 listOf( 59 agg, 60 limit(6), 61 project(fields( 62 excludeId(), 63 include("title", "released", "genres"), 64 computed("score", Document("\$meta", "searchScore")) 65 )) 66 ) 67 ) 68 resultsFlow.collect { println(it) } 69 } 70 mongoClient.close() 71 } Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the
DateRangeComplex.kt
file.When you run the
DateRangeComplex.kt
program in your IDE, it prints the following documents:Document{{genres=[Action, Adventure, Sci-Fi], title=Terminator Genisys, released=Tue Jun 30 20:00:00 EDT 2015, score=2.0}} Document{{genres=[Comedy, Drama, Music], title=Magic Mike XXL, released=Tue Jun 30 20:00:00 EDT 2015, score=2.0}} Document{{genres=[Comedy, Drama], title=Home Care, released=Tue Jun 30 20:00:00 EDT 2015, score=2.0}} Document{{genres=[Drama, Mystery, Sci-Fi], title=Pig, released=Wed Jul 01 20:00:00 EDT 2015, score=1.9681909084320068}} Document{{genres=[Drama, History, Romance], title=Gold Coast, released=Wed Jul 01 20:00:00 EDT 2015, score=1.9681909084320068}} Document{{genres=[Drama], title=Jackie & Ryan, released=Thu Jul 02 20:00:00 EDT 2015, score=1.9383430480957031}}
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Run an Atlas Search compound
query with two clauses on the movies
collection.
Create a file named
date-range.js
.Copy and paste the following code into the
date-range.js
file.The code example performs the following tasks:
Imports
mongodb
, MongoDB's Node.js driver.Creates an instance of the
MongoClient
class to establish a connection to your Atlas cluster.Uses the following
compound
operator clauses to query the collection:A
must
clause to search for movies released between2015-01-01
and2015-12-31
A
should
clause to specify preference for movies released near2012-07-01
, with a pivot distance of 1 month
The query includes a
$limit
stage to limit the output to 6 results and a$project
stage to:Exclude all fields except
title
,released
, andgenres
fieldsAdd a field named
score
Iterates over the cursor to print the documents that match the query.
1 const { MongoClient } = require("mongodb"); 2 3 // connect to your Atlas cluster 4 const uri = 5 "<connection-string>"; 6 7 const client = new MongoClient(uri); 8 9 async function run() { 10 try { 11 await client.connect(); 12 13 // set namespace 14 const database = client.db("sample_mflix"); 15 const coll = database.collection("movies"); 16 17 // define pipeline 18 const agg = [ 19 { $search: { 20 index: 'date-range-tutorial', 21 compound: { 22 must: [{ range: { path: "released", gt: new Date("2015-01-01T00:00:00.000Z"), lt: new Date("2015-12-31T00:00:00.000Z") }}], 23 should: [{ near: { path: "released", origin: new Date("2015-07-01T00:00:00.000Z"), pivot: 2629800000 }}]}}}, 24 { $project: {_id: 0, title: 1, released: 1, genres: 1, score: { $meta: "searchScore" }}}, 25 { $limit: 6 } 26 ]; 27 28 // run pipeline 29 const result = await coll.aggregate(agg); 30 31 // print results 32 await result.forEach((doc) => console.log(doc)); 33 } finally { 34 await client.close(); 35 } 36 } 37 run().catch(console.dir); Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the following command to query your collection:
node date-range.js { genres: [ 'Action', 'Adventure', 'Sci-Fi' ], title: 'Terminator Genisys', released: 2015-07-01T00:00:00.000Z, score: 2 } { genres: [ 'Comedy', 'Drama', 'Music' ], title: 'Magic Mike XXL', released: 2015-07-01T00:00:00.000Z, score: 2 } { genres: [ 'Documentary', 'Biography', 'Drama' ], title: 'Mala Mala', released: 2015-07-01T00:00:00.000Z, score: 2 } { genres: [ 'Comedy', 'Drama' ], title: 'Home Care', released: 2015-07-01T00:00:00.000Z, score: 2 } { genres: [ 'Documentary', 'News' ], title: 'Bitcoin: The End of Money as We Know It', released: 2015-07-01T00:00:00.000Z, score: 2 } { genres: [ 'Drama', 'Mystery', 'Sci-Fi' ], title: 'Pig', released: 2015-07-02T00:00:00.000Z, score: 1.9681909084320068 }
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Run an Atlas Search compound
query with three clauses on the movies
collection.
