Docs Menu
Docs Home
/
MongoDB Atlas
/

How to Create Vector Embeddings

On this page

  • Get Started
  • Prerequisites
  • Define an Embedding Function
  • Create Embeddings from Data
  • Create Embeddings for Queries
  • Considerations
  • Choosing a Method to Create Embeddings
  • Choosing an Embedding Model
  • Validating Your Embeddings
  • Troubleshooting
  • Next Steps

You can store vector embeddings alongside your other data in Atlas. These embeddings capture meaningful relationships in your data and allow you to perform semantic search and implement RAG with Atlas Vector Search.

Use the following tutorial to learn how to create vector embeddings and query them using Atlas Vector Search. Specifically, you perform the following actions:

  1. Define a function that uses an embedding model to generate vector embeddings.

  2. Create embeddings from your data and store them in Atlas.

  3. Create embeddings from your search terms and run a vector search query.

For production applications, you typically write a script to generate vector embeddings. You can start with the sample code on this page and customize it for your use case.


➤ Use the Select your language drop-down menu to set the language of the examples on this page.

To complete this tutorial, you must have the following:

  • An Atlas account with a cluster running MongoDB version 6.0.11, 7.0.2, or later (including RCs). Ensure that your IP address is included in your Atlas project's access list. To learn more, see Create a Cluster.

  • Java Development Kit (JDK) version 8 or later.

  • An environment to set up and run a Java application. We recommend that you use an integrated development environment (IDE) such as IntelliJ IDEA or Eclipse IDE to configure Maven or Gradle to build and run your project.

  • One of the following:

  • An Atlas account with a cluster running MongoDB version 6.0.11, 7.0.2, or later (including RCs). Ensure that your IP address is included in your Atlas project's access list. To learn more, see Create a Cluster.

  • A terminal and code editor to run your Node.js project.

  • npm and Node.js installed.

  • If you're using OpenAI models, you must have an OpenAI API Key.

  • An Atlas account with a cluster running MongoDB version 6.0.11, 7.0.2, or later (including RCs). Ensure that your IP address is included in your Atlas project's access list. To learn more, see Create a Cluster.

  • An environment to run interactive Python notebooks such as VS Code or Colab.

  • If you're using OpenAI models, you must have an OpenAI API Key.

In this section, you define a function to generate vector embeddings by using an embedding model. Select a tab based on whether you want to use an open-source embedding model or a proprietary model from OpenAI.

Note

Open-source embedding models are free to use and can be loaded locally from your application. Proprietary models require an API key to access the models.

1

In a terminal window, run the following commands to create a new directory named my-embeddings-project and initialize your project:

mkdir my-embeddings-project
cd my-embeddings-project
go mod init my-embeddings-project
2

In a terminal window, run the following commands:

go get github.com/joho/godotenv
go get go.mongodb.org/mongo-driver/mongo
go get github.com/tmc/langchaingo/llms
3

In your project, create a .env file to store your Atlas connection string and Hugging Face access token.

HUGGINGFACEHUB_API_TOKEN = "<access-token>"
ATLAS_CONNECTION_STRING = "<connection-string>"

Replace the <access-token> placeholder value with your Hugging Face access token.

Replace the <connection-string> placeholder value with the SRV connection string for your Atlas cluster.

Your connection string should use the following format:

mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net
4
  1. Create a directory in your project called common to store common code that you'll use in later steps:

    mkdir common && cd common
  2. Create a file named get-embeddings.go and paste the following code. This code defines a function named GetEmbeddings to generate an embedding for a given input. This function specifies:

    get-embeddings.go
    package common
    import (
    "context"
    "log"
    "github.com/tmc/langchaingo/embeddings/huggingface"
    )
    func GetEmbeddings(documents []string) [][]float32 {
    hf, err := huggingface.NewHuggingface(
    huggingface.WithModel("mixedbread-ai/mxbai-embed-large-v1"),
    huggingface.WithTask("feature-extraction"))
    if err != nil {
    log.Fatalf("failed to connect to Hugging Face: %v", err)
    }
    embs, err := hf.EmbedDocuments(context.Background(), documents)
    if err != nil {
    log.Fatalf("failed to generate embeddings: %v", err)
    }
    return embs
    }

    Note

    503 when calling Hugging Face models

    You may occasionally get 503 errors when calling Hugging Face model hub models. To resolve this issue, retry after a short delay.

  3. Move back into the main project root directory.

    cd ../
1

In a terminal window, run the following commands to create a new directory named my-embeddings-project and initialize your project:

mkdir my-embeddings-project
cd my-embeddings-project
go mod init my-embeddings-project
2

In a terminal window, run the following commands:

go get github.com/joho/godotenv
go get go.mongodb.org/mongo-driver/mongo
go get github.com/milosgajdos/go-embeddings/openai
3

In your project, create a .env file to store your connection string and OpenAI API token.

OPENAI_API_KEY = "<api-key>"
ATLAS_CONNECTION_STRING = "<connection-string>"

Replace the <api-key> and <connection-string> placeholder values with your OpenAI API key and the SRV connection string for your Atlas cluster. Your connection string should use the following format:

mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net

Note

Your connection string should use the following format:

mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net
4
  1. Create a directory in your project called common to store code you'll use in multiple steps:

    mkdir common && cd common
  2. Create a file named get-embeddings.go and paste the following code. This code defines a function named GetEmbeddings that uses OpenAI's text-embedding-3-small model to generate an embedding for a given input.

    get-embeddings.go
    package common
    import (
    "context"
    "log"
    "github.com/milosgajdos/go-embeddings/openai"
    )
    func GetEmbeddings(docs []string) [][]float64 {
    c := openai.NewClient()
    embReq := &openai.EmbeddingRequest{
    Input: docs,
    Model: openai.TextSmallV3,
    EncodingFormat: openai.EncodingFloat,
    }
    embs, err := c.Embed(context.Background(), embReq)
    if err != nil {
    log.Fatalf("failed to connect to OpenAI: %v", err)
    }
    var vectors [][]float64
    for _, emb := range embs {
    vectors = append(vectors, emb.Vector)
    }
    return vectors
    }
  3. Move back into the main project root directory.

    cd ../
1
  1. From your IDE, create a Java project using Maven or Gradle.

  2. Add the following dependencies, depending on your package manager:

    If you are using Maven, add the following dependencies to the dependencies array in your project's pom.xml file:

    pom.xml
    <dependencies>
    <!-- MongoDB Java Sync Driver v5.2.0 or later -->
    <dependency>
    <groupId>org.mongodb</groupId>
    <artifactId>mongodb-driver-sync</artifactId>
    <version>[5.2.0,)</version>
    </dependency>
    <!-- Java library for working with Hugging Face models -->
    <dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j-hugging-face</artifactId>
    <version>0.35.0</version>
    </dependency>
    </dependencies>

    If you are using Gradle, add the following to the dependencies array in your project's build.gradle file:

    build.gradle
    dependencies {
    // MongoDB Java Sync Driver v5.2.0 or later
    implementation 'org.mongodb:mongodb-driver-sync:[5.2.0,)'
    // Java library for working with Hugging Face models
    implementation 'dev.langchain4j:langchain4j-hugging-face:0.35.0'
    }
  3. Run your package manager to install the dependencies to your project.

2

Note

This example sets the variables for the project in the IDE. Production applications might manage environment variables through a deployment configuration, CI/CD pipeline, or secrets manager, but you can adapt the provided code to fit your use case.

In your IDE, create a new configuration template and add the following variables to your project:

  • If you are using IntelliJ IDEA, create a new Application run configuration template, then add your variables as semicolon-separated values in the Environment variables field (for example, FOO=123;BAR=456). Apply the changes and click OK.

    To learn more, see the Create a run/debug configuration from a template section of the IntelliJ IDEA documentation.

  • If you are using Eclipse, create a new Java Application launch configuration, then add each variable as a new key-value pair in the Environment tab. Apply the changes and click OK.

    To learn more, see the Creating a Java application launch configuration section of the Eclipse IDE documentation.

Environment variables
HUGGING_FACE_ACCESS_TOKEN=<access-token>
ATLAS_CONNECTION_STRING=<connection-string>

Update the placeholders with the following values:

  • Replace the``<access-token>`` placeholder value with your Hugging Face access token.

  • Replace the <connection-string> placeholder value with the SRV connection string for your Atlas cluster.

    Your connection string should use the following format:

    mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net
3

Create a file named EmbeddingProvider.java and paste the following code.

This code defines two methods to generate embeddings for a given input using the mxbai-embed-large-v1 open-source embedding model:

  • Multiple Inputs: The getEmbeddings method accepts an array of text inputs (List<String>), allowing you to create multiple embeddings in a single API call. The method converts the API-provided arrays of floats to BSON arrays of doubles for storing in your Atlas cluster.

  • Single Input: The getEmbedding method accepts a single String, which represents a query you want to make against your vector data. The method converts the API-provided array of floats to a BSON array of doubles to use when querying your collection.

EmbeddingProvider.java
import dev.langchain4j.data.embedding.Embedding;
import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.model.huggingface.HuggingFaceEmbeddingModel;
import dev.langchain4j.model.output.Response;
import org.bson.BsonArray;
import org.bson.BsonDouble;
import java.util.List;
import static java.time.Duration.ofSeconds;
public class EmbeddingProvider {
private static HuggingFaceEmbeddingModel embeddingModel;
private static HuggingFaceEmbeddingModel getEmbeddingModel() {
if (embeddingModel == null) {
String accessToken = System.getenv("HUGGING_FACE_ACCESS_TOKEN");
if (accessToken == null || accessToken.isEmpty()) {
throw new RuntimeException("HUGGING_FACE_ACCESS_TOKEN env variable is not set or is empty.");
}
embeddingModel = HuggingFaceEmbeddingModel.builder()
.accessToken(accessToken)
.modelId("mixedbread-ai/mxbai-embed-large-v1")
.waitForModel(true)
.timeout(ofSeconds(60))
.build();
}
return embeddingModel;
}
/**
* Takes an array of strings and returns a BSON array of embeddings to
* store in the database.
*/
public List<BsonArray> getEmbeddings(List<String> texts) {
List<TextSegment> textSegments = texts.stream()
.map(TextSegment::from)
.toList();
Response<List<Embedding>> response = getEmbeddingModel().embedAll(textSegments);
return response.content().stream()
.map(e -> new BsonArray(
e.vectorAsList().stream()
.map(BsonDouble::new)
.toList()))
.toList();
}
/**
* Takes a single string and returns a BSON array embedding to
* use in a vector query.
*/
public BsonArray getEmbedding(String text) {
Response<Embedding> response = getEmbeddingModel().embed(text);
return new BsonArray(
response.content().vectorAsList().stream()
.map(BsonDouble::new)
.toList());
}
}
1
  1. From your IDE, create a Java project using Maven or Gradle.

  2. Add the following dependencies, depending on your package manager:

    If you are using Maven, add the following dependencies to the dependencies array in your project's pom.xml file:

    pom.xml
    <dependencies>
    <!-- MongoDB Java Sync Driver v5.2.0 or later -->
    <dependency>
    <groupId>org.mongodb</groupId>
    <artifactId>mongodb-driver-sync</artifactId>
    <version>[5.2.0,)</version>
    </dependency>
    <!-- Java library for working with OpenAI models -->
    <dependency>
    <groupId>dev.langchain4j</groupId>
    <artifactId>langchain4j-open-ai</artifactId>
    <version>0.35.0</version>
    </dependency>
    </dependencies>

    If you are using Gradle, add the following to the dependencies array in your project's build.gradle file:

    build.gradle
    dependencies {
    // MongoDB Java Sync Driver v5.2.0 or later
    implementation 'org.mongodb:mongodb-driver-sync:[5.2.0,)'
    // Java library for working with OpenAI models
    implementation 'dev.langchain4j:langchain4j-open-ai:0.35.0'
    }
  3. Run your package manager to install the dependencies to your project.

2

Note

This example sets the variables for the project in the IDE. Production applications might manage environment variables through a deployment configuration, CI/CD pipeline, or secrets manager, but you can adapt the provided code to fit your use case.

In your IDE, create a new configuration template and add the following variables to your project:

  • If you are using IntelliJ IDEA, create a new Application run configuration template, then add your variables as semicolon-separated values in the Environment variables field (for example, FOO=123;BAR=456). Apply the changes and click OK.

    To learn more, see the Create a run/debug configuration from a template section of the IntelliJ IDEA documentation.

  • If you are using Eclipse, create a new Java Application launch configuration, then add each variable as a new key-value pair in the Environment tab. Apply the changes and click OK.

    To learn more, see the Creating a Java application launch configuration section of the Eclipse IDE documentation.

Environment variables
OPEN_AI_API_KEY=<api-key>
ATLAS_CONNECTION_STRING=<connection-string>

Update the placeholders with the following values:

  • Replace the``<api-key>`` placeholder value with your OpenAI API key.

  • Replace the <connection-string> placeholder value with the SRV connection string for your Atlas cluster.

    Your connection string should use the following format:

    mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net
3

Create a file named EmbeddingProvider.java and paste the following code.

This code defines two methods to generate embeddings for a given input using the text-embedding-3-small OpenAI embedding model:

  • Multiple Inputs: The getEmbeddings method accepts an array of text inputs (List<String>), allowing you to create multiple embeddings in a single API call. The method converts the API-provided arrays of floats to BSON arrays of doubles for storing in your Atlas cluster.

  • Single Input: The getEmbedding method accepts a single String, which represents a query you want to make against your vector data. The method converts the API-provided array of floats to a BSON array of doubles to use when querying your collection.

EmbeddingProvider.java
import dev.langchain4j.data.embedding.Embedding;
import dev.langchain4j.data.segment.TextSegment;
import dev.langchain4j.model.openai.OpenAiEmbeddingModel;
import dev.langchain4j.model.output.Response;
import org.bson.BsonArray;
import org.bson.BsonDouble;
import java.util.List;
import static java.time.Duration.ofSeconds;
public class EmbeddingProvider {
private static OpenAiEmbeddingModel embeddingModel;
private static OpenAiEmbeddingModel getEmbeddingModel() {
if (embeddingModel == null) {
String apiKey = System.getenv("OPEN_AI_API_KEY");
if (apiKey == null || apiKey.isEmpty()) {
throw new IllegalStateException("OPEN_AI_API_KEY env variable is not set or is empty.");
}
return OpenAiEmbeddingModel.builder()
.apiKey(apiKey)
.modelName("text-embedding-3-small")
.timeout(ofSeconds(60))
.build();
}
return embeddingModel;
}
/**
* Takes an array of strings and returns a BSON array of embeddings to
* store in the database.
*/
public List<BsonArray> getEmbeddings(List<String> texts) {
List<TextSegment> textSegments = texts.stream()
.map(TextSegment::from)
.toList();
Response<List<Embedding>> response = getEmbeddingModel().embedAll(textSegments);
return response.content().stream()
.map(e -> new BsonArray(
e.vectorAsList().stream()
.map(BsonDouble::new)
.toList()))
.toList();
}
/**
* Takes a single string and returns a BSON array embedding to
* use in a vector query.
*/
public BsonArray getEmbedding(String text) {
Response<Embedding> response = getEmbeddingModel().embed(text);
return new BsonArray(
response.content().vectorAsList().stream()
.map(BsonDouble::new)
.toList());
}
}
1

In a terminal window, run the following commands to create a new directory named my-embeddings-project and initialize your project:

mkdir my-embeddings-project
cd my-embeddings-project
npm init -y
2

Configure your project to use ES modules by adding "type": "module" to your package.json file and then saving it.

