mapReduce
On this page
Note
Aggregation Pipeline as Alternative to Map-Reduce
Starting in MongoDB 5.0, map-reduce is deprecated:
Instead of map-reduce, you should use an aggregation pipeline. Aggregation pipelines provide better performance and usability than map-reduce.
You can rewrite map-reduce operations using aggregation pipeline stages, such as
$group
,$merge
, and others.For map-reduce operations that require custom functionality, you can use the
$accumulator
and$function
aggregation operators. You can use those operators to define custom aggregation expressions in JavaScript.
For examples of aggregation pipeline alternatives to map-reduce, see:
Definition
mapReduce
The
mapReduce
command allows you to run map-reduce aggregation operations over a collection.Tip
In
mongosh
, this command can also be run through themapReduce()
helper method.Helper methods are convenient for
mongosh
users, but they may not return the same level of information as database commands. In cases where the convenience is not needed or the additional return fields are required, use the database command.
Compatibility
This command is available in deployments hosted in the following environments:
MongoDB Atlas: The fully managed service for MongoDB deployments in the cloud
Important
This command is not supported in M0, M2, and M5 clusters. For more information, see Unsupported Commands.
MongoDB Enterprise: The subscription-based, self-managed version of MongoDB
MongoDB Community: The source-available, free-to-use, and self-managed version of MongoDB
Syntax
Note
MongoDB ignores the verbose option.
Starting in version 4.2, MongoDB deprecates:
The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.
The command has the following syntax:
db.runCommand( { mapReduce: <string>, map: <string or JavaScript>, reduce: <string or JavaScript>, finalize: <string or JavaScript>, out: <output>, query: <document>, sort: <document>, limit: <number>, scope: <document>, jsMode: <boolean>, verbose: <boolean>, bypassDocumentValidation: <boolean>, collation: <document>, maxTimeMS: <integer>, writeConcern: <document>, comment: <any> } )
Command Fields
The command takes the following fields as arguments:
Field | Type | Description | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
string | The name of the collection on which you want to perform map-reduce.
This collection will be filtered using Views do not support map-reduce operations. | |||||||||||
JavaScript or String | A JavaScript function that associates or "maps" a For more information, see Requirements for the map Function. | |||||||||||
JavaScript or String | A JavaScript function that "reduces" to a single object all
the For more information, see Requirements for the reduce Function. | |||||||||||
string or document | Specifies where to output the result of the map-reduce operation. You can either output to a collection or return the result inline. On a primary member of a replica set you can output either to a collection or inline, but on a secondary, only inline output is possible. For more information, see out Options. | |||||||||||
document | Optional. Specifies the selection criteria using query operators for determining the documents
input to the | |||||||||||
document | Optional. Sorts the input documents. This option is useful for optimization. For example, specify the sort key to be the same as the emit key so that there are fewer reduce operations. The sort key must be in an existing index for this collection. | |||||||||||
number | Optional. Specifies a maximum number of documents for the input into the
| |||||||||||
JavaScript or String | Optional. A JavaScript function that modifies the output after
the For more information, see Requirements for the finalize Function. | |||||||||||
document | Optional. Specifies global variables that are accessible in the | |||||||||||
boolean | Optional. Specifies whether to convert intermediate data into BSON
format between the execution of the Defaults to If
If
| |||||||||||
boolean | Optional. Specifies whether to include the Defaults to This option is ignored. The result
information always excludes the | |||||||||||
boolean | Optional. Enables If the output option is set to
| |||||||||||
document | Optional. Specifies the collation to use for the operation. Collation allows users to specify language-specific rules for string comparison, such as rules for lettercase and accent marks. The collation option has the following syntax:
When specifying collation, the If the collation is unspecified but the collection has a
default collation (see If no collation is specified for the collection or for the operations, MongoDB uses the simple binary comparison used in prior versions for string comparisons. You cannot specify multiple collations for an operation. For example, you cannot specify different collations per field, or if performing a find with a sort, you cannot use one collation for the find and another for the sort. | |||||||||||
| non-negative integer | Optional. Specifies a time limit in milliseconds.
