Best Practices for Time Series Collections
On this page
This page describes best practices to improve performance and data usage for time series collections.
Optimize Inserts
To optimize insert performance for time series collections, perform the following actions.
Batch Document Writes
When inserting multiple documents:
To avoid network roundtrips, use a single
insertMany()
statement as opposed to multipleinsertOne()
statements.If possible, construct batches to contain multiple measurements per series (as defined by metadata).
To improve performance, set the
ordered
parameter tofalse
.
For example, if you have two sensors, sensor A
and sensor B
, a
batch containing multiple measurements from a single sensor incurs the
cost of one insert, rather than one insert per measurement.
The following operation inserts six documents, but only incurs the cost
of two inserts (one per batch), because the documents are ordered by
sensor. The ordered
parameter is set to false
to improve performance:
db.temperatures.insertMany( [ { "metadata": { "sensor": "sensorA" }, "timestamp": ISODate("2021-05-18T00:00:00.000Z"), temperature: 10 }, { "metadata": { "sensor": "sensorA" }, "timestamp": ISODate("2021-05-19T00:00:00.000Z"), temperature: 12 }, { "metadata": { "sensor": "sensorA" }, "timestamp": ISODate("2021-05-20T00:00:00.000Z"), temperature: 13 }, { "metadata": { "sensor": "sensorB" }, "timestamp": ISODate("2021-05-18T00:00:00.000Z"), temperature: 20 }, { "metadata": { "sensor": "sensorB" }, "timestamp": ISODate("2021-05-19T00:00:00.000Z"), temperature: 25 }, { "metadata": { "sensor": "sensorB" }, "timestamp": ISODate("2021-05-20T00:00:00.000Z"), temperature: 26 } ], { "ordered": false })
Use Consistent Field Order in Documents
Using a consistent field order in your documents improves insert performance.
For example, inserting these documents achieves optimal insert performance:
{ _id: ObjectId("6250a0ef02a1877734a9df57"), timestamp: 2020-01-23T00:00:00.441Z, name: 'sensor1', range: 1 }, { _id: ObjectId("6560a0ef02a1877734a9df66") timestamp: 2020-01-23T01:00:00.441Z, name: 'sensor1', range: 5 }
In contrast, these documents do not achieve optimal insert performance, because their field orders differ:
{ range: 1, _id: ObjectId("6250a0ef02a1877734a9df57"), name: 'sensor1', timestamp: 2020-01-23T00:00:00.441Z }, { _id: ObjectId("6560a0ef02a1877734a9df66") name: 'sensor1', timestamp: 2020-01-23T01:00:00.441Z, range: 5 }
Increase the Number of Clients
Increasing the number of clients writing data to your collections can improve performance.
Optimize Compression
To optimize data compression for time series collections, perform the following actions.
Omit Fields Containing Empty Objects and Arrays from Documents
To optimize compression, if your data contains empty objects or arrays, omit the empty fields from your documents.
For example, consider the following documents:
{ time: 2020-01-23T00:00:00.441Z, coordinates: [1.0, 2.0] }, { time: 2020-01-23T00:00:10.441Z, coordinates: [] }, { time: 2020-01-23T00:00:20.441Z, coordinates: [3.0, 5.0] }
The alternation between coordinates
fields with populated values and
an empty array result in a schema change for the compressor. The schema
change causes the second and third documents in the sequence remain
uncompressed.
In contrast, the following documents where the empty array is omitted receive the benefit of optimal compression:
{ time: 2020-01-23T00:00:00.441Z, coordinates: [1.0, 2.0] }, { time: 2020-01-23T00:00:10.441Z }, { time: 2020-01-23T00:00:20.441Z, coordinates: [3.0, 5.0] }
Round Numeric Data to Few Decimal Places
Round numeric data to the precision required for your application. Rounding numeric data to fewer decimal places improves the compression ratio.
Optimize Query Performance
To improve query performance,
create one or more secondary indexes
on your timeField
and metaField
to support common query
patterns.
Use $group Instead of Distinct()
Due to the unique data structure of time series collections, MongoDB can't
efficiently index them for distinct values. Avoid using the
distinct
command or db.collection.distinct()
helper
method on time series collections. Instead, use a $group
aggregation to group documents by distinct values.
For example, to query for distinct meta.type
values on documents
where meta.project = 10
, instead of:
db.foo.distinct("meta.type", {"meta.project": 10})
Use:
db.foo.createIndex({"meta.project":1, "meta.type":1}) db.foo.aggregate([{$match: {"meta.project": 10}}, {$group: {_id: "$meta.type"}}])
This works as follows:
Creating a compound index on
meta.project
andmeta.type
and supports the aggregation.The
$match
stage filters for documents wheremeta.project = 10
.The
$group
stage usesmeta.type
as the group key to output one document per unique value.