{
"type": "module",
// other fields...
}
3

In a terminal window, run the following command:

npm install mongodb @xenova/transformers
4

In your project, create a .env file to store your Atlas connection string.

ATLAS_CONNECTION_STRING = "<connection-string>"

Replace the <connection-string> placeholder value with the SRV connection string for your Atlas cluster. Your connection string should use the following format:

mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net

Note

Minimum Node.js Version Requirements

Node.js v20.x introduced the --env-file option. If you are using an older version of Node.js, add the dotenv package to your project, or use a different method to manage your environment variables.

5

Create a file named get-embeddings.js and paste the following code. This code defines a function named to generate an embedding for a given input. This function specifies:

get-embeddings.js
import { pipeline } from '@xenova/transformers';
// Function to generate embeddings for a given data source
export async function getEmbedding(data) {
const embedder = await pipeline(
'feature-extraction',
'Xenova/nomic-embed-text-v1');
const results = await embedder(data, { pooling: 'mean', normalize: true });
return Array.from(results.data);
}
1

In a terminal window, run the following commands to create a new directory named my-embeddings-project and initialize your project:

mkdir my-embeddings-project
cd my-embeddings-project
npm init -y
2

Configure your project to use ES modules by adding "type": "module" to your package.json file and then saving it.

{
"type": "module",
// other fields...
}
3

In a terminal window, run the following command:

npm install mongodb openai
4

In your project, create a .env file to store your Atlas connection string and OpenAI API key.

OPENAI_API_KEY = "<api-key>"
ATLAS_CONNECTION_STRING = "<connection-string>"

Replace the <api-key> and <connection-string> placeholder values with your OpenAI API key and the SRV connection string for your Atlas cluster. Your connection string should use the following format:

mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net

Note

Minimum Node.js Version Requirements

Node.js v20.x introduced the --env-file option. If you are using an older version of Node.js, add the dotenv package to your project, or use a different method to manage your environment variables.

5

Create a file named get-embeddings.js and paste the following code. This code defines a function named getEmbedding that uses OpenAI's text-embedding-3-small model to generate an embedding for a given input.

get-embeddings.js
import OpenAI from 'openai';
// Setup OpenAI configuration
const openai = new OpenAI({apiKey: process.env.OPENAI_API_KEY});
// Function to get the embeddings using the OpenAI API
export async function getEmbedding(text) {
const results = await openai.embeddings.create({
model: "text-embedding-3-small",
input: text,
encoding_format: "float",
});
return results.data[0].embedding;
}
1

Create an interactive Python notebook by saving a file with the .ipynb extension, and then run the following command in the notebook to install the dependencies:

pip install --quiet sentence-transformers pymongo einops
2

Paste and run the following code in your notebook to create a function that generates vector embeddings by using an open-source embedding model from Nomic AI. This code does the following:

  • Loads the nomic-embed-text-v1 embedding model.

  • Creates a function named get_embedding that uses the model to generate an embedding for a given text input.

  • Tests the function by generating a single embedding for the string foo.

from sentence_transformers import SentenceTransformer
# Load the embedding model (https://huggingface.co/nomic-ai/nomic-embed-text-v1")
model = SentenceTransformer("nomic-ai/nomic-embed-text-v1", trust_remote_code=True)
# Define a function to generate embeddings
def get_embedding(data):
"""Generates vector embeddings for the given data."""
embedding = model.encode(data)
return embedding.tolist()
# Generate an embedding
get_embedding("foo")
[-0.029808253049850464, 0.03841473162174225, -0.02561120130121708, -0.06707508116960526, 0.03867151960730553, ... ]
1

Create an interactive Python notebook by saving a file with the .ipynb extension, and then run the following command in the notebook to install the dependencies:

pip install --quiet openai pymongo
2

Paste and run the following code in your notebook to create a function that generates vector embeddings by using a proprietary embedding model from OpenAI. Replace <api-key> with your OpenAI API key. This code does the following:

  • Specifies the text-embedding-3-small embedding model.

  • Creates a function named get_embedding that calls the model's API to generate an embedding for a given text input.

  • Tests the function by generating a single embedding for the string foo.

import os
from openai import OpenAI
# Specify your OpenAI API key and embedding model
os.environ["OPENAI_API_KEY"] = "<api-key>"
model = "text-embedding-3-small"
openai_client = OpenAI()
# Define a function to generate embeddings
def get_embedding(text):
"""Generates vector embeddings for the given text."""
embedding = openai_client.embeddings.create(input = [text], model=model).data[0].embedding
return embedding
# Generate an embedding
get_embedding("foo")
[-0.005843308754265308, -0.013111298903822899, -0.014585349708795547, 0.03580040484666824, 0.02671629749238491, ... ]

Tip

See also:

For API details and a list of available models, refer to the OpenAI documentation.

In this section, you create vector embeddings from your data using the function that you defined, and then you store these embeddings in a collection in Atlas.

Select a tab based on whether you want to create embeddings from new data or from existing data that you already have in Atlas.

1

Use the following code to generate embeddings from an existing collection in Atlas.

Specifically, this code uses the GetEmbeddings function that you defined and the MongoDB Go Driver to generate embeddings from an array of sample texts and ingest them into the sample_db.embeddings collection in Atlas.

create-embeddings.go
package main
import (
"context"
"fmt"
"log"
"my-embeddings-project/common"
"os"
"github.com/joho/godotenv"
"go.mongodb.org/mongo-driver/mongo"
"go.mongodb.org/mongo-driver/mongo/options"
)
var data = []string{
"Titanic: The story of the 1912 sinking of the largest luxury liner ever built",
"The Lion King: Lion cub and future king Simba searches for his identity",
"Avatar: A marine is dispatched to the moon Pandora on a unique mission",
}
type TextWithEmbedding struct {
Text string
Embedding []float32
}
func main() {
ctx := context.Background()
if err := godotenv.Load(); err != nil {
log.Println("no .env file found")
}
// Connect to your Atlas cluster
uri := os.Getenv("ATLAS_CONNECTION_STRING")
if uri == "" {
log.Fatal("set your 'ATLAS_CONNECTION_STRING' environment variable.")
}
clientOptions := options.Client().ApplyURI(uri)
client, err := mongo.Connect(ctx, clientOptions)
if err != nil {
log.Fatalf("failed to connect to the server: %v", err)
}
defer func() { _ = client.Disconnect(ctx) }()
// Set the namespace
coll := client.Database("sample_db").Collection("embeddings")
embeddings := common.GetEmbeddings(data)
docsToInsert := make([]interface{}, len(embeddings))
for i, string := range data {
docsToInsert[i] = TextWithEmbedding{
Text: string,
Embedding: embeddings[i],
}
}
result, err := coll.InsertMany(ctx, docsToInsert)
if err != nil {
log.Fatalf("failed to insert documents: %v", err)
}
fmt.Printf("Successfully inserted %v documents into Atlas\n", len(result.InsertedIDs))
}
create-embeddings.go
package main
import (
"context"
"fmt"
"log"
"my-embeddings-project/common"
"os"
"github.com/joho/godotenv"
"go.mongodb.org/mongo-driver/mongo"
"go.mongodb.org/mongo-driver/mongo/options"
)
var data = []string{
"Titanic: The story of the 1912 sinking of the largest luxury liner ever built",
"The Lion King: Lion cub and future king Simba searches for his identity",
"Avatar: A marine is dispatched to the moon Pandora on a unique mission",
}
type TextWithEmbedding struct {
Text string
Embedding []float64
}
func main() {
ctx := context.Background()
if err := godotenv.Load(); err != nil {
log.Println("no .env file found")
}
// Connect to your Atlas cluster
uri := os.Getenv("ATLAS_CONNECTION_STRING")
if uri == "" {
log.Fatal("set your 'ATLAS_CONNECTION_STRING' environment variable.")
}
clientOptions := options.Client().ApplyURI(uri)
client, err := mongo.Connect(ctx, clientOptions)
if err != nil {
log.Fatalf("failed to connect to the server: %v", err)
}
defer func() { _ = client.Disconnect(ctx) }()
// Set the namespace
coll := client.Database("sample_db").Collection("embeddings")
embeddings := common.GetEmbeddings(data)
docsToInsert := make([]interface{}, len(data))
for i, movie := range data {
docsToInsert[i] = TextWithEmbedding{
Text: movie,
Embedding: embeddings[i],
}
}
result, err := coll.InsertMany(ctx, docsToInsert)
if err != nil {
log.Fatalf("failed to insert documents: %v", err)
}
fmt.Printf("Successfully inserted %v documents into Atlas\n", len(result.InsertedIDs))
}
2
go run create-embeddings.go
Successfully inserted 3 documents into Atlas
go run create-embeddings.go
Successfully inserted 3 documents into Atlas

You can also view your vector embeddings in the Atlas UI by navigating to the sample_db.embeddings collection in your cluster.

Note

This example uses the sample_airbnb.listingsAndReviews collection from our sample data, but you can adapt the code to work with any collection in your cluster.

1

Use the following code to generate embeddings from an existing collection in Atlas. Specifically, this code does the following:

  • Connects to your Atlas cluster.

  • Gets a subset of documents from the sample_airbnb.listingsAndReviews collection that have a non-empty summary field.

  • Generates embeddings from each document's summary field by using the GetEmbeddings function that you defined.

  • Updates each document with a new embeddings field that contains the embedding value by using the MongoDB Go Driver.

create-embeddings.go
package main
import (
"context"
"log"
"my-embeddings-project/common"
"os"
"github.com/joho/godotenv"
"go.mongodb.org/mongo-driver/bson"
"go.mongodb.org/mongo-driver/mongo"
"go.mongodb.org/mongo-driver/mongo/options"
)
func main() {
ctx := context.Background()
if err := godotenv.Load(); err != nil {
log.Println("no .env file found")
}
// Connect to your Atlas cluster
uri := os.Getenv("ATLAS_CONNECTION_STRING")
if uri == "" {
log.Fatal("set your 'ATLAS_CONNECTION_STRING' environment variable.")
}
clientOptions := options.Client().ApplyURI(uri)
client, err := mongo.Connect(ctx, clientOptions)
if err != nil {
log.Fatalf("failed to connect to the server: %v", err)
}
defer func() { _ = client.Disconnect(ctx) }()
// Set the namespace
coll := client.Database("sample_airbnb").Collection("listingsAndReviews")
filter := bson.D{
{"$and",
bson.A{
bson.D{
{"$and",
bson.A{
bson.D{{"summary", bson.D{{"$exists", true}}}},
bson.D{{"summary", bson.D{{"$ne", ""}}}},
},
}},
bson.D{{"embeddings", bson.D{{"$exists", false}}}},
}},
}
opts := options.Find().SetLimit(50)
cursor, err := coll.Find(ctx, filter, opts)
if err != nil {
log.Fatalf("failed to retrieve documents: %v", err)
}
var listings []common.Listing
if err = cursor.All(ctx, &listings); err != nil {
log.Fatalf("failed to unmarshal retrieved documents to Listing object: %v", err)
}
var summaries []string
for _, listing := range listings {
summaries = append(summaries, listing.Summary)
}
log.Println("Generating embeddings.")
embeddings := common.GetEmbeddings(summaries)
docsToUpdate := make([]mongo.WriteModel, len(listings))
for i := range listings {
docsToUpdate[i] = mongo.NewUpdateOneModel().
SetFilter(bson.D{{"_id", listings[i].ID}}).
SetUpdate(bson.D{{"$set", bson.D{{"embeddings", embeddings[i]}}}})
}
bulkWriteOptions := options.BulkWrite().SetOrdered(false)
result, err := coll.BulkWrite(context.Background(), docsToUpdate, bulkWriteOptions)
if err != nil {
log.Fatalf("failed to write embeddings to existing documents: %v", err)
}
log.Printf("Successfully added embeddings to %v documents", result.ModifiedCount)
}
2

To simplify marshalling and unmarshalling Go objects to and from BSON, create a file that contains models for the documents in this collection.

  1. Move into the common directory.

    cd common
  2. Create a file named models.go, and paste the following code into it:

    models.go
    package common
    import (
    "time"
    "go.mongodb.org/mongo-driver/bson/primitive"
    )
    type Image struct {
    ThumbnailURL string `bson:"thumbnail_url"`
    MediumURL string `bson:"medium_url"`
    PictureURL string `bson:"picture_url"`
    XLPictureURL string `bson:"xl_picture_url"`
    }
    type Host struct {
    ID string `bson:"host_id"`
    URL string `bson:"host_url"`
    Name string `bson:"host_name"`
    Location string `bson:"host_location"`
    About string `bson:"host_about"`
    ThumbnailURL string `bson:"host_thumbnail_url"`
    PictureURL string `bson:"host_picture_url"`
    Neighborhood string `bson:"host_neighborhood"`
    IsSuperhost bool `bson:"host_is_superhost"`
    HasProfilePic bool `bson:"host_has_profile_pic"`
    IdentityVerified bool `bson:"host_identity_verified"`
    ListingsCount int32 `bson:"host_listings_count"`
    TotalListingsCount int32 `bson:"host_total_listings_count"`
    Verifications []string `bson:"host_verifications"`
    }
    type Location struct {
    Type string `bson:"type"`
    Coordinates []float64 `bson:"coordinates"`
    IsLocationExact bool `bson:"is_location_exact"`
    }
    type Address struct {
    Street string `bson:"street"`
    Suburb string `bson:"suburb"`
    GovernmentArea string `bson:"government_area"`
    Market string `bson:"market"`
    Country string `bson:"Country"`
    CountryCode string `bson:"country_code"`
    Location Location `bson:"location"`
    }
    type Availability struct {
    Thirty int32 `bson:"availability_30"`
    Sixty int32 `bson:"availability_60"`
    Ninety int32 `bson:"availability_90"`
    ThreeSixtyFive int32 `bson:"availability_365"`
    }
    type ReviewScores struct {
    Accuracy int32 `bson:"review_scores_accuracy"`
    Cleanliness int32 `bson:"review_scores_cleanliness"`
    CheckIn int32 `bson:"review_scores_checkin"`
    Communication int32 `bson:"review_scores_communication"`
    Location int32 `bson:"review_scores_location"`
    Value int32 `bson:"review_scores_value"`
    Rating int32 `bson:"review_scores_rating"`
    }
    type Review struct {
    ID string `bson:"_id"`
    Date time.Time `bson:"date,omitempty"`
    ListingId string `bson:"listing_id"`
    ReviewerId string `bson:"reviewer_id"`
    ReviewerName string `bson:"reviewer_name"`
    Comments string `bson:"comments"`
    }
    type Listing struct {
    ID string `bson:"_id"`
    ListingURL string `bson:"listing_url"`
    Name string `bson:"name"`
    Summary string `bson:"summary"`
    Space string `bson:"space"`
    Description string `bson:"description"`
    NeighborhoodOverview string `bson:"neighborhood_overview"`
    Notes string `bson:"notes"`
    Transit string `bson:"transit"`
    Access string `bson:"access"`
    Interaction string `bson:"interaction"`
    HouseRules string `bson:"house_rules"`
    PropertyType string `bson:"property_type"`
    RoomType string `bson:"room_type"`
    BedType string `bson:"bed_type"`
    MinimumNights string `bson:"minimum_nights"`
    MaximumNights string `bson:"maximum_nights"`
    CancellationPolicy string `bson:"cancellation_policy"`
    LastScraped time.Time `bson:"last_scraped,omitempty"`
    CalendarLastScraped time.Time `bson:"calendar_last_scraped,omitempty"`
    FirstReview time.Time `bson:"first_review,omitempty"`
    LastReview time.Time `bson:"last_review,omitempty"`
    Accommodates int32 `bson:"accommodates"`
    Bedrooms int32 `bson:"bedrooms"`
    Beds int32 `bson:"beds"`
    NumberOfReviews int32 `bson:"number_of_reviews"`
    Bathrooms primitive.Decimal128 `bson:"bathrooms"`
    Amenities []string `bson:"amenities"`
    Price primitive.Decimal128 `bson:"price"`
    WeeklyPrice primitive.Decimal128 `bson:"weekly_price"`
    MonthlyPrice primitive.Decimal128 `bson:"monthly_price"`
    CleaningFee primitive.Decimal128 `bson:"cleaning_fee"`
    ExtraPeople primitive.Decimal128 `bson:"extra_people"`
    GuestsIncluded primitive.Decimal128 `bson:"guests_included"`
    Image Image `bson:"images"`
    Host Host `bson:"host"`
    Address Address `bson:"address"`
    Availability Availability `bson:"availability"`
    ReviewScores ReviewScores `bson:"review_scores"`
    Reviews []Review `bson:"reviews"`
    Embeddings []float32 `bson:"embeddings,omitempty"`
    }
    models.go
    package common
    import (
    "time"
    "go.mongodb.org/mongo-driver/bson/primitive"
    )
    type Image struct {
    ThumbnailURL string `bson:"thumbnail_url"`
    MediumURL string `bson:"medium_url"`
    PictureURL string `bson:"picture_url"`
    XLPictureURL string `bson:"xl_picture_url"`
    }
    type Host struct {
    ID string `bson:"host_id"`
    URL string `bson:"host_url"`
    Name string `bson:"host_name"`
    Location string `bson:"host_location"`
    About string `bson:"host_about"`
    ThumbnailURL string `bson:"host_thumbnail_url"`
    PictureURL string `bson:"host_picture_url"`
    Neighborhood string `bson:"host_neighborhood"`
    IsSuperhost bool `bson:"host_is_superhost"`
    HasProfilePic bool `bson:"host_has_profile_pic"`
    IdentityVerified bool `bson:"host_identity_verified"`
    ListingsCount int32 `bson:"host_listings_count"`
    TotalListingsCount int32 `bson:"host_total_listings_count"`
    Verifications []string `bson:"host_verifications"`
    }
    type Location struct {
    Type string `bson:"type"`
    Coordinates []float64 `bson:"coordinates"`
    IsLocationExact bool `bson:"is_location_exact"`
    }
    type Address struct {
    Street string `bson:"street"`
    Suburb string `bson:"suburb"`
    GovernmentArea string `bson:"government_area"`
    Market string `bson:"market"`
    Country string `bson:"Country"`
    CountryCode string `bson:"country_code"`
    Location Location `bson:"location"`
    }
    type Availability struct {
    Thirty int32 `bson:"availability_30"`
    Sixty int32 `bson:"availability_60"`
    Ninety int32 `bson:"availability_90"`
    ThreeSixtyFive int32 `bson:"availability_365"`
    }
    type ReviewScores struct {
    Accuracy int32 `bson:"review_scores_accuracy"`
    Cleanliness int32 `bson:"review_scores_cleanliness"`
    CheckIn int32 `bson:"review_scores_checkin"`
    Communication int32 `bson:"review_scores_communication"`
    Location int32 `bson:"review_scores_location"`
    Value int32 `bson:"review_scores_value"`
    Rating int32 `bson:"review_scores_rating"`
    }
    type Review struct {
    ID string `bson:"_id"`
    Date time.Time `bson:"date,omitempty"`
    ListingId string `bson:"listing_id"`
    ReviewerId string `bson:"reviewer_id"`
    ReviewerName string `bson:"reviewer_name"`
    Comments string `bson:"comments"`
    }
    type Listing struct {
    ID string `bson:"_id"`
    ListingURL string `bson:"listing_url"`
    Name string `bson:"name"`
    Summary string `bson:"summary"`
    Space string `bson:"space"`
    Description string `bson:"description"`
    NeighborhoodOverview string `bson:"neighborhood_overview"`
    Notes string `bson:"notes"`
    Transit string `bson:"transit"`
    Access string `bson:"access"`
    Interaction string `bson:"interaction"`
    HouseRules string `bson:"house_rules"`
    PropertyType string `bson:"property_type"`
    RoomType string `bson:"room_type"`
    BedType string `bson:"bed_type"`
    MinimumNights string `bson:"minimum_nights"`
    MaximumNights string `bson:"maximum_nights"`
    CancellationPolicy string `bson:"cancellation_policy"`
    LastScraped time.Time `bson:"last_scraped,omitempty"`
    CalendarLastScraped time.Time `bson:"calendar_last_scraped,omitempty"`
    FirstReview time.Time `bson:"first_review,omitempty"`
    LastReview time.Time `bson:"last_review,omitempty"`
    Accommodates int32 `bson:"accommodates"`
    Bedrooms int32 `bson:"bedrooms"`
    Beds int32 `bson:"beds"`
    NumberOfReviews int32 `bson:"number_of_reviews"`
    Bathrooms primitive.Decimal128 `bson:"bathrooms"`
    Amenities []string `bson:"amenities"`
    Price primitive.Decimal128 `bson:"price"`
    WeeklyPrice primitive.Decimal128 `bson:"weekly_price"`
    MonthlyPrice primitive.Decimal128 `bson:"monthly_price"`
    CleaningFee primitive.Decimal128 `bson:"cleaning_fee"`
    ExtraPeople primitive.Decimal128 `bson:"extra_people"`
    GuestsIncluded primitive.Decimal128 `bson:"guests_included"`
    Image Image `bson:"images"`
    Host Host `bson:"host"`
    Address Address `bson:"address"`
    Availability Availability `bson:"availability"`
    ReviewScores ReviewScores `bson:"review_scores"`
    Reviews []Review `bson:"reviews"`
    Embeddings []float64 `bson:"embeddings,omitempty"`
    }
  3. Move back into the project root directory.

    cd ../
3
go run create-embeddings.go
2024/10/10 09:58:03 Generating embeddings.
2024/10/10 09:58:12 Successfully added embeddings to 50 documents

You can view your vector embeddings as they generate by navigating to the sample_airbnb.listingsAndReviews collection in the Atlas UI.

1

Create a file named CreateEmbeddings.java and paste the following code.

This code uses the getEmbeddings method and the MongoDB Java Sync Driver to do the following:

  1. Connect to your Atlas cluster.

  2. Get the array of sample texts.

  3. Generate embeddings from each text using the getEmbeddings method that you defined previously.

  4. Ingest the embeddings into the sample_db.embeddings collection in Atlas.

CreateEmbeddings.java
import com.mongodb.MongoException;
import com.mongodb.client.MongoClient;
import com.mongodb.client.MongoClients;
import com.mongodb.client.MongoCollection;
import com.mongodb.client.MongoDatabase;
import com.mongodb.client.result.InsertManyResult;
import org.bson.BsonArray;
import org.bson.Document;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class CreateEmbeddings {
static List<String> data = Arrays.asList(
"Titanic: The story of the 1912 sinking of the largest luxury liner ever built",
"The Lion King: Lion cub and future king Simba searches for his identity",
"Avatar: A marine is dispatched to the moon Pandora on a unique mission"
);
public static void main(String[] args){
String uri = System.getenv("ATLAS_CONNECTION_STRING");
if (uri == null || uri.isEmpty()) {
throw new RuntimeException("ATLAS_CONNECTION_STRING env variable is not set or is empty.");
}
// establish connection and set namespace
try (MongoClient mongoClient = MongoClients.create(uri)) {
MongoDatabase database = mongoClient.getDatabase("sample_db");
MongoCollection<Document> collection = database.getCollection("embeddings");
System.out.println("Creating embeddings for " + data.size() + " documents");
EmbeddingProvider embeddingProvider = new EmbeddingProvider();
// generate embeddings for new inputted data
List<BsonArray> embeddings = embeddingProvider.getEmbeddings(data);
List<Document> documents = new ArrayList<>();
int i = 0;
for (String text : data) {
Document doc = new Document("text", text).append("embedding", embeddings.get(i));
documents.add(doc);
i++;
}
// insert the embeddings into the Atlas collection
List<String> insertedIds = new ArrayList<>();
try {
InsertManyResult result = collection.insertMany(documents);
result.getInsertedIds().values()
.forEach(doc -> insertedIds.add(doc.toString()));
System.out.println("Inserted " + insertedIds.size() + " documents with the following ids to " + collection.getNamespace() + " collection: \n " + insertedIds);
} catch (MongoException me) {
throw new RuntimeException("Failed to insert documents", me);
}
} catch (MongoException me) {
throw new RuntimeException("Failed to connect to MongoDB ", me);
} catch (Exception e) {
throw new RuntimeException("Operation failed: ", e);
}
}
}
2

Save and run the file. The output resembles:

Creating embeddings for 3 documents
Inserted 3 documents with the following ids to sample_db.embeddings collection:
[BsonObjectId{value=6735ff620d88451041f6dd40}, BsonObjectId{value=6735ff620d88451041f6dd41}, BsonObjectId{value=6735ff620d88451041f6dd42}]

You can also view your vector embeddings in the Atlas UI by navigating to the sample_db.embeddings collection in your cluster.

Note

This example uses the sample_airbnb.listingsAndReviews collection from our sample data, but you can adapt the code to work with any collection in your cluster.

1

Create a file named CreateEmbeddings.java and paste the following code.

This code uses the getEmbeddings method and the MongoDB Java Sync Driver to do the following:

  1. Connect to your Atlas cluster.

  2. Get a subset of documents from the sample_airbnb.listingsAndReviews collection that have a non-empty summary field.

  3. Generate embeddings from each document's summary field using the getEmbeddings method that you defined previously.

  4. Update each document with a new embeddings field that contains the embedding value.

CreateEmbeddings.java
import com.mongodb.MongoException;
import com.mongodb.bulk.BulkWriteResult;
import com.mongodb.client.MongoClient;
import com.mongodb.client.MongoClients;
import com.mongodb.client.MongoCollection;
import com.mongodb.client.MongoCursor;
import com.mongodb.client.MongoDatabase;
import com.mongodb.client.model.BulkWriteOptions;
import com.mongodb.client.model.Filters;
import com.mongodb.client.model.UpdateOneModel;
import com.mongodb.client.model.Updates;
import com.mongodb.client.model.WriteModel;
import org.bson.BsonArray;
import org.bson.Document;
import org.bson.conversions.Bson;
import java.util.ArrayList;
import java.util.List;
public class CreateEmbeddings {
public static void main(String[] args){
String uri = System.getenv("ATLAS_CONNECTION_STRING");
if (uri == null || uri.isEmpty()) {
throw new RuntimeException("ATLAS_CONNECTION_STRING env variable is not set or is empty.");
}
// establish connection and set namespace
try (MongoClient mongoClient = MongoClients.create(uri)) {
MongoDatabase database = mongoClient.getDatabase("sample_airbnb");
MongoCollection<Document> collection = database.getCollection("listingsAndReviews");
Bson filterCriteria = Filters.and(
Filters.and(Filters.exists("summary"),
Filters.ne("summary", null),
Filters.ne("summary", "")),
Filters.exists("embeddings", false));
try (MongoCursor<Document> cursor = collection.find(filterCriteria).limit(50).iterator()) {
List<String> summaries = new ArrayList<>();
List<String> documentIds = new ArrayList<>();
int i = 0;
while (cursor.hasNext()) {
Document document = cursor.next();
String summary = document.getString("summary");
String id = document.get("_id").toString();
summaries.add(summary);
documentIds.add(id);
i++;
}
System.out.println("Generating embeddings for " + summaries.size() + " documents.");
System.out.println("This operation may take up to several minutes.");
EmbeddingProvider embeddingProvider = new EmbeddingProvider();
List<BsonArray> embeddings = embeddingProvider.getEmbeddings(summaries);
List<WriteModel<Document>> updateDocuments = new ArrayList<>();
for (int j = 0; j < summaries.size(); j++) {
UpdateOneModel<Document> updateDoc = new UpdateOneModel<>(
Filters.eq("_id", documentIds.get(j)),
Updates.set("embeddings", embeddings.get(j)));
updateDocuments.add(updateDoc);
}
int updatedDocsCount = 0;
try {
BulkWriteOptions options = new BulkWriteOptions().ordered(false);
BulkWriteResult result = collection.bulkWrite(updateDocuments, options);
updatedDocsCount = result.getModifiedCount();
} catch (MongoException me) {
throw new RuntimeException("Failed to insert documents", me);
}
System.out.println("Added embeddings successfully to " + updatedDocsCount + " documents.");
}
} catch (MongoException me) {
throw new RuntimeException("Failed to connect to MongoDB", me);
} catch (Exception e) {
throw new RuntimeException("Operation failed: ", e);
}
}
}
2

Save and run the file. The output resembles:

Generating embeddings for 50 documents.
This operation may take up to several minutes.
Added embeddings successfully to 50 documents.

You can also view your vector embeddings in the Atlas UI by navigating to the sample_airbnb.listingsAndReviews collection in your cluster.

1

Use the following code to generate embeddings from an existing collection in Atlas.