Create a file named
date-range-complex.js
.Copy and paste the following code into the
date-range-complex.js
file.The code example performs the following tasks:
Imports
mongodb
, MongoDB's Node.js driver.Creates an instance of the
MongoClient
class to establish a connection to your Atlas cluster.Adds on to the previous example.
In addition to the
must
andshould
clauses, this query also includes amustNot
clause to specify that movies in thedocumentary
genre must not be included in the results.Iterates over the cursor to print the documents that match the query.
1 const { MongoClient } = require("mongodb"); 2 3 // connect to your Atlas cluster 4 const uri = 5 "<connection-string>"; 6 7 const client = new MongoClient(uri); 8 9 async function run() { 10 try { 11 await client.connect(); 12 13 // set namespace 14 const database = client.db("sample_mflix"); 15 const coll = database.collection("movies"); 16 17 // define pipeline 18 const agg = [ 19 { $search: { 20 index: 'date-range-tutorial', 21 compound: { 22 must: [{ range: { path: "released", gt: new Date("2015-01-01T00:00:00.000Z"), lt: new Date("2015-12-31T00:00:00.000Z") }}], 23 should: [{ near: { path: "released", origin: new Date("2015-07-01T00:00:00.000Z"), pivot: 2629800000 }}], 24 mustNot: [{ text: { path: "genres", query: "Documentary"} }]}}}, 25 { $project: {_id: 0, title: 1, released: 1, genres: 1, score: { $meta: "searchScore" }}}, 26 { $limit: 6 } 27 ]; 28 29 // run pipeline 30 const result = await coll.aggregate(agg); 31 32 // print results 33 await result.forEach((doc) => console.log(doc)); 34 } finally { 35 await client.close(); 36 } 37 } 38 run().catch(console.dir); Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the following command to query your collection:
node date-range-complex.js { genres: [ 'Action', 'Adventure', 'Sci-Fi' ], title: 'Terminator Genisys', released: 2015-07-01T00:00:00.000Z, score: 2 } { genres: [ 'Comedy', 'Drama', 'Music' ], title: 'Magic Mike XXL', released: 2015-07-01T00:00:00.000Z, score: 2 } { genres: [ 'Comedy', 'Drama' ], title: 'Home Care', released: 2015-07-01T00:00:00.000Z, score: 2 } { genres: [ 'Drama', 'Mystery', 'Sci-Fi' ], title: 'Pig', released: 2015-07-02T00:00:00.000Z, score: 1.9681909084320068 } { genres: [ 'Drama', 'History', 'Romance' ], title: 'Gold Coast', released: 2015-07-02T00:00:00.000Z, score: 1.9681909084320068 } { genres: [ 'Animation', 'Family' ], title: 'Zarafa', released: 2015-07-03T00:00:00.000Z, score: 1.9383430480957031 }
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Run an Atlas Search compound
query with two clauses on the movies
collection.
Create a file named
date-range.py
.Copy and paste the following code into the
date-range.py
file.The following code example:
Imports
pymongo
, MongoDB's Python driver, and thedns
module, which is required to connectpymongo
toAtlas
using a DNS seed list connection string.Creates an instance of the
MongoClient
class to establish a connection to your Atlas cluster.Uses the following
compound
operator clauses to query the collection:A
must
clause to search for movies released between2015-01-01
and2015-12-31
A
should
clause to specify preference for movies released near2012-07-01
, with a pivot distance of 1 month
The query includes a
$limit
stage to limit the output to 6 results and a$project
stage to:Exclude all fields except
title
,released
, andgenres
fieldsAdd a field named
score
Iterates over the cursor to print the documents that match the query.