If you do not specify a value for MongoDB terminates operations that exceed their allotted time limit
using the same mechanism as | ||||||||||
document | Optional. A document that expresses the write concern to use when outputting to a collection. Omit to use the default write concern. | |||||||||||
| any | Optional. A user-provided comment to attach to this command. Once set, this comment appears alongside records of this command in the following locations:
A comment can be any valid BSON type (string, integer, object, array, etc). |
Usage
The following is a prototype usage of the mapReduce
command:
var mapFunction = function() { ... }; var reduceFunction = function(key, values) { ... }; db.runCommand( { mapReduce: <input-collection>, map: mapFunction, reduce: reduceFunction, out: { merge: <output-collection> }, query: <query> } )
Note
JavaScript in MongoDB
Although mapReduce
uses JavaScript, most
interactions with MongoDB do not use JavaScript but use an
idiomatic driver in the language
of the interacting application.
Requirements for the map
Function
The map
function is responsible for transforming each input document into
zero or more documents. It can access the variables defined in the scope
parameter, and has the following prototype:
function() { ... emit(key, value); }
The map
function has the following requirements:
In the
map
function, reference the current document asthis
within the function.The
map
function should not access the database for any reason.The
map
function should be pure, or have no impact outside of the function (i.e. side effects.)The
map
function may optionally callemit(key,value)
any number of times to create an output document associatingkey
withvalue
.
The following map
function will call emit(key,value)
either
0 or 1 times depending on the value of the input document's
status
field:
function() { if (this.status == 'A') emit(this.cust_id, 1); }
The following map
function may call emit(key,value)
multiple times depending on the number of elements in the input
document's items
field:
function() { this.items.forEach(function(item){ emit(item.sku, 1); }); }
Requirements for the reduce
Function
The reduce
function has the following prototype:
function(key, values) { ... return result; }
The reduce
function exhibits the following behaviors:
The
reduce
function should not access the database, even to perform read operations.The
reduce
function should not affect the outside system.MongoDB can invoke the
reduce
function more than once for the same key. In this case, the previous output from thereduce
function for that key will become one of the input values to the nextreduce
function invocation for that key.The
reduce
function can access the variables defined in thescope
parameter.The inputs to
reduce
must not be larger than half of MongoDB's maximum BSON document size. This requirement may be violated when large documents are returned and then joined together in subsequentreduce
steps.
Because it is possible to invoke the reduce
function
more than once for the same key, the following
properties need to be true:
the type of the return object must be identical to the type of the
value
emitted by themap
function.the
reduce
function must be associative. The following statement must be true:reduce(key, [ C, reduce(key, [ A, B ]) ] ) == reduce( key, [ C, A, B ] ) the
reduce
function must be idempotent. Ensure that the following statement is true:reduce( key, [ reduce(key, valuesArray) ] ) == reduce( key, valuesArray ) the
reduce
function should be commutative: that is, the order of the elements in thevaluesArray
should not affect the output of thereduce
function, so that the following statement is true:reduce( key, [ A, B ] ) == reduce( key, [ B, A ] )
Requirements for the finalize
Function
The finalize
function has the following prototype:
function(key, reducedValue) { ... return modifiedObject; }
The finalize
function receives as its arguments a key
value and the reducedValue
from the reduce
function. Be
aware that:
The
finalize
function should not access the database for any reason.The
finalize
function should be pure, or have no impact outside of the function (i.e. side effects.)The
finalize
function can access the variables defined in thescope
parameter.
out
Options
You can specify the following options for the out
parameter:
Output to a Collection
This option outputs to a new collection, and is not available on secondary members of replica sets.
out: <collectionName>
Output to a Collection with an Action
Note
Starting in version 4.2, MongoDB deprecates:
The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.
This option is only available when passing a collection that
already exists to out
. It is not available
on secondary members of replica sets.
out: { <action>: <collectionName> [, db: <dbName>] [, sharded: <boolean> ] }
When you output to a collection with an action, the out
has the
following parameters:
<action>
: Specify one of the following actions:replace
Replace the contents of the
<collectionName>
if the collection with the<collectionName>
exists.merge
Merge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, overwrite that existing document.
reduce
Merge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, apply the
reduce
function to both the new and the existing documents and overwrite the existing document with the result.
db
:Optional. The name of the database that you want the map-reduce operation to write its output. By default this will be the same database as the input collection.
Output Inline
Perform the map-reduce operation in memory and return the result. This
option is the only available option for out
on secondary members of
replica sets.
out: { inline: 1 }
The result must fit within the maximum size of a BSON document.
