db.collection.mapReduce()
On this page
Note
Aggregation Pipeline as Alternative to Map-Reduce
Starting in MongoDB 5.0, map-reduce is deprecated:
Instead of map-reduce, you should use an aggregation pipeline. Aggregation pipelines provide better performance and usability than map-reduce.
You can rewrite map-reduce operations using aggregation pipeline stages, such as
$group
,$merge
, and others.For map-reduce operations that require custom functionality, you can use the
$accumulator
and$function
aggregation operators, available starting in version 4.4. You can use those operators to define custom aggregation expressions in JavaScript.
For examples of aggregation pipeline alternatives to map-reduce, see:
db.collection.mapReduce(map,reduce, { <options> })
Important
mongosh Method
This page documents a
mongosh
method. This is not the documentation for database commands or language-specific drivers, such as Node.js.For the database command, see the
mapReduce
command.For MongoDB API drivers, refer to the language-specific MongoDB driver documentation.
For the legacy
mongo
shell documentation, refer to the documentation for the corresponding MongoDB Server release:Note
Views do not support map-reduce operations.
Syntax
Note
Starting in version 4.4, MongoDB ignores the verbose option.
Starting in version 4.2, MongoDB deprecates:
The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.
db.collection.mapReduce()
has the following syntax:
db.collection.mapReduce( <map>, <reduce>, { out: <collection>, query: <document>, sort: <document>, limit: <number>, finalize: <function>, scope: <document>, jsMode: <boolean>, verbose: <boolean>, bypassDocumentValidation: <boolean> } )
db.collection.mapReduce()
takes the following parameters:
Parameter | Type | Description |
---|---|---|
map | JavaScript or String | A JavaScript function that associates or "maps" a See Requirements for the map Function for more information. |
reduce | JavaScript or String | A JavaScript function that "reduces" to a single object all the
See Requirements for the reduce Function for more information. |
options | document | A document that specifies additional parameters to
db.collection.mapReduce() . |
The following table describes additional arguments that
db.collection.mapReduce()
can accept.
Field | Type | Description | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
out | string or document | Specifies the location of the result of the map-reduce operation.
You can output to a collection, output to a collection with an
action, or output inline. You may output to a collection when
performing map-reduce operations on the primary members of the set;
on secondary members you may only use the See out Options for more information. | ||||||||||
query | document | Specifies the selection criteria using query operators for determining the documents input to the
map function. | ||||||||||
sort | document | Sorts the input documents. This option is useful for
optimization. For example, specify the sort key to be the same as
the emit key so that there are fewer reduce operations. The sort key
must be in an existing index for this collection. | ||||||||||
limit | number | Specifies a maximum number of documents for the input into the
map function. | ||||||||||
finalize | Javascript or String | Optional. A JavaScript function that modifies the output after
the See Requirements for the finalize Function for more information. | ||||||||||
scope | document | Specifies global variables that are accessible in the map ,
reduce and finalize functions. | ||||||||||
jsMode | boolean | Specifies whether to convert intermediate data into BSON
format between the execution of the Defaults to If
If
| ||||||||||
verbose | boolean | Specifies whether to include the Defaults to Starting in MongoDB 4.4, this option is ignored. The result
information always excludes the | ||||||||||
collation | document | Optional. Specifies the collation to use for the operation. Collation allows users to specify language-specific rules for string comparison, such as rules for lettercase and accent marks. The collation option has the following syntax:
When specifying collation, the If the collation is unspecified but the collection has a
default collation (see If no collation is specified for the collection or for the operations, MongoDB uses the simple binary comparison used in prior versions for string comparisons. You cannot specify multiple collations for an operation. For example, you cannot specify different collations per field, or if performing a find with a sort, you cannot use one collation for the find and another for the sort. | ||||||||||
bypassDocumentValidation | boolean | Optional. Enables mapReduce to bypass document validation
during the operation. This lets you insert documents that do not
meet the validation requirements. |
Note
map-reduce operations
and $where
operator expressions cannot access certain global functions or
properties, such as db
, that are available in
mongosh
.
The following JavaScript functions and properties are available to
map-reduce operations
and $where
operator expressions:
Available Properties | Available Functions | |
---|---|---|
args MaxKey MinKey | assert() BinData() DBPointer() DBRef() doassert() emit() gc() HexData() hex_md5() isNumber() isObject() ISODate() isString() | Map() MD5() NumberInt() NumberLong() ObjectId() print() printjson() printjsononeline() sleep() Timestamp() tojson() tojsononeline() tojsonObject() UUID() version() |
Requirements for the map
Function
The map
function is responsible for transforming each input document into
zero or more documents. It can access the variables defined in the scope
parameter, and has the following prototype:
function() { ... emit(key, value); }
The map
function has the following requirements:
In the
map
function, reference the current document asthis
within the function.The
map
function should not access the database for any reason.The
map
function should be pure, or have no impact outside of the function (i.e. side effects.)The
map
function may optionally callemit(key,value)
any number of times to create an output document associatingkey
withvalue
.In MongoDB 4.2 and earlier, a single emit can only hold half of MongoDB's maximum BSON document size. MongoDB removes this restriction starting in version 4.4.