Specifically, this code uses the getEmbedding function that you defined and the MongoDB Node.js Driver to generate embeddings from an array of sample texts and ingest them into the sample_db.embeddings collection in Atlas.

create-embeddings.js
import { MongoClient } from 'mongodb';
import { getEmbedding } from './get-embeddings.js';
// Data to embed
const data = [
"Titanic: The story of the 1912 sinking of the largest luxury liner ever built",
"The Lion King: Lion cub and future king Simba searches for his identity",
"Avatar: A marine is dispatched to the moon Pandora on a unique mission"
]
async function run() {
// Connect to your Atlas cluster
const client = new MongoClient(process.env.ATLAS_CONNECTION_STRING);
try {
await client.connect();
const db = client.db("sample_db");
const collection = db.collection("embeddings");
await Promise.all(data.map(async text => {
// Check if the document already exists
const existingDoc = await collection.findOne({ text: text });
// Generate an embedding by using the function that you defined
const embedding = await getEmbedding(text);
// Ingest data and embedding into Atlas
if (!existingDoc) {
await collection.insertOne({
text: text,
embedding: embedding
});
console.log(embedding);
}
}));
} catch (err) {
console.log(err.stack);
}
finally {
await client.close();
}
}
run().catch(console.dir);
2
node --env-file=.env create-embeddings.js
[ -0.04323853924870491, -0.008460805751383305, 0.012494648806750774, -0.013014335185289383, ... ]
[ -0.017400473356246948, 0.04922063276171684, -0.002836339408531785, -0.030395228415727615, ... ]
[ -0.016950927674770355, 0.013881809078156948, -0.022074559703469276, -0.02838018536567688, ... ]
node --env-file=.env create-embeddings.js
[ 0.031927742, -0.014192767, -0.021851597, 0.045498233, -0.0077904654, ... ]
[ -0.01664538, 0.013198251, 0.048684783, 0.014485021, -0.018121032, ... ]
[ 0.030449908, 0.046782598, 0.02126599, 0.025799986, -0.015830345, ... ]

Note

The number of dimensions in the output have been truncated for readability.

You can also view your vector embeddings in the Atlas UI by navigating to the sample_db.embeddings collection in your cluster.

Note

This example uses the sample_airbnb.listingsAndReviews collection from our sample data, but you can adapt the code to work with any collection in your cluster.

1

Use the following code to generate embeddings from an existing collection in Atlas. Specifically, this code does the following:

  • Connects to your Atlas cluster.

  • Gets a subset of documents from the sample_airbnb.listingsAndReviews collection that have a non-empty summary field.

  • Generates embeddings from each document's summary field by using the getEmbedding function that you defined.

  • Updates each document with a new embedding field that contains the embedding value by using the MongoDB Node.js Driver.

create-embeddings.js
import { MongoClient } from 'mongodb';
import { getEmbedding } from './get-embeddings.js';
// Connect to your Atlas cluster
const client = new MongoClient(process.env.ATLAS_CONNECTION_STRING);
async function run() {
try {
await client.connect();
const db = client.db("sample_airbnb");
const collection = db.collection("listingsAndReviews");
// Filter to exclude null or empty summary fields
const filter = { "summary": { "$nin": [ null, "" ] } };
// Get a subset of documents from the collection
const documents = await collection.find(filter).limit(50).toArray();
// Create embeddings from a field in the collection
let updatedDocCount = 0;
console.log("Generating embeddings for documents...");
await Promise.all(documents.map(async doc => {
// Generate an embedding by using the function that you defined
const embedding = await getEmbedding(doc.summary);
// Update the document with a new embedding field
await collection.updateOne({ "_id": doc._id },
{
"$set": {
"embedding": embedding
}
}
);
updatedDocCount += 1;
}));
console.log("Count of documents updated: " + updatedDocCount);
} catch (err) {
console.log(err.stack);
}
finally {
await client.close();
}
}
run().catch(console.dir);
2
node --env-file=.env create-embeddings.js
Generating embeddings for documents...
Count of documents updated: 50

You can view your vector embeddings as they generate by navigating to the sample_airbnb.listingsAndReviews collection in the Atlas UI and expanding the fields in a document.

1

Use the following code to generate embeddings from new data.

Specifically, this code uses the get_embedding function that you defined and the MongoDB PyMongo Driver to generate embeddings from an array of sample texts and ingest them into the sample_db.embeddings collection.

import pymongo
# Connect to your Atlas cluster
mongo_client = pymongo.MongoClient("<connection-string>")
db = mongo_client["sample_db"]
collection = db["embeddings"]
# Sample data
data = [
"Titanic: The story of the 1912 sinking of the largest luxury liner ever built",
"The Lion King: Lion cub and future king Simba searches for his identity",
"Avatar: A marine is dispatched to the moon Pandora on a unique mission"
]
# Ingest data into Atlas
inserted_doc_count = 0
for text in data:
embedding = get_embedding(text)
collection.insert_one({ "text": text, "embedding": embedding })
inserted_doc_count += 1
print(f"Inserted {inserted_doc_count} documents.")
Inserted 3 documents.
2

Replace <connection-string> with your Atlas cluster's SRV connection string.

Note

Your connection string should use the following format:

mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net
3

You can verify your vector embeddings by viewing them in the Atlas UI by navigating to the sample_db.embeddings collection in your cluster.

Note

This example uses the sample_airbnb.listingsAndReviews collection from our sample data, but you can adapt the code to work with any collection in your cluster.

1

Use the following code to generate embeddings from a field in an existing collection. Specifically, this code does the following:

  • Connects to your Atlas cluster.

  • Gets a subset of documents from the sample_airbnb.listingsAndReviews collection that have a non-empty summary field.

  • Generates embeddings from each document's summary field by using the get_embedding function that you defined.

  • Updates each document with a new embedding field that contains the embedding value by using the MongoDB PyMongo Driver.

import pymongo
# Connect to your Atlas cluster
mongo_client = pymongo.MongoClient("<connection-string>")
db = mongo_client["sample_airbnb"]
collection = db["listingsAndReviews"]
# Filter to exclude null or empty summary fields
filter = { "summary": {"$nin": [ None, "" ]} }
# Get a subset of documents in the collection
documents = collection.find(filter).limit(50)
# Update each document with a new embedding field
updated_doc_count = 0
for doc in documents:
embedding = get_embedding(doc["summary"])
collection.update_one( { "_id": doc["_id"] }, { "$set": { "embedding": embedding } } )
updated_doc_count += 1
print(f"Updated {updated_doc_count} documents.")
Updated 50 documents.
2

Replace <connection-string> with your Atlas cluster's SRV connection string.

Note

Your connection string should use the following format:

mongodb+srv://<db_username>:<db_password>@<clusterName>.<hostname>.mongodb.net
3

You can view your vector embeddings as they generate by navigating to the sample_airbnb.listingsAndReviews collection in the Atlas UI and expanding the fields in a document.

In this section, you index the vector embeddings in your collection and create an embedding that you use to run a sample vector search query.

When you run the query, Atlas Vector Search returns documents whose embeddings are closest in distance to the embedding from your vector search query. This indicates that they are similar in meaning.

1

To enable vector search queries on your data, you must create an Atlas Vector Search index on your collection.

Complete the following steps to create an index on the sample_db.embeddings collection that specifies the embedding field as the vector type and the similarity measure as euclidean.

  1. Create a file named named create-index.go and paste the following code.

    create-index.go
    package main
    import (
    "context"
    "fmt"
    "log"
    "os"
    "time"
    "github.com/joho/godotenv"
    "go.mongodb.org/mongo-driver/bson"
    "go.mongodb.org/mongo-driver/mongo"
    "go.mongodb.org/mongo-driver/mongo/options"
    )
    func main() {
    ctx := context.Background()
    if err := godotenv.Load(); err != nil {
    log.Println("no .env file found")
    }
    // Connect to your Atlas cluster
    uri := os.Getenv("ATLAS_CONNECTION_STRING")
    if uri == "" {
    log.Fatal("set your 'ATLAS_CONNECTION_STRING' environment variable.")
    }
    clientOptions := options.Client().ApplyURI(uri)
    client, err := mongo.Connect(ctx, clientOptions)
    if err != nil {
    log.Fatalf("failed to connect to the server: %v", err)
    }
    defer func() { _ = client.Disconnect(ctx) }()
    // Set the namespace
    coll := client.Database("sample_db").Collection("embeddings")
    indexName := "vector_index"
    opts := options.SearchIndexes().SetName(indexName).SetType("vectorSearch")
    type vectorDefinitionField struct {
    Type string `bson:"type"`
    Path string `bson:"path"`
    NumDimensions int `bson:"numDimensions"`
    Similarity string `bson:"similarity"`
    }
    type vectorDefinition struct {
    Fields []vectorDefinitionField `bson:"fields"`
    }
    indexModel := mongo.SearchIndexModel{
    Definition: vectorDefinition{
    Fields: []vectorDefinitionField{{
    Type: "vector",
    Path: "embedding",
    NumDimensions: <dimensions>,
    Similarity: "dotProduct"}},
    },
    Options: opts,
    }
    log.Println("Creating the index.")
    searchIndexName, err := coll.SearchIndexes().CreateOne(ctx, indexModel)
    if err != nil {
    log.Fatalf("failed to create the search index: %v", err)
    }
    // Await the creation of the index.
    log.Println("Polling to confirm successful index creation.")
    searchIndexes := coll.SearchIndexes()
    var doc bson.Raw
    for doc == nil {
    cursor, err := searchIndexes.List(ctx, options.SearchIndexes().SetName(searchIndexName))
    if err != nil {
    fmt.Errorf("failed to list search indexes: %w", err)
    }
    if !cursor.Next(ctx) {
    break
    }
    name := cursor.Current.Lookup("name").StringValue()
    queryable := cursor.Current.Lookup("queryable").Boolean()
    if name == searchIndexName && queryable {
    doc = cursor.Current
    } else {
    time.Sleep(5 * time.Second)
    }
    }
    log.Println("Name of Index Created: " + searchIndexName)
    }
  2. Replace the <dimensions> placeholder value with 1024 if you used the open-source model and 1536 if you used the model from OpenAI.

  3. Save the file, then run the following command:

    go run create-index.go
    2024/10/09 17:38:51 Creating the index.
    2024/10/09 17:38:52 Polling to confirm successful index creation.
    2024/10/09 17:39:22 Name of Index Created: vector_index

Note

The index should take about one minute to build. While it builds, the index is in an initial sync state. When it finishes building, you can start querying the data in your collection.

To learn more, see Create an Atlas Vector Search Index.

2
  1. Create a file named named vector-query.go and paste the following code.

    To run a vector search query, generate a query vector to pass into your aggregation pipeline.

    For example, this code does the following:

    • Creates a sample query embedding by calling the embedding function that you defined.

    • Passes the embedding into the queryVector field in your aggregation pipeline.

    • Runs a sample vector search query. This query uses the the $vectorSearch stage to perform an ENN search over your embeddings. It returns semantically similar documents in order of relevance and their vector search score.

      Note

      Your output might vary since environmental differences can introduce slight variations to your embeddings.

      To learn more, see Run Vector Search Queries.

    vector-query.go
    package main
    import (
    "context"
    "fmt"
    "log"
    "my-embeddings-project/common"
    "os"
    "github.com/joho/godotenv"
    "go.mongodb.org/mongo-driver/bson"
    "go.mongodb.org/mongo-driver/mongo"
    "go.mongodb.org/mongo-driver/mongo/options"
    )
    type TextAndScore struct {
    Text string `bson:"text"`
    Score float32 `bson:"score"`
    }
    func main() {
    ctx := context.Background()
    // Connect to your Atlas cluster
    if err := godotenv.Load(); err != nil {
    log.Println("no .env file found")
    }
    // Connect to your Atlas cluster
    uri := os.Getenv("ATLAS_CONNECTION_STRING")
    if uri == "" {
    log.Fatal("set your 'ATLAS_CONNECTION_STRING' environment variable.")
    }
    clientOptions := options.Client().ApplyURI(uri)
    client, err := mongo.Connect(ctx, clientOptions)
    if err != nil {
    log.Fatalf("failed to connect to the server: %v", err)
    }
    defer func() { _ = client.Disconnect(ctx) }()
    // Set the namespace
    coll := client.Database("sample_db").Collection("embeddings")
    query := "ocean tragedy"
    queryEmbedding := common.GetEmbeddings([]string{query})
    pipeline := mongo.Pipeline{
    bson.D{
    {"$vectorSearch", bson.D{
    {"queryVector", queryEmbedding[0]},
    {"index", "vector_index"},
    {"path", "embedding"},
    {"exact", true},
    {"limit", 5},
    }},
    },
    bson.D{
    {"$project", bson.D{
    {"_id", 0},
    {"text", 1},
    {"score", bson.D{
    {"$meta", "vectorSearchScore"},
    }},
    }},
    },
    }
    // Run the pipeline
    cursor, err := coll.Aggregate(ctx, pipeline)
    if err != nil {
    log.Fatalf("failed to run aggregation: %v", err)
    }
    defer func() { _ = cursor.Close(ctx) }()
    var matchingDocs []TextAndScore
    if err = cursor.All(ctx, &matchingDocs); err != nil {
    log.Fatalf("failed to unmarshal results to TextAndScore objects: %v", err)
    }
    for _, doc := range matchingDocs {
    fmt.Printf("Text: %v\nScore: %v\n", doc.Text, doc.Score)
    }
    }
    vector-query.go
    package main
    import (
    "context"
    "fmt"
    "log"
    "my-embeddings-project/common"
    "os"
    "github.com/joho/godotenv"
    "go.mongodb.org/mongo-driver/bson"
    "go.mongodb.org/mongo-driver/mongo"
    "go.mongodb.org/mongo-driver/mongo/options"
    )
    type TextAndScore struct {
    Text string `bson:"text"`
    Score float64 `bson:"score"`
    }
    func main() {
    ctx := context.Background()
    // Connect to your Atlas cluster
    if err := godotenv.Load(); err != nil {
    log.Println("no .env file found")
    }
    // Connect to your Atlas cluster
    uri := os.Getenv("ATLAS_CONNECTION_STRING")
    if uri == "" {
    log.Fatal("set your 'ATLAS_CONNECTION_STRING' environment variable.")
    }
    clientOptions := options.Client().ApplyURI(uri)
    client, err := mongo.Connect(ctx, clientOptions)
    if err != nil {
    log.Fatalf("failed to connect to the server: %v", err)
    }
    defer func() { _ = client.Disconnect(ctx) }()
    // Set the namespace
    coll := client.Database("sample_db").Collection("embeddings")
    query := "ocean tragedy"
    queryEmbedding := common.GetEmbeddings([]string{query})
    pipeline := mongo.Pipeline{
    bson.D{
    {"$vectorSearch", bson.D{
    {"queryVector", queryEmbedding[0]},
    {"index", "vector_index"},
    {"path", "embedding"},
    {"exact", true},
    {"limit", 5},
    }},
    },
    bson.D{
    {"$project", bson.D{
    {"_id", 0},
    {"text", 1},
    {"score", bson.D{
    {"$meta", "vectorSearchScore"},
    }},
    }},
    },
    }
    // Run the pipeline
    cursor, err := coll.Aggregate(ctx, pipeline)
    if err != nil {
    log.Fatalf("failed to run aggregation: %v", err)
    }
    defer func() { _ = cursor.Close(ctx) }()
    var matchingDocs []TextAndScore
    if err = cursor.All(ctx, &matchingDocs); err != nil {
    log.Fatalf("failed to unmarshal results to TextAndScore objects: %v", err)
    }
    for _, doc := range matchingDocs {
    fmt.Printf("Text: %v\nScore: %v\n", doc.Text, doc.Score)
    }
    }
  2. Save the file, then run the following command:

    go run vector-query.go
    Text: Titanic: The story of the 1912 sinking of the largest luxury liner ever built
    Score: 0.0042472864
    Text: Avatar: A marine is dispatched to the moon Pandora on a unique mission
    Score: 0.0031167597
    Text: The Lion King: Lion cub and future king Simba searches for his identity
    Score: 0.0024476869
    go run vector-query.go
    Text: Titanic: The story of the 1912 sinking of the largest luxury liner ever built
    Score: 0.4552372694015503
    Text: Avatar: A marine is dispatched to the moon Pandora on a unique mission
    Score: 0.4050072133541107
    Text: The Lion King: Lion cub and future king Simba searches for his identity
    Score: 0.35942140221595764
1

To enable vector search queries on your data, you must create an Atlas Vector Search index on your collection.

Complete the following steps to create an index on the sample_airbnb.listingsAndReviews collection that specifies the embeddings field as the vector type and the similarity measure as euclidean.

  1. Create a file named named create-index.go and paste the following code.

    create-index.go
    package main
    import (
    "context"
    "fmt"
    "log"
    "os"
    "time"
    "github.com/joho/godotenv"
    "go.mongodb.org/mongo-driver/bson"
    "go.mongodb.org/mongo-driver/mongo"
    "go.mongodb.org/mongo-driver/mongo/options"
    )
    func main() {
    ctx := context.Background()
    if err := godotenv.Load(); err != nil {
    log.Println("no .env file found")
    }
    // Connect to your Atlas cluster
    uri := os.Getenv("ATLAS_CONNECTION_STRING")
    if uri == "" {
    log.Fatal("set your 'ATLAS_CONNECTION_STRING' environment variable.")
    }
    clientOptions := options.Client().ApplyURI(uri)
    client, err := mongo.Connect(ctx, clientOptions)
    if err != nil {
    log.Fatalf("failed to connect to the server: %v", err)
    }
    defer func() { _ = client.Disconnect(ctx) }()
    // Set the namespace
    coll := client.Database("sample_airbnb").Collection("listingsAndReviews")
    indexName := "vector_index"
    opts := options.SearchIndexes().SetName(indexName).SetType("vectorSearch")
    type vectorDefinitionField struct {
    Type string `bson:"type"`
    Path string `bson:"path"`
    NumDimensions int `bson:"numDimensions"`
    Similarity string `bson:"similarity"`
    }
    type vectorDefinition struct {
    Fields []vectorDefinitionField `bson:"fields"`
    }
    indexModel := mongo.SearchIndexModel{
    Definition: vectorDefinition{
    Fields: []vectorDefinitionField{{
    Type: "vector",
    Path: "embeddings",
    NumDimensions: <dimensions>,
    Similarity: "dotProduct"}},
    },
    Options: opts,
    }
    log.Println("Creating the index.")
    searchIndexName, err := coll.SearchIndexes().CreateOne(ctx, indexModel)
    if err != nil {
    log.Fatalf("failed to create the search index: %v", err)
    }
    // Await the creation of the index.
    log.Println("Polling to confirm successful index creation.")
    searchIndexes := coll.SearchIndexes()
    var doc bson.Raw
    for doc == nil {
    cursor, err := searchIndexes.List(ctx, options.SearchIndexes().SetName(searchIndexName))
    if err != nil {
    fmt.Errorf("failed to list search indexes: %w", err)
    }
    if !cursor.Next(ctx) {
    break
    }
    name := cursor.Current.Lookup("name").StringValue()
    queryable := cursor.Current.Lookup("queryable").Boolean()
    if name == searchIndexName && queryable {
    doc = cursor.Current
    } else {
    time.Sleep(5 * time.Second)
    }
    }
    log.Println("Name of Index Created: " + searchIndexName)
    }
  2. Replace the <dimensions> placeholder value with 1024 if you used the open-source model and 1536 if you used the model from OpenAI.

  3. Save the file, then run the following command:

    go run create-index.go
    2024/10/10 10:03:12 Creating the index.
    2024/10/10 10:03:13 Polling to confirm successful index creation.
    2024/10/10 10:03:44 Name of Index Created: vector_index

Note

The index should take about one minute to build. While it builds, the index is in an initial sync state. When it finishes building, you can start querying the data in your collection.

To learn more, see Create an Atlas Vector Search Index.

2
  1. Create a file named named vector-query.go and paste the following code.

    To run a vector search query, generate a query vector to pass into your aggregation pipeline.

    For example, this code does the following:

    • Creates a sample query embedding by calling the embedding function that you defined.

    • Passes the embedding into the queryVector field in your aggregation pipeline.

    • Runs a sample vector search query. This query uses the the $vectorSearch stage to perform an ENN search over your embeddings. It returns semantically similar documents in order of relevance and their vector search score.

      Note

      Your output might vary since environmental differences can introduce slight variations to your embeddings.

      To learn more, see Run Vector Search Queries.

    vector-query.go
    package main
    import (
    "context"
    "fmt"
    "log"
    "my-embeddings-project/common"
    "os"
    "github.com/joho/godotenv"
    "go.mongodb.org/mongo-driver/bson"
    "go.mongodb.org/mongo-driver/mongo"
    "go.mongodb.org/mongo-driver/mongo/options"
    )
    type SummaryAndScore struct {
    Summary string `bson:"summary"`
    Score float32 `bson:"score"`
    }
    func main() {
    ctx := context.Background()
    // Connect to your Atlas cluster
    if err := godotenv.Load(); err != nil {
    log.Println("no .env file found")
    }
    // Connect to your Atlas cluster
    uri := os.Getenv("ATLAS_CONNECTION_STRING")
    if uri == "" {
    log.Fatal("set your 'ATLAS_CONNECTION_STRING' environment variable.")
    }
    clientOptions := options.Client().ApplyURI(uri)
    client, err := mongo.Connect(ctx, clientOptions)
    if err != nil {
    log.Fatalf("failed to connect to the server: %v", err)
    }
    defer func() { _ = client.Disconnect(ctx) }()
    // Set the namespace
    coll := client.Database("sample_airbnb").Collection("listingsAndReviews")
    query := "beach house"
    queryEmbedding := common.GetEmbeddings([]string{query})
    pipeline := mongo.Pipeline{
    bson.D{
    {"$vectorSearch", bson.D{
    {"queryVector", queryEmbedding[0]},
    {"index", "vector_index"},
    {"path", "embeddings"},
    {"exact", true},
    {"limit", 5},
    }},
    },
    bson.D{
    {"$project", bson.D{
    {"_id", 0},
    {"summary", 1},
    {"score", bson.D{
    {"$meta", "vectorSearchScore"},
    }},
    }},
    },
    }
    // Run the pipeline
    cursor, err := coll.Aggregate(ctx, pipeline)
    if err != nil {
    log.Fatalf("failed to run aggregation: %v", err)
    }
    defer func() { _ = cursor.Close(ctx) }()
    var matchingDocs []SummaryAndScore
    if err = cursor.All(ctx, &matchingDocs); err != nil {
    log.Fatalf("failed to unmarshal results to SummaryAndScore objects: %v", err)
    }
    for _, doc := range matchingDocs {
    fmt.Printf("Summary: %v\nScore: %v\n", doc.Summary, doc.Score)
    }
    }
    vector-query.go
    package main
    import (
    "context"
    "fmt"
    "log"
    "my-embeddings-project/common"
    "os"
    "github.com/joho/godotenv"
    "go.mongodb.org/mongo-driver/bson"
    "go.mongodb.org/mongo-driver/mongo"
    "go.mongodb.org/mongo-driver/mongo/options"
    )
    type SummaryAndScore struct {
    Summary string `bson:"summary"`
    Score float64 `bson:"score"`
    }
    func main() {
    ctx := context.Background()
    // Connect to your Atlas cluster
    if err := godotenv.Load(); err != nil {
    log.Println("no .env file found")
    }
    // Connect to your Atlas cluster
    uri := os.Getenv("ATLAS_CONNECTION_STRING")
    if uri == "" {
    log.Fatal("set your 'ATLAS_CONNECTION_STRING' environment variable.")
    }
    clientOptions := options.Client().ApplyURI(uri)
    client, err := mongo.Connect(ctx, clientOptions)
    if err != nil {
    log.Fatalf("failed to connect to the server: %v", err)
    }
    defer func() { _ = client.Disconnect(ctx) }()
    // Set the namespace
    coll := client.Database("sample_airbnb").Collection("listingsAndReviews")
    query := "beach house"
    queryEmbedding := common.GetEmbeddings([]string{query})
    pipeline := mongo.Pipeline{
    bson.D{
    {"$vectorSearch", bson.D{
    {"queryVector", queryEmbedding[0]},
    {"index", "vector_index"},
    {"path", "embeddings"},
    {"exact", true},
    {"limit", 5},
    }},
    },
    bson.D{
    {"$project", bson.D{
    {"_id", 0},
    {"summary", 1},
    {"score", bson.D{
    {"$meta", "vectorSearchScore"},
    }},
    }},
    },
    }
    // Run the pipeline
    cursor, err := coll.Aggregate(ctx, pipeline)
    if err != nil {
    log.Fatalf("failed to run aggregation: %v", err)
    }
    defer func() { _ = cursor.Close(ctx) }()
    var matchingDocs []SummaryAndScore
    if err = cursor.All(ctx, &matchingDocs); err != nil {
    log.Fatalf("failed to unmarshal results to SummaryAndScore objects: %v", err)
    }
    for _, doc := range matchingDocs {
    fmt.Printf("Summary: %v\nScore: %v\n", doc.Summary, doc.Score)
    }
    }
  2. Save the file, then run the following command:

    go run vector-query.go
    Summary: Near to underground metro station. Walking distance to seaside. 2 floors 1 entry. Husband, wife, girl and boy is living.
    Score: 0.0045180833
    Summary: A beautiful and comfortable 1 Bedroom Air Conditioned Condo in Makaha Valley - stunning Ocean & Mountain views All the amenities of home, suited for longer stays. Full kitchen & large bathroom. Several gas BBQ's for all guests to use & a large heated pool surrounded by reclining chairs to sunbathe. The Ocean you see in the pictures is not even a mile away, known as the famous Makaha Surfing Beach. Golfing, hiking,snorkeling paddle boarding, surfing are all just minutes from the front door.
    Score: 0.004480799
    Summary: Having a large airy living room. The apartment is well divided. Fully furnished and cozy. The building has a 24h doorman and camera services in the corridors. It is very well located, close to the beach, restaurants, pubs and several shops and supermarkets. And it offers a good mobility being close to the subway.
    Score: 0.0042421296
    Summary: Room 2 Private room in charming recently renovated federation guest house at Coogee Beach. Prices are per room for 2 People only. A queen and a single bed. Not suitable for group booking All rooms have TV, desk, wardrobe, beds, unlimited wifi 2 mins from the beach, cafes and transport. This is not a party house but a safe and clean place to stay. Share bathrooms and kitchen... All common areas are cleaned daily.
    Score: 0.004227752
    Summary: A friendly apartment block where everyone knows each other and there is a strong communal vibe. Property has a huge backyard with vege garden and skate ramp. 7min walk to the beach and 2min to buses.
    Score: 0.0042201905
    go run vector-query.go
    Summary: A friendly apartment block where everyone knows each other and there is a strong communal vibe. Property has a huge backyard with vege garden and skate ramp. 7min walk to the beach and 2min to buses.
    Score: 0.4832950830459595
    Summary: Room 2 Private room in charming recently renovated federation guest house at Coogee Beach. Prices are per room for 2 People only. A queen and a single bed. Not suitable for group booking All rooms have TV, desk, wardrobe, beds, unlimited wifi 2 mins from the beach, cafes and transport. This is not a party house but a safe and clean place to stay. Share bathrooms and kitchen... All common areas are cleaned daily.
    Score: 0.48093676567077637
    Summary: THIS IS A VERY SPACIOUS 1 BEDROOM FULL CONDO (SLEEPS 4) AT THE BEAUTIFUL VALLEY ISLE RESORT ON THE BEACH IN LAHAINA, MAUI!! YOU WILL LOVE THE PERFECT LOCATION OF THIS VERY NICE HIGH RISE! ALSO THIS SPACIOUS FULL CONDO, FULL KITCHEN, BIG BALCONY!!
    Score: 0.4629695415496826
    Summary: A beautiful and comfortable 1 Bedroom Air Conditioned Condo in Makaha Valley - stunning Ocean & Mountain views All the amenities of home, suited for longer stays. Full kitchen & large bathroom. Several gas BBQ's for all guests to use & a large heated pool surrounded by reclining chairs to sunbathe. The Ocean you see in the pictures is not even a mile away, known as the famous Makaha Surfing Beach. Golfing, hiking,snorkeling paddle boarding, surfing are all just minutes from the front door.
    Score: 0.45800843834877014
    Summary: The Apartment has a living room, toilet, bedroom (suite) and American kitchen. Well located, on the Copacabana beach block a 05 Min. walk from Ipanema beach (Arpoador). Internet wifi, cable tv, air conditioning in the bedroom, ceiling fans in the bedroom and living room, kitchen with microwave, cooker, Blender, dishes, cutlery and service area with fridge, washing machine, clothesline for drying clothes and closet with several utensils for use. The property boasts 45 m2.
    Score: 0.45398443937301636
1

To enable vector search queries on your data, you must create an Atlas Vector Search index on your collection.

Complete the following steps to create an index on the sample_db.embeddings collection that specifies the embedding field as the vector type and the similarity measure as euclidean.

  1. Create a file named CreateIndex.java and paste the following code:

    CreateIndex.java
    import com.mongodb.MongoException;
    import com.mongodb.client.ListSearchIndexesIterable;
    import com.mongodb.client.MongoClient;
    import com.mongodb.client.MongoClients;
    import com.mongodb.client.MongoCollection;
    import com.mongodb.client.MongoCursor;
    import com.mongodb.client.MongoDatabase;
    import com.mongodb.client.model.SearchIndexModel;
    import com.mongodb.client.model.SearchIndexType;
    import org.bson.Document;
    import org.bson.conversions.Bson;
    import java.util.Collections;
    import java.util.List;
    public class CreateIndex {
    public static void main(String[] args) {
    String uri = System.getenv("ATLAS_CONNECTION_STRING");
    if (uri == null || uri.isEmpty()) {
    throw new IllegalStateException("ATLAS_CONNECTION_STRING env variable is not set or is empty.");
    }
    // establish connection and set namespace
    try (MongoClient mongoClient = MongoClients.create(uri)) {
    MongoDatabase database = mongoClient.getDatabase("sample_db");
    MongoCollection<Document> collection = database.getCollection("embeddings");
    // define the index details
    String indexName = "vector_index";
    int dimensionsHuggingFaceModel = 1024;
    int dimensionsOpenAiModel = 1536;
    Bson definition = new Document(
    "fields",
    Collections.singletonList(
    new Document("type", "vector")
    .append("path", "embedding")
    .append("numDimensions", <dimensions>) // replace with var for the model used
    .append("similarity", "dotProduct")));
    // define the index model using the specified details
    SearchIndexModel indexModel = new SearchIndexModel(
    indexName,
    definition,
    SearchIndexType.vectorSearch());
    // Create the index using the model
    try {
    List<String> result = collection.createSearchIndexes(Collections.singletonList(indexModel));
    System.out.println("Successfully created a vector index named: " + result);
    } catch (Exception e) {
    throw new RuntimeException(e);
    }
    // Wait for Atlas to build the index and make it queryable
    System.out.println("Polling to confirm the index has completed building.");
    System.out.println("It may take up to a minute for the index to build before you can query using it.");
    ListSearchIndexesIterable<Document> searchIndexes = collection.listSearchIndexes();
    Document doc = null;
    while (doc == null) {
    try (MongoCursor<Document> cursor = searchIndexes.iterator()) {
    if (!cursor.hasNext()) {
    break;
    }
    Document current = cursor.next();
    String name = current.getString("name");
    boolean queryable = current.getBoolean("queryable");
    if (name.equals(indexName) && queryable) {
    doc = current;
    } else {
    Thread.sleep(500);
    }
    } catch (Exception e) {
    throw new RuntimeException(e);
    }
    }
    System.out.println(indexName + " index is ready to query");
    } catch (MongoException me) {
    throw new RuntimeException("Failed to connect to MongoDB ", me);
    } catch (Exception e) {
    throw new RuntimeException("Operation failed: ", e);
    }
    }
    }
  2. Replace the <dimensions> placeholder value with the appropriate variable for the model you used:

    • dimensionsHuggingFaceModel: 1024 dimensions ("mixedbread-ai/mxbai-embed-large-v1" model)

    • dimensionsOpenAiModel: 1536 dimensions ("text-embedding-3-small" model)

    Note

    The number of dimensions is determined by the model used to generate the embeddings. If you adapt this code to use a different model, ensure that you pass the correct value to numDimensions. See also the Choosing an Embedding Model section.

  3. Save and run the file. The output resembles:

    Successfully created a vector index named: [vector_index]
    Polling to confirm the index has completed building.
    It may take up to a minute for the index to build before you can query using it.
    vector_index index is ready to query

Note

The index should take about one minute to build. While it builds, the index is in an initial sync state. When it finishes building, you can start querying the data in your collection.

To learn more, see Create an Atlas Vector Search Index.

2
  1. Create a file named named VectorQuery.java and paste the following code.

    To run a vector search query, generate a query vector to pass into your aggregation pipeline.

    For example, this code does the following:

    • Creates a sample query embedding by calling the embedding function that you defined.

    • Passes the embedding into the queryVector field in your aggregation pipeline.

    • Runs a sample vector search query. This query uses the the $vectorSearch stage to perform an ENN search over your embeddings. It returns semantically similar documents in order of relevance and their vector search score.

      Note

      Your output might vary since environmental differences can introduce slight variations to your embeddings.

      To learn more, see Run Vector Search Queries.

    VectorQuery.java
    import com.mongodb.MongoException;
    import com.mongodb.client.MongoClient;
    import com.mongodb.client.MongoClients;
    import com.mongodb.client.MongoCollection;
    import com.mongodb.client.MongoDatabase;
    import com.mongodb.client.model.search.FieldSearchPath;
    import org.bson.BsonArray;
    import org.bson.BsonValue;
    import org.bson.Document;
    import org.bson.conversions.Bson;
    import java.util.ArrayList;
    import java.util.List;
    import static com.mongodb.client.model.Aggregates.project;
    import static com.mongodb.client.model.Aggregates.vectorSearch;
    import static com.mongodb.client.model.Projections.exclude;
    import static com.mongodb.client.model.Projections.fields;
    import static com.mongodb.client.model.Projections.include;
    import static com.mongodb.client.model.Projections.metaVectorSearchScore;
    import static com.mongodb.client.model.search.SearchPath.fieldPath;
    import static com.mongodb.client.model.search.VectorSearchOptions.exactVectorSearchOptions;
    import static java.util.Arrays.asList;
    public class VectorQuery {
    public static void main(String[] args) {
    String uri = System.getenv("ATLAS_CONNECTION_STRING");
    if (uri == null || uri.isEmpty()) {
    throw new IllegalStateException("ATLAS_CONNECTION_STRING env variable is not set or is empty.");
    }
    // establish connection and set namespace
    try (MongoClient mongoClient = MongoClients.create(uri)) {
    MongoDatabase database = mongoClient.getDatabase("sample_db");
    MongoCollection<Document> collection = database.getCollection("embeddings");
    // define $vectorSearch query options
    String query = "ocean tragedy";
    EmbeddingProvider embeddingProvider = new EmbeddingProvider();
    BsonArray embeddingBsonArray = embeddingProvider.getEmbedding(query);
    List<Double> embedding = new ArrayList<>();
    for (BsonValue value : embeddingBsonArray.stream().toList()) {
    embedding.add(value.asDouble().getValue());
    }
    // define $vectorSearch pipeline
    String indexName = "vector_index";
    FieldSearchPath fieldSearchPath = fieldPath("embedding");
    int limit = 5;
    List<Bson> pipeline = asList(
    vectorSearch(
    fieldSearchPath,
    embedding,
    indexName,
    limit,
    exactVectorSearchOptions()
    ),
    project(
    fields(exclude("_id"), include("text"),
    metaVectorSearchScore("score"))));
    // run query and print results
    List<Document> results = collection.aggregate(pipeline).into(new ArrayList<>());
    if (results.isEmpty()) {
    System.out.println("No results found.");
    } else {
    results.forEach(doc -> {
    System.out.println("Text: " + doc.getString("text"));
    System.out.println("Score: " + doc.getDouble("score"));
    });
    }
    } catch (MongoException me) {
    throw new RuntimeException("Failed to connect to MongoDB ", me);
    } catch (Exception e) {
    throw new RuntimeException("Operation failed: ", e);
    }
    }
    }
  2. Save and run the file. The output resembles one of the following, depending on the model you used:

    Text: Titanic: The story of the 1912 sinking of the largest luxury liner ever built
    Score: 0.004247286356985569
    Text: Avatar: A marine is dispatched to the moon Pandora on a unique mission
    Score: 0.003116759704425931
    Text: The Lion King: Lion cub and future king Simba searches for his identity
    Score: 0.002447686856612563
    Text: Titanic: The story of the 1912 sinking of the largest luxury liner ever built
    Score: 0.45522359013557434
    Text: Avatar: A marine is dispatched to the moon Pandora on a unique mission
    Score: 0.4049977660179138
    Text: The Lion King: Lion cub and future king Simba searches for his identity
    Score: 0.35942474007606506
1

To enable vector search queries on your data, you must create an Atlas Vector Search index on your collection.

Complete the following steps to create an index on the sample_airbnb.listingsAndReviews collection that specifies the embeddings field as the vector type and the similarity measure as euclidean.

  1. Create a file named CreateIndex.java and paste the following code:

    CreateIndex.java
    import com.mongodb.MongoException;
    import com.mongodb.client.MongoClient;
    import com.mongodb.client.MongoClients;
    import com.mongodb.client.MongoCollection;
    import com.mongodb.client.MongoDatabase;
    import com.mongodb.client.ListSearchIndexesIterable;
    import com.mongodb.client.MongoCursor;
    import com.mongodb.client.model.SearchIndexModel;
    import com.mongodb.client.model.SearchIndexType;
    import org.bson.Document;
    import org.bson.conversions.Bson;
    import java.util.Collections;
    import java.util.List;
    public class CreateIndex {
    public static void main(String[] args) {
    String uri = System.getenv("ATLAS_CONNECTION_STRING");
    if (uri == null || uri.isEmpty()) {
    throw new IllegalStateException("ATLAS_CONNECTION_STRING env variable is not set or is empty.");
    }
    // establish connection and set namespace
    try (MongoClient mongoClient = MongoClients.create(uri)) {
    MongoDatabase database = mongoClient.getDatabase("sample_airbnb");
    MongoCollection<Document> collection = database.getCollection("listingsAndReviews");
    // define the index details
    String indexName = "vector_index";
    int dimensionsHuggingFaceModel = 1024;
    int dimensionsOpenAiModel = 1536;
    Bson definition = new Document(
    "fields",
    Collections.singletonList(
    new Document("type", "vector")
    .append("path", "embeddings")
    .append("numDimensions", <dimensions>) // replace with var for the model used
    .append("similarity", "dotProduct")));
    // define the index model using the specified details
    SearchIndexModel indexModel = new SearchIndexModel(
    indexName,
    definition,
    SearchIndexType.vectorSearch());
    // create the index using the model
    try {
    List<String> result = collection.createSearchIndexes(Collections.singletonList(indexModel));
    System.out.println("Successfully created a vector index named: " + result);
    System.out.println("It may take up to a minute for the index to build before you can query using it.");
    } catch (Exception e) {
    throw new RuntimeException(e);
    }
    // wait for Atlas to build the index and make it queryable
    System.out.println("Polling to confirm the index has completed building.");
    ListSearchIndexesIterable<Document> searchIndexes = collection.listSearchIndexes();
    Document doc = null;
    while (doc == null) {
    try (MongoCursor<Document> cursor = searchIndexes.iterator()) {
    if (!cursor.hasNext()) {
    break;
    }
    Document current = cursor.next();
    String name = current.getString("name");
    boolean queryable = current.getBoolean("queryable");
    if (name.equals(indexName) && queryable) {
    doc = current;
    } else {
    Thread.sleep(500);
    }
    } catch (Exception e) {
    throw new RuntimeException(e);
    }
    }
    System.out.println(indexName + " index is ready to query");
    } catch (MongoException me) {
    throw new RuntimeException("Failed to connect to MongoDB ", me);
    } catch (Exception e) {
    throw new RuntimeException("Operation failed: ", e);
    }
    }
    }
  2. Replace the <dimensions> placeholder value with the appropriate variable for the model you used:

    • dimensionsHuggingFaceModel: 1024 dimensions (open-source)

    • dimensionsOpenAiModel: 1536 dimensions

    Note

    The number of dimensions is determined by the model used to generate the embeddings. If you are using a different model, ensure that you pass the correct value to numDimensions. See also the Choosing an Embedding Model section.

  3. Save and run the file. The output resembles:

    Successfully created a vector index named: [vector_index]
    Polling to confirm the index has completed building.
    It may take up to a minute for the index to build before you can query using it.
    vector_index index is ready to query

Note

The index should take about one minute to build. While it builds, the index is in an initial sync state. When it finishes building, you can start querying the data in your collection.

To learn more, see Create an Atlas Vector Search Index.

2
  1. Create a file named named VectorQuery.java and paste the following code.

    To run a vector search query, generate a query vector to pass into your aggregation pipeline.

    For example, this code does the following:

    • Creates a sample query embedding by calling the embedding function that you defined.

    • Passes the embedding into the queryVector field in your aggregation pipeline.

    • Runs a sample vector search query. This query uses the the $vectorSearch stage to perform an ENN search over your embeddings. It returns semantically similar documents in order of relevance and their vector search score.

      Note

      Your output might vary since environmental differences can introduce slight variations to your embeddings.

      To learn more, see Run Vector Search Queries.

    VectorQuery.java
    import com.mongodb.MongoException;
    import com.mongodb.client.MongoClient;
    import com.mongodb.client.MongoClients;
    import com.mongodb.client.MongoCollection;
    import com.mongodb.client.MongoDatabase;
    import com.mongodb.client.model.search.FieldSearchPath;
    import org.bson.BsonArray;
    import org.bson.BsonValue;
    import org.bson.Document;
    import org.bson.conversions.Bson;
    import java.util.ArrayList;
    import java.util.List;
    import static com.mongodb.client.model.Aggregates.project;
    import static com.mongodb.client.model.Aggregates.vectorSearch;
    import static com.mongodb.client.model.Projections.exclude;
    import static com.mongodb.client.model.Projections.fields;
    import static com.mongodb.client.model.Projections.include;
    import static com.mongodb.client.model.Projections.metaVectorSearchScore;
    import static com.mongodb.client.model.search.SearchPath.fieldPath;
    import static com.mongodb.client.model.search.VectorSearchOptions.exactVectorSearchOptions;
    import static java.util.Arrays.asList;
    public class VectorQuery {
    public static void main(String[] args) {
    String uri = System.getenv("ATLAS_CONNECTION_STRING");
    if (uri == null || uri.isEmpty()) {
    throw new IllegalStateException("ATLAS_CONNECTION_STRING env variable is not set or is empty.");
    }
    // establish connection and set namespace
    try (MongoClient mongoClient = MongoClients.create(uri)) {
    MongoDatabase database = mongoClient.getDatabase("sample_airbnb");
    MongoCollection<Document> collection = database.getCollection("listingsAndReviews");
    // define the query and get the embedding
    String query = "beach house";
    EmbeddingProvider embeddingProvider = new EmbeddingProvider();
    BsonArray embeddingBsonArray = embeddingProvider.getEmbedding(query);
    List<Double> embedding = new ArrayList<>();
    for (BsonValue value : embeddingBsonArray.stream().toList()) {
    embedding.add(value.asDouble().getValue());
    }
    // define $vectorSearch pipeline
    String indexName = "vector_index";
    FieldSearchPath fieldSearchPath = fieldPath("embeddings");
    int limit = 5;
    List<Bson> pipeline = asList(
    vectorSearch(
    fieldSearchPath,
    embedding,
    indexName,
    limit,
    exactVectorSearchOptions()),
    project(
    fields(exclude("_id"), include("summary"),
    metaVectorSearchScore("score"))));
    // run query and print results
    List<Document> results = collection.aggregate(pipeline).into(new ArrayList<>());
    if (results.isEmpty()) {
    System.out.println("No results found.");
    } else {
    results.forEach(doc -> {
    System.out.println("Summary: " + doc.getString("summary"));
    System.out.println("Score: " + doc.getDouble("score"));
    });
    }
    } catch (MongoException me) {
    throw new RuntimeException("Failed to connect to MongoDB ", me);
    } catch (Exception e) {
    throw new RuntimeException("Operation failed: ", e);
    }
    }
    }
  2. Save and run the file. The output resembles one of the following, depending on the model you used:

