Aggregation
On this page
Overview
In this guide, you can learn how to use the Java Driver to perform aggregation operations.
Aggregation operations process data in your MongoDB collections and return computed results. The MongoDB Aggregation framework, which is part of the Query API, is modeled on the concept of data processing pipelines. Documents enter a pipeline comprised of one or more stages, and this pipeline transforms the documents into an aggregated result.
An aggregation operation is similar to a car factory. A car factory has an assembly line, which contains assembly stations with specialized tools to do specific jobs, like drills and welders. Raw parts enter the factory, and then the assembly line transforms and assembles them into a finished product.
The aggregation pipeline is the assembly line, aggregation stages are the assembly stations, and operator expressions are the specialized tools.
Compare Aggregation and Find Operations
You can use find operations to perform the following actions:
Select what documents to return
Select what fields to return
Sort the results
You can use aggregation operations to perform the following actions:
Perform find operations
Rename fields
Calculate fields
Summarize data
Group values
Aggregation operations have some limitations you must keep in mind:
Returned documents must not violate the BSON document size limit of 16 megabytes.
Pipeline stages have a memory limit of 100 megabytes by default. If required, you may exceed this limit by using the allowDiskUse method.
Important
$graphLookup exception
The $graphLookup stage has a strict memory limit of 100 megabytes and will ignore
allowDiskUse
.
Useful References
Runnable Examples
Import Classes
Create a new Java file called AggTour.java
and include the following import statements:
import com.mongodb.client.MongoClient; import com.mongodb.client.MongoClients; import com.mongodb.client.MongoCollection; import com.mongodb.client.MongoDatabase; import com.mongodb.ExplainVerbosity; import com.mongodb.client.model.Accumulators; import com.mongodb.client.model.Aggregates; import com.mongodb.client.model.Filters; import com.mongodb.client.model.Projections; import org.bson.Document; import org.bson.json.JsonWriterSettings; import java.util.Arrays; import java.util.List;
Connect to a MongoDB Deployment
public class AggTour { public static void main(String[] args) { // Replace the uri string with your MongoDB deployment's connection string String uri = "<connection string>"; MongoClient mongoClient = MongoClients.create(uri); MongoDatabase database = mongoClient.getDatabase("aggregation"); MongoCollection<Document> collection = database.getCollection("restaurants"); // Paste the aggregation code here } }
Tip
To learn more about connecting to MongoDB, see the Connection Guide.
Insert Sample Data
collection.insertMany(Arrays.asList( new Document("name", "Sun Bakery Trattoria").append("contact", new Document().append("phone", "386-555-0189").append("email", "SunBakeryTrattoria@example.org").append("location", Arrays.asList(-74.0056649, 40.7452371))).append("stars", 4).append("categories", Arrays.asList("Pizza", "Pasta", "Italian", "Coffee", "Sandwiches")), new Document("name", "Blue Bagels Grill").append("contact", new Document().append("phone", "786-555-0102").append("email", "BlueBagelsGrill@example.com").append("location", Arrays.asList(-73.92506, 40.8275556))).append("stars", 3).append("categories", Arrays.asList("Bagels", "Cookies", "Sandwiches")), new Document("name", "XYZ Bagels Restaurant").append("contact", new Document().append("phone", "435-555-0190").append("email", "XYZBagelsRestaurant@example.net").append("location", Arrays.asList(-74.0707363, 40.59321569999999))).append("stars", 4).append("categories", Arrays.asList("Bagels", "Sandwiches", "Coffee")), new Document("name", "Hot Bakery Cafe").append("contact", new Document().append("phone", "264-555-0171").append("email", "HotBakeryCafe@example.net").append("location", Arrays.asList(-73.96485799999999, 40.761899))).append("stars", 4).append("categories", Arrays.asList("Bakery", "Cafe", "Coffee", "Dessert")), new Document("name", "Green Feast Pizzeria").append("contact", new Document().append("phone", "840-555-0102").append("email", "GreenFeastPizzeria@example.com").append("location", Arrays.asList(-74.1220973, 40.6129407))).append("stars", 2).append("categories", Arrays.asList("Pizza", "Italian")), new Document("name", "ZZZ Pasta Buffet").append("contact", new Document().append("phone", "769-555-0152").append("email", "ZZZPastaBuffet@example.com").append("location", Arrays.asList(-73.9446421, 40.7253944))).append("stars", 0).append("categories", Arrays.asList("Pasta", "Italian", "Buffet", "Cafeteria")), new Document("name", "XYZ Coffee Bar").append("contact", new Document().append("phone", "644-555-0193").append("email", "XYZCoffeeBar@example.net").append("location", Arrays.asList(-74.0166091, 40.6284767))).append("stars", 5).append("categories", Arrays.asList("Coffee", "Cafe", "Bakery", "Chocolates")), new Document("name", "456 Steak Restaurant").append("contact", new Document().append("phone", "990-555-0165").append("email", "456SteakRestaurant@example.com").append("location", Arrays.asList(-73.9365108, 40.8497077))).append("stars", 0).append("categories", Arrays.asList("Steak", "Seafood")), new Document("name", "456 Cookies Shop").append("contact", new Document().append("phone", "604-555-0149").append("email", "456CookiesShop@example.org").append("location", Arrays.asList(-73.8850023, 40.7494272))).append("stars", 4).append("categories", Arrays.asList("Bakery", "Cookies", "Cake", "Coffee")), new Document("name", "XYZ Steak Buffet").append("contact", new Document().append("phone", "229-555-0197").append("email", "XYZSteakBuffet@example.org").append("location", Arrays.asList(-73.9799932, 40.7660886))).append("stars", 3).append("categories", Arrays.asList("Steak", "Salad", "Chinese")) ));
Basic Aggregation Example
To perform an aggregation, pass a list of aggregation stages to the
MongoCollection.aggregate()
method.