Required Access
If your MongoDB deployment enforces authentication, the user executing
the mapReduce
command must possess the following
privilege actions:
Map-reduce with {out : inline}
output option:
Map-reduce with the replace
action when outputting to a
collection:
Map-reduce with the merge
or reduce
actions when
outputting to a collection:
The readWrite
built-in role provides the necessary
permissions to perform map-reduce aggregation.
Restrictions
The mapReduce
command no longer supports afterClusterTime. As such, mapReduce
cannot be
associated with causally consistent sessions.
Map-Reduce Examples
In mongosh
, the db.collection.mapReduce()
method is a wrapper around the mapReduce
command. The
following examples use the db.collection.mapReduce()
method:
The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.
Create a sample collection orders
with these documents:
db.orders.insertMany([ { _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" }, { _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" }, { _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" }, { _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }, { _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"}, { _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" }, { _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }, { _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" }, { _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }, { _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" } ])
Return the Total Price Per Customer
Perform the map-reduce operation on the orders
collection to group
by the cust_id
, and calculate the sum of the price
for each
cust_id
:
Define the map function to process each input document:
In the function,
this
refers to the document that the map-reduce operation is processing.The function maps the
price
to thecust_id
for each document and emits thecust_id
andprice
.
var mapFunction1 = function() { emit(this.cust_id, this.price); }; Define the corresponding reduce function with two arguments
keyCustId
andvaluesPrices
:The
valuesPrices
is an array whose elements are theprice
values emitted by the map function and grouped bykeyCustId
.The function reduces the
valuesPrice
array to the sum of its elements.
var reduceFunction1 = function(keyCustId, valuesPrices) { return Array.sum(valuesPrices); }; Perform map-reduce on all documents in the
orders
collection using themapFunction1
map function and thereduceFunction1
reduce function:db.orders.mapReduce( mapFunction1, reduceFunction1, { out: "map_reduce_example" } ) This operation outputs the results to a collection named
map_reduce_example
. If themap_reduce_example
collection already exists, the operation will replace the contents with the results of this map-reduce operation.Query the
map_reduce_example
collection to verify the results:db.map_reduce_example.find().sort( { _id: 1 } ) The operation returns these documents:
{ "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Busby Bee", "value" : 125 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Don Quis", "value" : 155 }
Aggregation Alternative
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:
db.orders.aggregate([ { $group: { _id: "$cust_id", value: { $sum: "$price" } } }, { $out: "agg_alternative_1" } ])
The
$group
stage groups by thecust_id
and calculates thevalue
field (See also$sum
). Thevalue
field contains the totalprice
for eachcust_id
.The stage output the following documents to the next stage:
{ "_id" : "Don Quis", "value" : 155 } { "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Busby Bee", "value" : 125 } Then, the
$out
writes the output to the collectionagg_alternative_1
. Alternatively, you could use$merge
instead of$out
.Query the
agg_alternative_1
collection to verify the results:db.agg_alternative_1.find().sort( { _id: 1 } ) The operation returns the following documents:
{ "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Busby Bee", "value" : 125 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Don Quis", "value" : 155 }
Tip
See also:
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.
Calculate Order and Total Quantity with Average Quantity Per Item
In the following example, you will see a map-reduce operation on the
orders
collection for all documents that have an ord_date
value
greater than or equal to 2020-03-01
.
The operation in the example:
Groups by the
item.sku
field, and calculates the number of orders and the total quantity ordered for eachsku
.Calculates the average quantity per order for each
sku
value and merges the results into the output collection.
When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.
Example steps:
Define the map function to process each input document:
In the function,
this
refers to the document that the map-reduce operation is processing.For each item, the function associates the
sku
with a new objectvalue
that contains thecount
of1
and the itemqty
for the order and emits thesku
(stored in thekey
) and thevalue
.
var mapFunction2 = function() { for (var idx = 0; idx < this.items.length; idx++) { var key = this.items[idx].sku; var value = { count: 1, qty: this.items[idx].qty }; emit(key, value); } }; Define the corresponding reduce function with two arguments
keySKU
andcountObjVals
:countObjVals
is an array whose elements are the objects mapped to the groupedkeySKU
values passed by map function to the reducer function.The function reduces the
countObjVals
array to a single objectreducedValue
that contains thecount
and theqty
fields.In
reducedVal
, thecount
field contains the sum of thecount
fields from the individual array elements, and theqty
field contains the sum of theqty
fields from the individual array elements.
