$stdDevPop (aggregation)
On this page
Definition
Changed in version 5.0.
Calculates the population standard deviation of the input values.
Use if the values encompass the entire population of data you want
to represent and do not wish to generalize about a larger
population. $stdDevPop
ignores non-numeric values.
If the values represent only a sample of a population of data from
which to generalize about the population, use $stdDevSamp
instead.
$stdDevPop
is available in these stages:
$setWindowFields
(Available starting in MongoDB 5.0)
Syntax
When used in the $bucket
, $bucketAuto
,
$group
, and $setWindowFields
stages,
$stdDevPop
has this syntax:
{ $stdDevPop: <expression> }
When used in other supported stages, $stdDevPop
has one of
two syntaxes:
$stdDevPop
has one specified expression as its operand:{ $stdDevPop: <expression> } $stdDevPop
has a list of specified expressions as its operand:{ $stdDevPop: [ <expression1>, <expression2> ... ] }
The argument for $stdDevPop
can be any expression as long as it resolves to an array.
For more information on expressions, see Expressions.
Behavior
Non-numeric Values
$stdDevPop
ignores non-numeric values. If all operands for a
$stdDevPop
are non-numeric, $stdDevPop
returns
null
.
Single Value
If the sample consists of a single numeric value, $stdDevPop
returns 0
.
Array Operand
In the $group
and $setWindowFields
stages,
if the expression resolves to an array, $stdDevPop
treats the
operand as a non-numerical value and has no effect on the calculation.
In the other supported stages:
With a single expression as its operand, if the expression resolves to an array,
$stdDevPop
traverses into the array to operate on the numeric elements of the array to return a single value.With a list of expressions as its operand, if any of the expressions resolves to an array,
$stdDevPop
does not traverse into the array but instead treats the array as a non-numeric value.
Window Values
Behavior with values in a $setWindowFields
stage
window:
Ignores non-numeric values,
null
values, and missing fields in a window.If the window is empty, returns
null
.If the window contains a
NaN
value, returnsnull
.If the window contains
Infinity
values, returnsnull
.If none of the previous points apply, returns a
double
value.
Examples
Use in $group
Stage
Create a collection called users
with the following documents:
db.users.insertMany( [ { _id : 1, name : "dave123", quiz : 1, score : 85 }, { _id : 2, name : "dave2", quiz : 1, score : 90 }, { _id : 3, name : "ahn", quiz : 1, score : 71 }, { _id : 4, name : "li", quiz : 2, score : 96 }, { _id : 5, name : "annT", quiz : 2, score : 77 }, { _id : 6, name : "ty", quiz : 2, score : 82 } ] )
The following example calculates the standard deviation of each quiz:
db.users.aggregate( [ { $group: { _id: "$quiz", stdDev: { $stdDevPop: "$score" } } } ] )
The operation returns the following results:
{ "_id" : 2, "stdDev" : 8.04155872120988 } { "_id" : 1, "stdDev" : 8.04155872120988 }
Use in $project
Stage
Create an example collection named quizzes
with the following
documents:
db.quizzes.insertMany( [ { _id : 1, scores : [ { name : "dave123", score : 85 }, { name : "dave2", score : 90 }, { name : "ahn", score : 71 } ] }, { _id : 2, scores : [ { name : "li", quiz : 2, score : 96 }, { name : "annT", score : 77 }, { name : "ty", score : 82 } ] } ] )
The following example calculates the standard deviation of each quiz:
db.quizzes.aggregate( [ { $project: { stdDev: { $stdDevPop: "$scores.score" } } } ] )
The operation returns the following results:
{ _id : 1, stdDev : 8.04155872120988 } { _id : 2, stdDev : 8.04155872120988 }
Use in $setWindowFields
Stage
New in version 5.0.
Create a cakeSales
collection that contains cake sales in the states
of California (CA
) and Washington (WA
):
db.cakeSales.insertMany( [ { _id: 0, type: "chocolate", orderDate: new Date("2020-05-18T14:10:30Z"), state: "CA", price: 13, quantity: 120 }, { _id: 1, type: "chocolate", orderDate: new Date("2021-03-20T11:30:05Z"), state: "WA", price: 14, quantity: 140 }, { _id: 2, type: "vanilla", orderDate: new Date("2021-01-11T06:31:15Z"), state: "CA", price: 12, quantity: 145 }, { _id: 3, type: "vanilla", orderDate: new Date("2020-02-08T13:13:23Z"), state: "WA", price: 13, quantity: 104 }, { _id: 4, type: "strawberry", orderDate: new Date("2019-05-18T16:09:01Z"), state: "CA", price: 41, quantity: 162 }, { _id: 5, type: "strawberry", orderDate: new Date("2019-01-08T06:12:03Z"), state: "WA", price: 43, quantity: 134 } ] )
This example uses $stdDevPop
in the
$setWindowFields
stage to output the population standard
deviation of the cake sales quantity
for each state
:
db.cakeSales.aggregate( [ { $setWindowFields: { partitionBy: "$state", sortBy: { orderDate: 1 }, output: { stdDevPopQuantityForState: { $stdDevPop: "$quantity", window: { documents: [ "unbounded", "current" ] } } } } } ] )
In the example:
partitionBy: "$state"
partitions the documents in the collection bystate
. There are partitions forCA
andWA
.sortBy: { orderDate: 1 }
sorts the documents in each partition byorderDate
in ascending order (1
), so the earliestorderDate
is first.
output
sets thestdDevPopQuantityForState
field to thequantity
population standard deviation value using$stdDevPop
that is run in a documents window.The window contains documents between an
unbounded
lower limit and thecurrent
document in the output. This means$stdDevPop
returns thequantity
population standard deviation value for the documents between the beginning of the partition and the current document.
In this example output, the quantity
population standard deviation
value for CA
and WA
is shown in the
stdDevPopQuantityForState
field:
{ _id : 4, type : "strawberry", orderDate : ISODate("2019-05-18T16:09:01Z"), state : "CA", price : 41, quantity : 162, stdDevPopQuantityForState : 0 } { _id : 0, type : "chocolate", orderDate : ISODate("2020-05-18T14:10:30Z"), state : "CA", price : 13, quantity : 120, stdDevPopQuantityForState : 21 } { _id : 2, type : "vanilla", orderDate : ISODate("2021-01-11T06:31:15Z"), state : "CA", price : 12, quantity : 145, stdDevPopQuantityForState : 17.249798710580816 } { _id : 5, type : "strawberry", orderDate : ISODate("2019-01-08T06:12:03Z"), state : "WA", price : 43, quantity : 134, stdDevPopQuantityForState : 0 } { _id : 3, type : "vanilla", orderDate : ISODate("2020-02-08T13:13:23Z"), state : "WA", price : 13, quantity : 104, stdDevPopQuantityForState : 15 } { _id : 1, type : "chocolate", orderDate : ISODate("2021-03-20T11:30:05Z"), state : "WA", price : 14, quantity : 140, stdDevPopQuantityForState : 15.748015748023622 }