1 import pymongo 2 import datetime 3 4 # connect to your Atlas cluster 5 client = pymongo.MongoClient("<connection-string>") 6 7 # define pipeline 8 pipeline = [ 9 {"$search": { 10 "index": "date-range-tutorial", 11 "compound": { 12 "must": [{"range": {"path": "released", "gt": datetime.datetime(2015,1,1,0,0,0), "lt": datetime.datetime(2015,12,31,0,0,0)}}], 13 "should": [{"near": {"path": "released", "origin": datetime.datetime(2015, 7, 1, 0, 0, 0, 0), "pivot": 2629800000}}]}}}, 14 {"$limit": 6}, 15 {"$project": {"_id": 0, "title": 1, "released": 1, "genres": 1, "score": {"$meta": "searchScore"}}} 16 ] 17 # run pipeline 18 result = client["sample_mflix"]["movies"].aggregate(pipeline) 19 20 # print results 21 for i in result: 22 print(i) Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the following command to query your collection:
python date-range.py {'genres': ['Action', 'Adventure', 'Sci-Fi'], 'title': 'Terminator Genisys', 'released': datetime.datetime(2015, 7, 1, 0, 0), 'score': 2.0} {'genres': ['Comedy', 'Drama', 'Music'], 'title': 'Magic Mike XXL', 'released': datetime.datetime(2015, 7, 1, 0, 0), 'score': 2.0} {'genres': ['Documentary', 'Biography', 'Drama'], 'title': 'Mala Mala', 'released': datetime.datetime(2015, 7, 1, 0, 0), 'score': 2.0} {'genres': ['Comedy', 'Drama'], 'title': 'Home Care', 'released': datetime.datetime(2015, 7, 1, 0, 0), 'score': 2.0} {'genres': ['Documentary', 'News'], 'title': 'Bitcoin: The End of Money as We Know It', 'released': datetime.datetime(2015, 7, 1, 0, 0), 'score': 2.0} {'genres': ['Drama', 'Mystery', 'Sci-Fi'], 'title': 'Pig', 'released': datetime.datetime(2015, 7, 2, 0, 0), 'score': 1.9681909084320068}
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.
Run an Atlas Search compound
query with three clauses on the movies
collection.
Create a file named
date-range-complex.py
.Copy and paste the following code into the
date-range-complex.py
file.The following code example:
Imports
pymongo
, MongoDB's Python driver, and thedns
module, which is required to connectpymongo
toAtlas
using a DNS seed list connection string.Creates an instance of the
MongoClient
class to establish a connection to your Atlas cluster.Adds on to the previous example.
In addition to the
must
andshould
clauses, this query also includes amustNot
clause to specify that movies in thedocumentary
genre must not be included in the results.Iterates over the cursor to print the documents that match the query.
1 import pymongo 2 import datetime 3 4 # connect to your Atlas cluster 5 client = pymongo.MongoClient("<connection-string>") 6 7 # define pipeline 8 pipeline = [ 9 {"$search": { 10 "index": "date-range-tutorial", 11 "compound": { 12 "must": [{"range": {"path": "released", "gt": datetime.datetime(2015,1,1,0,0,0), "lt": datetime.datetime(2015,12,31,0,0,0)}}], 13 "should": [{"near": {"path": "released", "origin": datetime.datetime(2015, 7, 1, 0, 0, 0, 0), "pivot": 2629800000}}], 14 "mustNot": [{"text": {"path": "genres", "query": "Documentary"}}]}}}, 15 {"$limit": 6}, 16 {"$project": {"_id": 0, "title": 1, "released": 1, "genres": 1, "score": {"$meta": "searchScore"}}} 17 ] 18 # run pipeline 19 result = client["sample_mflix"]["movies"].aggregate(pipeline) 20 21 # print results 22 for i in result: 23 print(i) Before you run the sample, replace
<connection-string>
with your Atlas connection string. Ensure that your connection string includes your database user's credentials. To learn more, see Connect via Drivers.Run the following command to query your collection:
python date-range-complex.py {'genres': ['Action', 'Adventure', 'Sci-Fi'], 'title': 'Terminator Genisys', 'released': datetime.datetime(2015, 7, 1, 0, 0), 'score': 2.0} {'genres': ['Comedy', 'Drama', 'Music'], 'title': 'Magic Mike XXL', 'released': datetime.datetime(2015, 7, 1, 0, 0), 'score': 2.0} {'genres': ['Comedy', 'Drama'], 'title': 'Home Care', 'released': datetime.datetime(2015, 7, 1, 0, 0), 'score': 2.0} {'genres': ['Drama', 'Mystery', 'Sci-Fi'], 'title': 'Pig', 'released': datetime.datetime(2015, 7, 2, 0, 0), 'score': 1.9681909084320068} {'genres': ['Drama', 'History', 'Romance'], 'title': 'Gold Coast', 'released': datetime.datetime(2015, 7, 2, 0, 0), 'score': 1.9681909084320068} {'genres': ['Animation', 'Family'], 'title': 'Zarafa', 'released': datetime.datetime(2015, 7, 3, 0, 0), 'score': 1.9383430480957031}
For the query, the top results are in the month of July because the
should
clause specified a preference for movies near July.