The Java driver provides the Aggregates helper class that contains builders for aggregation stages.
In the following example, the aggregation pipeline:
Uses a $match stage to filter for documents whose
categories
array field contains the elementBakery
. The example usesAggregates.match
to build the$match
stage.Uses a $group stage to group the matching documents by the
stars
field, accumulating a count of documents for each distinct value ofstars
.
Note
You can build the expressions used in this example using the aggregation builders.
collection.aggregate( Arrays.asList( Aggregates.match(Filters.eq("categories", "Bakery")), Aggregates.group("$stars", Accumulators.sum("count", 1)) ) // Prints the result of the aggregation operation as JSON ).forEach(doc -> System.out.println(doc.toJson()));
The preceding aggregation should produce the following results:
{"_id": 4, "count": 2} {"_id": 5, "count": 1}
For more information about the methods and classes mentioned in this section, see the following API Documentation:
Explain Aggregation Example
To view information about how MongoDB executes your operation, use the
explain()
method of the AggregateIterable
class. The explain()
method returns execution plans and performance statistics. An execution
plan is a potential way MongoDB can complete an operation.
The explain()
method provides both the winning plan, which is the plan MongoDB
executed, and any rejected plans.
Tip
To learn more about query plans and execution statistics, see Explain Results in the Server manual.
You can specify the level of detail of your explanation by passing a
verbosity level to the explain()
method.
The following table shows all verbosity levels for explanations and their intended use cases:
Verbosity Level | Use Case |
---|---|
ALL_PLANS_EXECUTIONS | You want to know which plan MongoDB will choose to run your query. |
EXECUTION_STATS | You want to know if your query is performing well. |
QUERY_PLANNER | You have a problem with your query and you want as much information as possible to diagnose the issue. |
The following example prints the JSON representation of the winning plans for any aggregation stages that produce execution plans:
Document explanation = collection.aggregate( Arrays.asList( Aggregates.match(Filters.eq("categories", "Bakery")), Aggregates.group("$stars", Accumulators.sum("count", 1)) ) ).explain(ExplainVerbosity.EXECUTION_STATS); String winningPlans = explanation .getEmbedded( Arrays.asList("queryPlanner", "winningPlan", "queryPlan"), Document.class ) .toJson(JsonWriterSettings.builder().indent(true).build()); System.out.println(winningPlans);
The example produces the following output as the $group
stage
is the only stage that produces an execution plan:
{ "stage": "GROUP", "planNodeId": 2, "inputStage": { "stage": "COLLSCAN", "planNodeId": 1, "filter": { "categories": { "$eq": "Bakery" } }, "direction": "forward" } }
For more information about the topics mentioned in this section, see the following resources:
Explain Output Server Manual Entry
Query Plans Server Manual Entry
ExplainVerbosity API Documentation
explain() API Documentation
AggregateIterable API Documentation
Aggregation Expression Example
The Java Driver provides builders for accumulator expressions for use with
$group
. You must declare all other expressions in JSON format or
compatible document format.
Tip
The syntax in either of the following examples will define an $arrayElemAt expression.
The $
in front of "categories" tells MongoDB that this is a field path,
using the categories
field from the input document.
new Document("$arrayElemAt", Arrays.asList("$categories", 0))
Document.parse("{ $arrayElemAt: ['$categories', 0] }")
Alternatively, you can construct expressions by using the Aggregation Expression Operations API. To learn more, see Aggregation Expression Operations.
In the following example, the aggregation pipeline uses a
$project
stage and various Projections
to return the name
field and the calculated field firstCategory
whose value is the
first element in the categories
field.
collection.aggregate( Arrays.asList( Aggregates.project( Projections.fields( Projections.excludeId(), Projections.include("name"), Projections.computed( "firstCategory", new Document( "$arrayElemAt", Arrays.asList("$categories", 0) ) ) ) ) ) ).forEach(doc -> System.out.println(doc.toJson()));
The preceding aggregation should produce the following results:
{"name": "456 Cookies Shop", "firstCategory": "Bakery"} {"name": "Sun Bakery Trattoria", "firstCategory": "Pizza"} {"name": "456 Steak Restaurant", "firstCategory": "Steak"} {"name": "Blue Bagels Grill", "firstCategory": "Bagels"} {"name": "XYZ Steak Buffet", "firstCategory": "Steak"} {"name": "Hot Bakery Cafe", "firstCategory": "Bakery"} {"name": "Green Feast Pizzeria", "firstCategory": "Pizza"} {"name": "ZZZ Pasta Buffet", "firstCategory": "Pasta"} {"name": "XYZ Coffee Bar", "firstCategory": "Coffee"} {"name": "XYZ Bagels Restaurant", "firstCategory": "Bagels"}
For more information about the methods and classes mentioned in this section, see the following API Documentation: