Docs Menu
Docs Home
/
MongoDB Manual
/ / /

$unwind (aggregation)

On this page

  • Definition
  • Compatibility
  • Syntax
  • Behaviors
  • Examples
  • Additional Resources
$unwind

Deconstructs an array field from the input documents to output a document for each element. Each output document is the input document with the value of the array field replaced by the element.

You can use $unwind for deployments hosted in the following environments:

  • MongoDB Atlas: The fully managed service for MongoDB deployments in the cloud

  • MongoDB Enterprise: The subscription-based, self-managed version of MongoDB

  • MongoDB Community: The source-available, free-to-use, and self-managed version of MongoDB

You can pass a field path operand or a document operand to unwind an array field.

You can pass the array field path to $unwind. When using this syntax, $unwind does not output a document if the field value is null, missing, or an empty array.

{ $unwind: <field path> }

When you specify the field path, prefix the field name with a dollar sign $ and enclose in quotes.

You can pass a document to $unwind to specify various behavior options.

{
$unwind:
{
path: <field path>,
includeArrayIndex: <string>,
preserveNullAndEmptyArrays: <boolean>
}
}
Field
Type
Description
string

Field path to an array field. To specify a field path, prefix the field name with a dollar sign $ and enclose in quotes.

string

Optional. The name of a new field to hold the array index of the element. The name cannot start with a dollar sign $.

boolean

Optional.

  • If true, if the path is null, missing, or an empty array, $unwind outputs the document.

  • If false, if path is null, missing, or an empty array, $unwind does not output a document.

The default value is false.

  • When the operand does not resolve to an array, but is not missing, null, or an empty array, $unwind treats the operand as a single element array.

  • When the operand is null, missing, or an empty array $unwind follows the behavior set for the preserveNullAndEmptyArrays option.

If you specify a path for a field that does not exist in an input document or the field is an empty array, $unwind, by default, ignores the input document and will not output documents for that input document.

To output documents where the array field is missing, null or an empty array, use the preserveNullAndEmptyArrays option.

In mongosh, create a sample collection named inventory with the following document:

db.inventory.insertOne({ "_id" : 1, "item" : "ABC1", sizes: [ "S", "M", "L"] })

The following aggregation uses the $unwind stage to output a document for each element in the sizes array:

db.inventory.aggregate( [ { $unwind : "$sizes" } ] )

The operation returns the following results:

{ "_id" : 1, "item" : "ABC1", "sizes" : "S" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "M" }
{ "_id" : 1, "item" : "ABC1", "sizes" : "L" }

Each document is identical to the input document except for the value of the sizes field which now holds a value from the original sizes array.

Consider the clothing collection:

db.clothing.insertMany([
{ "_id" : 1, "item" : "Shirt", "sizes": [ "S", "M", "L"] },
{ "_id" : 2, "item" : "Shorts", "sizes" : [ ] },
{ "_id" : 3, "item" : "Hat", "sizes": "M" },
{ "_id" : 4, "item" : "Gloves" },
{ "_id" : 5, "item" : "Scarf", "sizes" : null }
])

$unwind treats the sizes field as a single element array if:

  • the field is present,

  • the value is not null, and

  • the value is not an empty array.

Expand the sizes arrays with $unwind:

db.clothing.aggregate( [ { $unwind: { path: "$sizes" } } ] )

The $unwind operation returns:

{ _id: 1, item: 'Shirt', sizes: 'S' },
{ _id: 1, item: 'Shirt', sizes: 'M' },
{ _id: 1, item: 'Shirt', sizes: 'L' },
{ _id: 3, item: 'Hat', sizes: 'M' }
  • In document "_id": 1, sizes is a populated array. $unwind returns a document for each element in the sizes field.

  • In document "_id": 3, sizes resolves to a single element array.

  • Documents "_id": 2, "_id": 4, and "_id": 5 do not return anything because the sizes field cannot be reduced to a single element array.

Note

The { path: <FIELD> } syntax is optional. The following $unwind operations are equivalent.

db.clothing.aggregate( [ { $unwind: "$sizes" } ] )
db.clothing.aggregate( [ { $unwind: { path: "$sizes" } } ] )

The preserveNullAndEmptyArrays and includeArrayIndex examples use the following collection:

db.inventory2.insertMany([
{ "_id" : 1, "item" : "ABC", price: NumberDecimal("80"), "sizes": [ "S", "M", "L"] },
{ "_id" : 2, "item" : "EFG", price: NumberDecimal("120"), "sizes" : [ ] },
{ "_id" : 3, "item" : "IJK", price: NumberDecimal("160"), "sizes": "M" },
{ "_id" : 4, "item" : "LMN" , price: NumberDecimal("10") },
{ "_id" : 5, "item" : "XYZ", price: NumberDecimal("5.75"), "sizes" : null }
])

The following $unwind operation uses the preserveNullAndEmptyArrays option to include documents whose sizes field is null, missing, or an empty array.

db.inventory2.aggregate( [
{ $unwind: { path: "$sizes", preserveNullAndEmptyArrays: true } }
] )

The output includes those documents where the sizes field is null, missing, or an empty array:

{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" }
{ "_id" : 2, "item" : "EFG", "price" : NumberDecimal("120") }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" }
{ "_id" : 4, "item" : "LMN", "price" : NumberDecimal("10") }
{ "_id" : 5, "item" : "XYZ", "price" : NumberDecimal("5.75"), "sizes" : null }

The following $unwind operation uses the includeArrayIndex option to include the array index in the output.

db.inventory2.aggregate( [
{
$unwind:
{
path: "$sizes",
includeArrayIndex: "arrayIndex"
}
}])

The operation unwinds the sizes array and includes the array index in the new arrayIndex field. If the sizes field does not resolve to a populated array but is not missing, null, or an empty array, the arrayIndex field is null.

{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S", "arrayIndex" : NumberLong(0) }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M", "arrayIndex" : NumberLong(1) }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L", "arrayIndex" : NumberLong(2) }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M", "arrayIndex" : null }

In mongosh, create a sample collection named inventory2 with the following documents:

db.inventory2.insertMany([
{ "_id" : 1, "item" : "ABC", price: NumberDecimal("80"), "sizes": [ "S", "M", "L"] },
{ "_id" : 2, "item" : "EFG", price: NumberDecimal("120"), "sizes" : [ ] },
{ "_id" : 3, "item" : "IJK", price: NumberDecimal("160"), "sizes": "M" },
{ "_id" : 4, "item" : "LMN" , price: NumberDecimal("10") },
{ "_id" : 5, "item" : "XYZ", price: NumberDecimal("5.75"), "sizes" : null }
])

The following pipeline unwinds the sizes array and groups the resulting documents by the unwound size values:

db.inventory2.aggregate( [
// First Stage
{
$unwind: { path: "$sizes", preserveNullAndEmptyArrays: true }
},
// Second Stage
{
$group:
{
_id: "$sizes",
averagePrice: { $avg: "$price" }
}
},
// Third Stage
{
$sort: { "averagePrice": -1 }
}
] )
First Stage:

The $unwind stage outputs a new document for each element in the sizes array. The stage uses the preserveNullAndEmptyArrays option to include in the output those documents where sizes field is missing, null or an empty array. This stage passes the following documents to the next stage:

{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "S" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "M" }
{ "_id" : 1, "item" : "ABC", "price" : NumberDecimal("80"), "sizes" : "L" }
{ "_id" : 2, "item" : "EFG", "price" : NumberDecimal("120") }
{ "_id" : 3, "item" : "IJK", "price" : NumberDecimal("160"), "sizes" : "M" }
{ "_id" : 4, "item" : "LMN", "price" : NumberDecimal("10") }
{ "_id" : 5, "item" : "XYZ", "price" : NumberDecimal("5.75"), "sizes" : null }
Second Stage:

The $group stage groups the documents by sizes and calculates the average price of each size. This stage passes the following documents to the next stage:

{ "_id" : "S", "averagePrice" : NumberDecimal("80") }
{ "_id" : "L", "averagePrice" : NumberDecimal("80") }
{ "_id" : "M", "averagePrice" : NumberDecimal("120") }
{ "_id" : null, "averagePrice" : NumberDecimal("45.25") }
Third Stage:

The $sort stage sorts the documents by averagePrice in descending order. The operation returns the following result:

{ "_id" : "M", "averagePrice" : NumberDecimal("120") }
{ "_id" : "L", "averagePrice" : NumberDecimal("80") }
{ "_id" : "S", "averagePrice" : NumberDecimal("80") }
{ "_id" : null, "averagePrice" : NumberDecimal("45.25") }

Tip

See also:

In mongosh, create a sample collection named sales with the following documents:

db.sales.insertMany([
{
_id: "1",
"items" : [
{
"name" : "pens",
"tags" : [ "writing", "office", "school", "stationary" ],
"price" : NumberDecimal("12.00"),
"quantity" : NumberInt("5")
},
{
"name" : "envelopes",
"tags" : [ "stationary", "office" ],
"price" : NumberDecimal("19.95"),
"quantity" : NumberInt("8")
}
]
},
{
_id: "2",
"items" : [
{
"name" : "laptop",
"tags" : [ "office", "electronics" ],
"price" : NumberDecimal("800.00"),
"quantity" : NumberInt("1")
},
{
"name" : "notepad",
"tags" : [ "stationary", "school" ],
"price" : NumberDecimal("14.95"),
"quantity" : NumberInt("3")
}
]
}
])

The following operation groups the items sold by their tags and calculates the total sales amount per each tag.

db.sales.aggregate([
// First Stage
{ $unwind: "$items" },
// Second Stage
{ $unwind: "$items.tags" },
// Third Stage
{
$group:
{
_id: "$items.tags",
totalSalesAmount:
{
$sum: { $multiply: [ "$items.price", "$items.quantity" ] }
}
}
}
])
First Stage

The first $unwind stage outputs a new document for each element in the items array:

{ "_id" : "1", "items" : { "name" : "pens", "tags" : [ "writing", "office", "school", "stationary" ], "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : [ "stationary", "office" ], "price" : NumberDecimal("19.95"), "quantity" : 8 } }
{ "_id" : "2", "items" : { "name" : "laptop", "tags" : [ "office", "electronics" ], "price" : NumberDecimal("800.00"), "quantity" : 1 } }
{ "_id" : "2", "items" : { "name" : "notepad", "tags" : [ "stationary", "school" ], "price" : NumberDecimal("14.95"), "quantity" : 3 } }
Second Stage

The second $unwind stage outputs a new document for each element in the items.tags arrays:

{ "_id" : "1", "items" : { "name" : "pens", "tags" : "writing", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "office", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "school", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "pens", "tags" : "stationary", "price" : NumberDecimal("12.00"), "quantity" : 5 } }
{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : "stationary", "price" : NumberDecimal("19.95"), "quantity" : 8 } }
{ "_id" : "1", "items" : { "name" : "envelopes", "tags" : "office", "price" : NumberDecimal("19.95"), "quantity" : 8 } }
{ "_id" : "2", "items" : { "name" : "laptop", "tags" : "office", "price" : NumberDecimal("800.00"), "quantity" : 1 } }
{ "_id" : "2", "items" : { "name" : "laptop", "tags" : "electronics", "price" : NumberDecimal("800.00"), "quantity" : 1 } }
{ "_id" : "2", "items" : { "name" : "notepad", "tags" : "stationary", "price" : NumberDecimal("14.95"), "quantity" : 3 } }
{ "_id" : "2", "items" : { "name" : "notepad", "tags" : "school", "price" : NumberDecimal("14.95"), "quantity" : 3 } }
Third Stage

The $group stage groups the documents by the tag and calculates the total sales amount of items with each tag:

{ "_id" : "writing", "totalSalesAmount" : NumberDecimal("60.00") }
{ "_id" : "stationary", "totalSalesAmount" : NumberDecimal("264.45") }
{ "_id" : "electronics", "totalSalesAmount" : NumberDecimal("800.00") }
{ "_id" : "school", "totalSalesAmount" : NumberDecimal("104.85") }
{ "_id" : "office", "totalSalesAmount" : NumberDecimal("1019.60") }

Tip

See also:

Back

$unset