    Summary: Near to underground metro station. Walking distance to seaside. 2 floors 1 entry. Husband, wife, girl and boy is living.
    Score: 0.004518083296716213
    Summary: A beautiful and comfortable 1 Bedroom Air Conditioned Condo in Makaha Valley - stunning Ocean & Mountain views All the amenities of home, suited for longer stays. Full kitchen & large bathroom. Several gas BBQ's for all guests to use & a large heated pool surrounded by reclining chairs to sunbathe. The Ocean you see in the pictures is not even a mile away, known as the famous Makaha Surfing Beach. Golfing, hiking,snorkeling paddle boarding, surfing are all just minutes from the front door.
    Score: 0.0044807991944253445
    Summary: Having a large airy living room. The apartment is well divided. Fully furnished and cozy. The building has a 24h doorman and camera services in the corridors. It is very well located, close to the beach, restaurants, pubs and several shops and supermarkets. And it offers a good mobility being close to the subway.
    Score: 0.004242129623889923
    Summary: Room 2 Private room in charming recently renovated federation guest house at Coogee Beach. Prices are per room for 2 People only. A queen and a single bed. Not suitable for group booking All rooms have TV, desk, wardrobe, beds, unlimited wifi 2 mins from the beach, cafes and transport. This is not a party house but a safe and clean place to stay. Share bathrooms and kitchen... All common areas are cleaned daily.
    Score: 0.004227751865983009
    Summary: A friendly apartment block where everyone knows each other and there is a strong communal vibe. Property has a huge backyard with vege garden and skate ramp. 7min walk to the beach and 2min to buses.
    Score: 0.004220190457999706
    Summary: A friendly apartment block where everyone knows each other and there is a strong communal vibe. Property has a huge backyard with vege garden and skate ramp. 7min walk to the beach and 2min to buses.
    Score: 0.4832950830459595
    Summary: Room 2 Private room in charming recently renovated federation guest house at Coogee Beach. Prices are per room for 2 People only. A queen and a single bed. Not suitable for group booking All rooms have TV, desk, wardrobe, beds, unlimited wifi 2 mins from the beach, cafes and transport. This is not a party house but a safe and clean place to stay. Share bathrooms and kitchen... All common areas are cleaned daily.
    Score: 0.48092085123062134
    Summary: THIS IS A VERY SPACIOUS 1 BEDROOM FULL CONDO (SLEEPS 4) AT THE BEAUTIFUL VALLEY ISLE RESORT ON THE BEACH IN LAHAINA, MAUI!! YOU WILL LOVE THE PERFECT LOCATION OF THIS VERY NICE HIGH RISE! ALSO THIS SPACIOUS FULL CONDO, FULL KITCHEN, BIG BALCONY!!
    Score: 0.4629460275173187
    Summary: A beautiful and comfortable 1 Bedroom Air Conditioned Condo in Makaha Valley - stunning Ocean & Mountain views All the amenities of home, suited for longer stays. Full kitchen & large bathroom. Several gas BBQ's for all guests to use & a large heated pool surrounded by reclining chairs to sunbathe. The Ocean you see in the pictures is not even a mile away, known as the famous Makaha Surfing Beach. Golfing, hiking,snorkeling paddle boarding, surfing are all just minutes from the front door.
    Score: 0.4581468403339386
    Summary: The Apartment has a living room, toilet, bedroom (suite) and American kitchen. Well located, on the Copacabana beach block a 05 Min. walk from Ipanema beach (Arpoador). Internet wifi, cable tv, air conditioning in the bedroom, ceiling fans in the bedroom and living room, kitchen with microwave, cooker, Blender, dishes, cutlery and service area with fridge, washing machine, clothesline for drying clothes and closet with several utensils for use. The property boasts 45 m2.
    Score: 0.45398443937301636
1

To enable vector search queries on your data, you must create an Atlas Vector Search index on your collection.

Complete the following steps to create an index on the sample_db.embeddings collection that specifies the embedding field as the vector type and the similarity measure as euclidean.

  1. Create a file named named create-index.js and paste the following code.

    create-index.js
    import { MongoClient } from 'mongodb';
    // connect to your Atlas deployment
    const client = new MongoClient(process.env.ATLAS_CONNECTION_STRING);
    async function run() {
    try {
    const database = client.db("sample_db");
    const collection = database.collection("embeddings");
    // define your Atlas Vector Search index
    const index = {
    name: "vector_index",
    type: "vectorSearch",
    definition: {
    "fields": [
    {
    "type": "vector",
    "path": "embedding",
    "similarity": "dotProduct",
    "numDimensions": <dimensions>
    }
    ]
    }
    }
    // run the helper method
    const result = await collection.createSearchIndex(index);
    console.log(result);
    } finally {
    await client.close();
    }
    }
    run().catch(console.dir);
  2. Replace the <dimensions> placeholder value with 768 if you used the open-source model and 1536 if you used the model from OpenAI.

  3. Save the file, then run the following command:

    node --env-file=.env create-index.js

Note

The index should take about one minute to build. While it builds, the index is in an initial sync state. When it finishes building, you can start querying the data in your collection.

To learn more, see Create an Atlas Vector Search Index.

2
  1. Create a file named named vector-query.js and paste the following code.

    To run a vector search query, generate a query vector to pass into your aggregation pipeline.

    For example, this code does the following:

    • Creates a sample query embedding by calling the embedding function that you defined.

    • Passes the embedding into the queryVector field in your aggregation pipeline.

    • Runs a sample vector search query. This query uses the the $vectorSearch stage to perform an ENN search over your embeddings. It returns semantically similar documents in order of relevance and their vector search score.

      Note

      Your output might vary since environmental differences can introduce slight variations to your embeddings.

      To learn more, see Run Vector Search Queries.

    vector-query.js
    import { MongoClient } from 'mongodb';
    import { getEmbedding } from './get-embeddings.js';
    // MongoDB connection URI and options
    const client = new MongoClient(process.env.ATLAS_CONNECTION_STRING);
    async function run() {
    try {
    // Connect to the MongoDB client
    await client.connect();
    // Specify the database and collection
    const database = client.db("sample_db");
    const collection = database.collection("embeddings");
    // Generate embedding for the search query
    const queryEmbedding = await getEmbedding("ocean tragedy");
    // Define the sample vector search pipeline
    const pipeline = [
    {
    $vectorSearch: {
    index: "vector_index",
    queryVector: queryEmbedding,
    path: "embedding",
    exact: true,
    limit: 5
    }
    },
    {
    $project: {
    _id: 0,
    text: 1,
    score: {
    $meta: "vectorSearchScore"
    }
    }
    }
    ];
    // run pipeline
    const result = collection.aggregate(pipeline);
    // print results
    for await (const doc of result) {
    console.dir(JSON.stringify(doc));
    }
    } finally {
    await client.close();
    }
    }
    run().catch(console.dir);
  2. Save the file, then run the following command:

    node --env-file=.env vector-query.js
    '{"text":"Titanic: The story of the 1912 sinking of the largest luxury liner ever built","score":0.5103757977485657}'
    '{"text":"Avatar: A marine is dispatched to the moon Pandora on a unique mission","score":0.4616812467575073}'
    '{"text":"The Lion King: Lion cub and future king Simba searches for his identity","score":0.4115804433822632}'
    node --env-file=.env vector-query.js
    {"text":"Titanic: The story of the 1912 sinking of the largest luxury liner ever built","score":0.4551968574523926}
    {"text":"Avatar: A marine is dispatched to the moon Pandora on a unique mission","score":0.4050074517726898}
    {"text":"The Lion King: Lion cub and future king Simba searches for his identity","score":0.3594386577606201}
1

To enable vector search queries on your data, you must create an Atlas Vector Search index on your collection.

Complete the following steps to create an index on the sample_airbnb.listingsAndReviews collection that specifies the embedding field as the vector type and the similarity measure as euclidean.

  1. Create a file named named create-index.js and paste the following code.

    create-index.js
    import { MongoClient } from 'mongodb';
    // connect to your Atlas deployment
    const client = new MongoClient(process.env.ATLAS_CONNECTION_STRING);
    async function run() {
    try {
    const database = client.db("sample_airbnb");
    const collection = database.collection("listingsAndReviews");
    // Define your Atlas Vector Search index
    const index = {
    name: "vector_index",
    type: "vectorSearch",
    definition: {
    "fields": [
    {
    "type": "vector",
    "path": "embedding",
    "similarity": "dotProduct",
    "numDimensions": <dimensions>
    }
    ]
    }
    }
    // Call the method to create the index
    const result = await collection.createSearchIndex(index);
    console.log(result);
    } finally {
    await client.close();
    }
    }
    run().catch(console.dir);
  2. Replace the <dimensions> placeholder value with 768 if you used the open-source model and 1536 if you used the model from OpenAI.

  3. Save the file, then run the following command:

    node --env-file=.env create-index.js

Note

The index should take about one minute to build. While it builds, the index is in an initial sync state. When it finishes building, you can start querying the data in your collection.

To learn more, see Create an Atlas Vector Search Index.

2
  1. Create a file named named vector-query.js and paste the following code.

    To run a vector search query, generate a query vector to pass into your aggregation pipeline.

    For example, this code does the following:

    • Creates a sample query embedding by calling the embedding function that you defined.

    • Passes the embedding into the queryVector field in your aggregation pipeline.

    • Runs a sample vector search query. This query uses the the $vectorSearch stage to perform an ENN search over your embeddings. It returns semantically similar documents in order of relevance and their vector search score.

      Note

      Your output might vary since environmental differences can introduce slight variations to your embeddings.

      To learn more, see Run Vector Search Queries.

    vector-query.js
    import { MongoClient } from 'mongodb';
    import { getEmbedding } from './get-embeddings.js';
    // MongoDB connection URI and options
    const client = new MongoClient(process.env.ATLAS_CONNECTION_STRING);
    async function run() {
    try {
    // Connect to the MongoDB client
    await client.connect();
    // Specify the database and collection
    const database = client.db("sample_airbnb");
    const collection = database.collection("listingsAndReviews");
    // Generate embedding for the search query
    const queryEmbedding = await getEmbedding("beach house");
    // Define the sample vector search pipeline
    const pipeline = [
    {
    $vectorSearch: {
    index: "vector_index",
    queryVector: queryEmbedding,
    path: "embedding",
    exact: true,
    limit: 5
    }
    },
    {
    $project: {
    _id: 0,
    summary: 1,
    score: {
    $meta: "vectorSearchScore"
    }
    }
    }
    ];
    // run pipeline
    const result = collection.aggregate(pipeline);
    // print results
    for await (const doc of result) {
    console.dir(JSON.stringify(doc));
    }
    } finally {
    await client.close();
    }
    }
    run().catch(console.dir);
  2. Save the file, then run the following command:

    node --env-file=.env vector-query.js
    '{"summary":"Having a large airy living room. The apartment is well divided. Fully furnished and cozy. The building has a 24h doorman and camera services in the corridors. It is very well located, close to the beach, restaurants, pubs and several shops and supermarkets. And it offers a good mobility being close to the subway.","score":0.5334879159927368}'
    '{"summary":"A beautiful and comfortable 1 Bedroom Air Conditioned Condo in Makaha Valley - stunning Ocean & Mountain views All the amenities of home, suited for longer stays. Full kitchen & large bathroom. Several gas BBQ's for all guests to use & a large heated pool surrounded by reclining chairs to sunbathe. The Ocean you see in the pictures is not even a mile away, known as the famous Makaha Surfing Beach. Golfing, hiking,snorkeling paddle boarding, surfing are all just minutes from the front door.","score":0.5240535736083984}'
    '{"summary":"The Apartment has a living room, toilet, bedroom (suite) and American kitchen. Well located, on the Copacabana beach block a 05 Min. walk from Ipanema beach (Arpoador). Internet wifi, cable tv, air conditioning in the bedroom, ceiling fans in the bedroom and living room, kitchen with microwave, cooker, Blender, dishes, cutlery and service area with fridge, washing machine, clothesline for drying clothes and closet with several utensils for use. The property boasts 45 m2.","score":0.5232879519462585}'
    '{"summary":"Room 2 Private room in charming recently renovated federation guest house at Coogee Beach. Prices are per room for 2 People only. A queen and a single bed. Not suitable for group booking All rooms have TV, desk, wardrobe, beds, unlimited wifi 2 mins from the beach, cafes and transport. This is not a party house but a safe and clean place to stay. Share bathrooms and kitchen... All common areas are cleaned daily.","score":0.5186381340026855}'
    '{"summary":"A friendly apartment block where everyone knows each other and there is a strong communal vibe. Property has a huge backyard with vege garden and skate ramp. 7min walk to the beach and 2min to buses.","score":0.5078228116035461}'
    node --env-file=.env vector-query.js
    {"summary": "A friendly apartment block where everyone knows each other and there is a strong communal vibe. Property has a huge backyard with vege garden and skate ramp. 7min walk to the beach and 2min to buses.", "score": 0.483333021402359}
    {"summary": "Room 2 Private room in charming recently renovated federation guest house at Coogee Beach. Prices are per room for 2 People only. A queen and a single bed. Not suitable for group booking All rooms have TV, desk, wardrobe, beds, unlimited wifi 2 mins from the beach, cafes and transport. This is not a party house but a safe and clean place to stay. Share bathrooms and kitchen... All common areas are cleaned daily.", "score": 0.48092877864837646}
    {"summary": "THIS IS A VERY SPACIOUS 1 BEDROOM FULL CONDO (SLEEPS 4) AT THE BEAUTIFUL VALLEY ISLE RESORT ON THE BEACH IN LAHAINA, MAUI!! YOU WILL LOVE THE PERFECT LOCATION OF THIS VERY NICE HIGH RISE! ALSO THIS SPACIOUS FULL CONDO, FULL KITCHEN, BIG BALCONY!!", "score": 0.46294474601745605}
    {"summary": "A beautiful and comfortable 1 Bedroom Air Conditioned Condo in Makaha Valley - stunning Ocean & Mountain views All the amenities of home, suited for longer stays. Full kitchen & large bathroom. Several gas BBQ's for all guests to use & a large heated pool surrounded by reclining chairs to sunbathe. The Ocean you see in the pictures is not even a mile away, known as the famous Makaha Surfing Beach. Golfing, hiking,snorkeling paddle boarding, surfing are all just minutes from the front door.", "score": 0.4580020606517792}
    {"summary": "The Apartment has a living room, toilet, bedroom (suite) and American kitchen. Well located, on the Copacabana beach block a 05 Min. walk from Ipanema beach (Arpoador). Internet wifi, cable tv, air conditioning in the bedroom, ceiling fans in the bedroom and living room, kitchen with microwave, cooker, Blender, dishes, cutlery and service area with fridge, washing machine, clothesline for drying clothes and closet with several utensils for use. The property boasts 45 m2.", "score": 0.45400717854499817}
1

To enable vector search queries on your data, you must create an Atlas Vector Search index on your collection.

