Add Calculated Fields
On this page
Calculated fields let you create new fields in your documents by combining values from existing database columns using JavaScript expressions. Calculated fields are evaluated each time a row is processed during a migration job.
Before you Begin
To create a calculated field, you must define a mapping rule.
To create mapping rules, see the following pages:
About this Task
Calculated field expressions access values from the current source
database row using the syntax columns["<COLUMN_NAME>"]
.
When defining Calculated Fields and Customize ID Fields, Relational Migrator shows an initial data type of default. When you run a migration job, Relational Migrator updates this data type.
Steps
From the Mapping screen, click a table or collection name on the Schema model pane or diagram view.
Add a new mapping rule or edit an existing mapping rule.
Click the + icon to the right of the All fields label.
Define a name for the new field in the Field Name text box.
Define a valid JavaScript expression for the new field in the
Value expression
text box.Click Done.
Click Save and close.
The new field is visible in MongoDB after your next migration job runs.
Examples
The following examples show JavaScript expressions that you can use in calculated fields:
Concatenate Strings
Combine two columns into a single field.
The following example concatenates string values from the firstName
and lastName
columns.
Expression:
columns["firstName"] + ' ' + columns["lastName"]
Input:
Column | Value |
---|---|
|
|
|
|
Output:
"John Smith"
Split Strings
Split column values into an array based on a specified character.
The following example splits the fullName
column into an array using
a space character as a delimiter, and returns the first element of the
array.
Expression:
columns["fullName"].split(' ')[0]
Input:
Column | Value |
---|---|
|
|
Output:
"John"
Replace Strings
Apply regex patterns to replace string values in a column.
The following example performs a case-insensitive regex search on the
fullName
column for the string smith
. If a match is found, the
expression replaces the matching string with Doe
.
Expression:
columns["fullName"].replace(/smith/i, "Doe")
Input:
Column | Value |
---|---|
|
|
Output:
"John Doe"
Check for String Values
Return true or false based on whether a column contains a string value.
The following example returns true
if the value in the fullName
column includes the string Smith
. If the fullName
column does
not include the string Smith
, the expression returns false
.
Expression:
columns["fullName"].includes("Smith")
Input:
Column | Value |
---|---|
|
|
Output:
true
Perform Mathematic Operations
Perform mathematic operations on column values.
The following example multiplies values from the columns col1
and
col2
.
Expression:
columns["col1"] * columns["col2"]
Input:
Column | Value |
---|---|
|
|
|
|
Output:
6
Assign Values Based on Logical Conditions
Assign column values based on logical conditions.
The following example returns yes
if the value of col1
is
3
, and no
if col1
is a value other than 3
.
Expression:
columns["col1"] === 3 ? "yes" : "no"
Input:
Column | Value |
---|---|
|
|
Output:
yes
Extract JSON Values
Access data stored as JSON data type with calculated field expressions. Requires JSON data type columns (Postgres).
The following example returns the value of the embedded state
field
from values in the Employee
column.
Expression:
columns["Employee"].Address.state
Input:
{ Employee: { name: "Mark", Address: { state: "California" } } }
Output:
"California"
Access Array Elements
Access data stored as array data type with calculated fields expressions. Requires array data type columns (Postgres or MySQL).
The following example returns the second element of the values in the
myArray
column.
Expression:
columns["myArray"][1]
Input:
Column | Value |
---|---|
| [ "a", "b", "c" ] |
Output:
"b"
Parse Dates
Parse an ISO8601-formatted date string into a date.
The following example converts string values from the dateAsString
column into dates.
Expression:
new Date(columns["dateAsString"])
Input:
Column | Value |
---|---|
| "2009-02-11" |
Output:
2009-02-11T0:00:00Z