var reduceFunction2 = function(keySKU, countObjVals) { reducedVal = { count: 0, qty: 0 }; for (var idx = 0; idx < countObjVals.length; idx++) { reducedVal.count += countObjVals[idx].count; reducedVal.qty += countObjVals[idx].qty; } return reducedVal; }; Define a finalize function with two arguments
key
andreducedVal
. The function modifies thereducedVal
object to add a computed field namedavg
and returns the modified object:var finalizeFunction2 = function (key, reducedVal) { reducedVal.avg = reducedVal.qty/reducedVal.count; return reducedVal; }; Perform the map-reduce operation on the
orders
collection using themapFunction2
,reduceFunction2
, andfinalizeFunction2
functions:db.orders.mapReduce( mapFunction2, reduceFunction2, { out: { merge: "map_reduce_example2" }, query: { ord_date: { $gte: new Date("2020-03-01") } }, finalize: finalizeFunction2 } ); This operation uses the
query
field to select only those documents withord_date
greater than or equal tonew Date("2020-03-01")
. Then it outputs the results to a collectionmap_reduce_example2
.If the
map_reduce_example2
collection already exists, the operation will merge the existing contents with the results of this map-reduce operation. That is, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.Query the
map_reduce_example2
collection to verify the results:db.map_reduce_example2.find().sort( { _id: 1 } ) The operation returns these documents:
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } } { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } } { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } } { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } } { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Aggregation Alternative
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:
db.orders.aggregate( [ { $match: { ord_date: { $gte: new Date("2020-03-01") } } }, { $unwind: "$items" }, { $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } } }, { $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } }, { $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace", whenNotMatched: "insert" } } ] )
The
$match
stage selects only those documents withord_date
greater than or equal tonew Date("2020-03-01")
.The
$unwind
stage breaks down the document by theitems
array field to output a document for each array element. For example:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } ... The
$group
stage groups by theitems.sku
, calculating for each sku:- The
qty
field. Theqty
field contains the - total
qty
ordered per eachitems.sku
(See$sum
).
- The
- The
orders_ids
array. Theorders_ids
field contains an - array of distinct order
_id
's for theitems.sku
(See$addToSet
).
- The
{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] } { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] } { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] } { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] } { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] } The
$project
stage reshapes the output document to mirror the map-reduce's output to have two fields_id
andvalue
. The$project
sets:The
$unwind
stage breaks down the document by theitems
array field to output a document for each array element. For example:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } ... The
$group
stage groups by theitems.sku
, calculating for each sku:The
qty
field. Theqty
field contains the totalqty
ordered per eachitems.sku
using$sum
.The
orders_ids
array. Theorders_ids
field contains an array of distinct order_id
's for theitems.sku
using$addToSet
.
{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] } { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] } { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] } { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] } { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] } The
$project
stage reshapes the output document to mirror the map-reduce's output to have two fields_id
andvalue
. The$project
sets:the
value.count
to the size of theorders_ids
array using$size
.the
value.qty
to theqty
field of input document.the
value.avg
to the average number of qty per order using$divide
and$size
.
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } } { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } } { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } } { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } } { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } } Finally, the
$merge
writes the output to the collectionagg_alternative_3
. If an existing document has the same key_id
as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.Query the
agg_alternative_3
collection to verify the results:db.agg_alternative_3.find().sort( { _id: 1 } ) The operation returns the following documents:
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } } { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } } { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } } { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } } { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Tip
See also:
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.
For more information and examples, see the Map-Reduce page and Perform Incremental Map-Reduce
Output
If you set the out parameter to write the
results to a collection, the mapReduce
command returns a
document in the following form:
{ "result" : "map_reduce_example", "ok" : 1 }
If you set the out parameter to output the
results inline, the mapReduce
command returns a document
in the following form:
{ "results" : [ { "_id" : <key>, "value" :<reduced or finalizedValue for key> }, ... ], "ok" : <int> }
mapReduce.results
For output written inline, an array of resulting documents. Each resulting document contains two fields:
_id
field contains thekey
value,value
field contains the reduced or finalized value for the associatedkey
.
mapReduce.ok
A value of
1
indicates themapReduce
command ran successfully. A value of0
indicates an error.
In addition to the aforementioned command specific return fields, the
db.runCommand()
includes additional information:
for replica sets:
$clusterTime
, andoperationTime
.for sharded clusters:
operationTime
and$clusterTime
.
See db.runCommand Response for details on these fields.