  1. Paste the following code in your notebook.

    This code creates an index on your collection that specifies the embedding field as the vector type, the similarity function as dotProduct, and the number of dimensions as 768.

    from pymongo.operations import SearchIndexModel
    # Create your index model, then create the search index
    search_index_model = SearchIndexModel(
    definition = {
    "fields": [
    {
    "type": "vector",
    "path": "embedding",
    "similarity": "dotProduct",
    "numDimensions": 768
    }
    ]
    },
    name="vector_index",
    type="vectorSearch",
    )
    collection.create_search_index(model=search_index_model)
  2. Run the code.

    The index should take about one minute to build. While it builds, the index is in an initial sync state. When it finishes building, you can start querying the data in your collection.

To learn more, see Create an Atlas Vector Search Index.

To enable vector search queries on your data, you must create an Atlas Vector Search index on your collection.

  1. Paste the following code in your notebook.

    This code creates an index on your collection that specifies the embedding field as the vector type, the similarity function as dotProduct, and the number of dimensions as 1536.

    from pymongo.operations import SearchIndexModel
    # Create your index model, then create the search index
    search_index_model = SearchIndexModel(
    definition = {
    "fields": [
    {
    "type": "vector",
    "path": "embedding",
    "similarity": "dotProduct",
    "numDimensions": 1536
    }
    ]
    },
    name="vector_index",
    type="vectorSearch",
    )
    collection.create_search_index(model=search_index_model)
  2. Run the code.

    The index should take about one minute to build. While it builds, the index is in an initial sync state. When it finishes building, you can start querying the data in your collection.

To learn more, see Create an Atlas Vector Search Index.

2

To run a vector search query, generate a query vector to pass into your aggregation pipeline.

For example, this code does the following:

  • Creates a sample query embedding by calling the embedding function that you defined.

  • Passes the embedding into the queryVector field in your aggregation pipeline.

  • Runs a sample vector search query. This query uses the the $vectorSearch stage to perform an ENN search over your embeddings. It returns semantically similar documents in order of relevance and their vector search score.

    Note

    Your output might vary since environmental differences can introduce slight variations to your embeddings.

    To learn more, see Run Vector Search Queries.

# Generate embedding for the search query
query_embedding = get_embedding("ocean tragedy")
# Sample vector search pipeline
pipeline = [
{
"$vectorSearch": {
"index": "vector_index",
"queryVector": query_embedding,
"path": "embedding",
"exact": True,
"limit": 5
}
},
{
"$project": {
"_id": 0,
"text": 1,
"score": {
"$meta": "vectorSearchScore"
}
}
}
]
# Execute the search
results = collection.aggregate(pipeline)
# Print results
for i in results:
print(i)
{"text": "Titanic: The story of the 1912 sinking of the largest luxury liner ever built", "score": 0.5166476964950562}
{"text": "Avatar: A marine is dispatched to the moon Pandora on a unique mission", "score": 0.4587385058403015}
{"text": "The Lion King: Lion cub and future king Simba searches for his identity", "score": 0.41374602913856506}
# Generate embedding for the search query
query_embedding = get_embedding("ocean tragedy")
# Sample vector search pipeline
pipeline = [
{
"$vectorSearch": {
"index": "vector_index",
"queryVector": query_embedding,
"path": "embedding",
"exact": True,
"limit": 5
}
},
{
"$project": {
"_id": 0,
"text": 1,
"score": {
"$meta": "vectorSearchScore"
}
}
}
]
# Execute the search
results = collection.aggregate(pipeline)
# Print results
for i in results:
print(i)
{"text":"Titanic: The story of the 1912 sinking of the largest luxury liner ever built","score":0.4551968574523926}
{"text":"Avatar: A marine is dispatched to the moon Pandora on a unique mission","score":0.4050074517726898}
{"text":"The Lion King: Lion cub and future king Simba searches for his identity","score":0.3594386577606201}
1

To enable vector search queries on your data, you must create an Atlas Vector Search index on your collection.

  1. Paste the following code in your notebook.

    This code creates an index on your collection that specifies the embedding field as the vector type, the similarity function as dotProduct, and the number of dimensions as 768.

    from pymongo.operations import SearchIndexModel
    # Create your index model, then create the search index
    search_index_model = SearchIndexModel(
    definition = {
    "fields": [
    {
    "type": "vector",
    "path": "embedding",
    "similarity": "dotProduct",
    "numDimensions": 768
    }
    ]
    },
    name="vector_index",
    type="vectorSearch",
    )
    collection.create_search_index(model=search_index_model)
  2. Run the code.

    The index should take about one minute to build. While it builds, the index is in an initial sync state. When it finishes building, you can start querying the data in your collection.

To learn more, see Create an Atlas Vector Search Index.

To enable vector search queries on your data, you must create an Atlas Vector Search index on your collection.

  1. Paste the following code in your notebook.

    This code creates an index on your collection that specifies the embedding field as the vector type, the similarity function as dotProduct, and the number of dimensions as 1536.

    from pymongo.operations import SearchIndexModel
    # Create your index model, then create the search index
    search_index_model = SearchIndexModel(
    definition = {
    "fields": [
    {
    "type": "vector",
    "path": "embedding",
    "similarity": "dotProduct",
    "numDimensions": 1536
    }
    ]
    },
    name="vector_index",
    type="vectorSearch",
    )
    collection.create_search_index(model=search_index_model)
  2. Run the code.

    The index should take about one minute to build. While it builds, the index is in an initial sync state. When it finishes building, you can start querying the data in your collection.

To learn more, see Create an Atlas Vector Search Index.

2

To run a vector search query, generate a query vector to pass into your aggregation pipeline.

For example, this code does the following:

  • Creates a sample query embedding by calling the embedding function that you defined.

  • Passes the embedding into the queryVector field in your aggregation pipeline.

  • Runs a sample vector search query. This query uses the the $vectorSearch stage to perform an ENN search over your embeddings. It returns semantically similar documents in order of relevance and their vector search score.

    Note

    Your output might vary since environmental differences can introduce slight variations to your embeddings.

    To learn more, see Run Vector Search Queries.

# Generate embedding for the search query
query_embedding = get_embedding("beach house")
# Sample vector search pipeline
pipeline = [
{
"$vectorSearch": {
"index": "vector_index",
"queryVector": query_embedding,
"path": "embedding",
"exact": True,
"limit": 5
}
},
{
"$project": {
"_id": 0,
"summary": 1,
"score": {
"$meta": "vectorSearchScore"
}
}
}
]
# Execute the search
results = collection.aggregate(pipeline)
# Print results
for i in results:
print(i)
{"summary": "Having a large airy living room. The apartment is well divided. Fully furnished and cozy. The building has a 24h doorman and camera services in the corridors. It is very well located, close to the beach, restaurants, pubs and several shops and supermarkets. And it offers a good mobility being close to the subway.", "score": 0.5372996926307678}
{"summary": "The Apartment has a living room, toilet, bedroom (suite) and American kitchen. Well located, on the Copacabana beach block a 05 Min. walk from Ipanema beach (Arpoador). Internet wifi, cable tv, air conditioning in the bedroom, ceiling fans in the bedroom and living room, kitchen with microwave, cooker, Blender, dishes, cutlery and service area with fridge, washing machine, clothesline for drying clothes and closet with several utensils for use. The property boasts 45 m2.", "score": 0.5297179818153381}
{"summary": "A beautiful and comfortable 1 Bedroom Air Conditioned Condo in Makaha Valley - stunning Ocean & Mountain views All the amenities of home, suited for longer stays. Full kitchen & large bathroom. Several gas BBQ's for all guests to use & a large heated pool surrounded by reclining chairs to sunbathe. The Ocean you see in the pictures is not even a mile away, known as the famous Makaha Surfing Beach. Golfing, hiking,snorkeling paddle boarding, surfing are all just minutes from the front door.", "score": 0.5234108567237854}
{"summary": "Room 2 Private room in charming recently renovated federation guest house at Coogee Beach. Prices are per room for 2 People only. A queen and a single bed. Not suitable for group booking All rooms have TV, desk, wardrobe, beds, unlimited wifi 2 mins from the beach, cafes and transport. This is not a party house but a safe and clean place to stay. Share bathrooms and kitchen... All common areas are cleaned daily.", "score": 0.5171462893486023}
{"summary": "A friendly apartment block where everyone knows each other and there is a strong communal vibe. Property has a huge backyard with vege garden and skate ramp. 7min walk to the beach and 2min to buses.", "score": 0.5095183253288269}
# Generate embedding for the search query
query_embedding = get_embedding("beach house")
# Sample vector search pipeline
pipeline = [
{
"$vectorSearch": {
"index": "vector_index",
"queryVector": query_embedding,
"path": "embedding",
"exact": True,
"limit": 5
}
},
{
"$project": {
"_id": 0,
"summary": 1,
"score": {
"$meta": "vectorSearchScore"
}
}
}
]
# Execute the search
results = collection.aggregate(pipeline)
# Print results
for i in results:
print(i)
{"summary": "A friendly apartment block where everyone knows each other and there is a strong communal vibe. Property has a huge backyard with vege garden and skate ramp. 7min walk to the beach and 2min to buses.", "score": 0.483333021402359}
{"summary": "Room 2 Private room in charming recently renovated federation guest house at Coogee Beach. Prices are per room for 2 People only. A queen and a single bed. Not suitable for group booking All rooms have TV, desk, wardrobe, beds, unlimited wifi 2 mins from the beach, cafes and transport. This is not a party house but a safe and clean place to stay. Share bathrooms and kitchen... All common areas are cleaned daily.", "score": 0.48092877864837646}
{"summary": "THIS IS A VERY SPACIOUS 1 BEDROOM FULL CONDO (SLEEPS 4) AT THE BEAUTIFUL VALLEY ISLE RESORT ON THE BEACH IN LAHAINA, MAUI!! YOU WILL LOVE THE PERFECT LOCATION OF THIS VERY NICE HIGH RISE! ALSO THIS SPACIOUS FULL CONDO, FULL KITCHEN, BIG BALCONY!!", "score": 0.46294474601745605}
{"summary": "A beautiful and comfortable 1 Bedroom Air Conditioned Condo in Makaha Valley - stunning Ocean & Mountain views All the amenities of home, suited for longer stays. Full kitchen & large bathroom. Several gas BBQ's for all guests to use & a large heated pool surrounded by reclining chairs to sunbathe. The Ocean you see in the pictures is not even a mile away, known as the famous Makaha Surfing Beach. Golfing, hiking,snorkeling paddle boarding, surfing are all just minutes from the front door.", "score": 0.4580020606517792}
{"summary": "The Apartment has a living room, toilet, bedroom (suite) and American kitchen. Well located, on the Copacabana beach block a 05 Min. walk from Ipanema beach (Arpoador). Internet wifi, cable tv, air conditioning in the bedroom, ceiling fans in the bedroom and living room, kitchen with microwave, cooker, Blender, dishes, cutlery and service area with fridge, washing machine, clothesline for drying clothes and closet with several utensils for use. The property boasts 45 m2.", "score": 0.45400717854499817}

Consider the following factors when creating vector embeddings:

In order to create vector embeddings, you must use an embedding model. Embedding models are algorithms that you use to convert your data into embeddings. You can choose one of the following methods to connect to an embedding model and create vector embeddings:

Method
Description

Load an open-source model

If you don't have an API key for a proprietary embedding model, load an open-source embedding model locally from your application.

Use a proprietary model

Most AI providers offer APIs for their proprietary embedding models that you can use to create vector embeddings.

Leverage an integration

You can integrate Atlas Vector Search with open-source frameworks and AI services to quickly connect to both open-source and proprietary embedding models and generate vector embeddings for Atlas Vector Search.

To learn more, see Integrate Vector Search with AI Technologies.

The embedding model you choose affects your query results and determines the number of dimensions you specify in your Atlas Vector Search index. Each model offers different advantages depending on your data and use case.

For a list of popular embedding models, see the Massive Text Embedding Benchmark (MTEB). This list provides insights into various open-source and proprietary text embedding models and allows you to filter models by use case, model type, and specific model metrics.

When choosing an embedding model for Atlas Vector Search, consider the following metrics:

  • Embedding Dimensions: The length of the vector embedding.

    Smaller embeddings are more storage efficient, while larger embeddings can capture more nuanced relationships in your data. The model you choose should strike a balance between efficiency and complexity.

  • Max Tokens: The number of tokens that can be compressed in a single embedding.

  • Model Size: The size of the model in gigabytes.

    While larger models perform better, they require more computational resources as you scale Atlas Vector Search to production.

  • Retrieval Average: A score that measures the performance of retrieval systems.

    A higher score indicates that the model is better at ranking relevant documents higher in the list of retrieved results. This score is important when choosing a model for RAG applications.

Consider the following strategies to ensure that your embeddings are correct and optimal:

  • Test your functions and scripts.

    Generating embeddings takes time and computational resources. Before you create embeddings from large datasets or collections, test that your embedding functions or scripts work as expected on a small subset of your data.

  • Create embeddings in batches.

    If you want to generate embeddings from a large dataset or a collection with many documents, create them in batches to avoid memory issues and optimize performance.

  • Evaluate performance.

    Run test queries to check if your search results are relevant and accurately ranked.

    To learn more about how to evaluate your results and fine-tune the performance of your indexes and queries, see How to Measure the Accuracy of Your Query Results and Improve Vector Search Performance.

Consider the following strategies if you encounter issues with your embeddings:

  • Verify your environment.

    Check that the necessary dependencies are installed and up-to-date. Conflicting library versions can cause unexpected behavior. Ensure that no conflicts exist by creating a new environment and installing only the required packages.

    Note

    If you're using Colab, ensure that your notebook session's IP address is included in your Atlas project's access list.

  • Monitor memory usage.

    If you experience performance issues, check your RAM, CPU, and disk usage to identify any potential bottlenecks. For hosted environments like Colab or Jupyter Notebooks, ensure that your instance is provisioned with sufficient resources and upgrade the instance if necessary.

  • Ensure consistent dimensions.

    Verify that the Atlas Vector Search index definition matches the dimensions of the embeddings stored in Atlas and your query embeddings match the dimensions of the indexed embeddings. Otherwise, you might encounter errors when running vector search queries.

To troubleshoot specific problems, see Troubleshooting.

Once you've learned how to create embeddings and query your embeddings with Atlas Vector Search, start building generative AI applications by implementing retrieval-augmented generation (RAG):

You can also convert your embeddings to BSON vectors for efficient storage and ingestion of vectors in Atlas. To learn more, see How to Ingest Pre-Quantized Vectors.

Back

Atlas Vector Search Quick Start