Starting in MongoDB 4.4,
mapReduce
no longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions. Themap
function must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13). To pass constant values which will be accessible in themap
function, use thescope
parameter.The use of JavaScript code with scope for themap
function has been deprecated since version 4.2.1.
The following map
function will call emit(key,value)
either
0 or 1 times depending on the value of the input document's
status
field:
function() { if (this.status == 'A') emit(this.cust_id, 1); }
The following map
function may call emit(key,value)
multiple times depending on the number of elements in the input
document's items
field:
function() { this.items.forEach(function(item){ emit(item.sku, 1); }); }
Requirements for the reduce
Function
The reduce
function has the following prototype:
function(key, values) { ... return result; }
The reduce
function exhibits the following behaviors:
The
reduce
function should not access the database, even to perform read operations.The
reduce
function should not affect the outside system.MongoDB can invoke the
reduce
function more than once for the same key. In this case, the previous output from thereduce
function for that key will become one of the input values to the nextreduce
function invocation for that key.The
reduce
function can access the variables defined in thescope
parameter.The inputs to
reduce
must not be larger than half of MongoDB's maximum BSON document size. This requirement may be violated when large documents are returned and then joined together in subsequentreduce
steps.Starting in MongoDB 4.4,
mapReduce
no longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions. Thereduce
function must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13). To pass constant values which will be accessible in thereduce
function, use thescope
parameter.The use of JavaScript code with scope for thereduce
function has been deprecated since version 4.2.1.
Because it is possible to invoke the reduce
function
more than once for the same key, the following
properties need to be true:
the type of the return object must be identical to the type of the
value
emitted by themap
function.the
reduce
function must be associative. The following statement must be true:reduce(key, [ C, reduce(key, [ A, B ]) ] ) == reduce( key, [ C, A, B ] ) the
reduce
function must be idempotent. Ensure that the following statement is true:reduce( key, [ reduce(key, valuesArray) ] ) == reduce( key, valuesArray ) the
reduce
function should be commutative: that is, the order of the elements in thevaluesArray
should not affect the output of thereduce
function, so that the following statement is true:reduce( key, [ A, B ] ) == reduce( key, [ B, A ] )
out
Options
You can specify the following options for the out
parameter:
Output to a Collection
This option outputs to a new collection, and is not available on secondary members of replica sets.
out: <collectionName>
Output to a Collection with an Action
Note
Starting in version 4.2, MongoDB deprecates:
The map-reduce option to create a new sharded collection as well as the use of the sharded option for map-reduce. To output to a sharded collection, create the sharded collection first. MongoDB 4.2 also deprecates the replacement of an existing sharded collection.
This option is only available when passing a collection that
already exists to out
. It is not available
on secondary members of replica sets.
out: { <action>: <collectionName> [, db: <dbName>] [, sharded: <boolean> ] }
When you output to a collection with an action, the out
has the
following parameters:
<action>
: Specify one of the following actions:replace
Replace the contents of the
<collectionName>
if the collection with the<collectionName>
exists.merge
Merge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, overwrite that existing document.
reduce
Merge the new result with the existing result if the output collection already exists. If an existing document has the same key as the new result, apply the
reduce
function to both the new and the existing documents and overwrite the existing document with the result.
db
:Optional. The name of the database that you want the map-reduce operation to write its output. By default this will be the same database as the input collection.
sharded
:Note
Starting in version 4.2, the use of the
sharded
option is deprecated.Optional. If
true
and you have enabled sharding on output database, the map-reduce operation will shard the output collection using the_id
field as the shard key.If
true
andcollectionName
is an existing unsharded collection, map-reduce fails.
Output Inline
Perform the map-reduce operation in memory and return the result. This
option is the only available option for out
on secondary members of
replica sets.
out: { inline: 1 }
The result must fit within the maximum size of a BSON document.
Requirements for the finalize
Function
The finalize
function has the following prototype:
function(key, reducedValue) { ... return modifiedObject; }
The finalize
function receives as its arguments a key
value and the reducedValue
from the reduce
function. Be
aware that:
The
finalize
function should not access the database for any reason.The
finalize
function should be pure, or have no impact outside of the function (i.e. side effects.)The
finalize
function can access the variables defined in thescope
parameter.Starting in MongoDB 4.4,
mapReduce
no longer supports the deprecated BSON Type JavaScript code with scope (BSON Type 15) for its functions. Thefinalize
function must be either BSON Type String (BSON Type 2) or BSON Type JavaScript (BSON Type 13). To pass constant values which will be accessible in thefinalize
function, use thescope
parameter.The use of JavaScript code with scope for thefinalize
function has been deprecated since version 4.2.1.
Map-Reduce Examples
The examples in this section include aggregation pipeline alternatives without custom aggregation expressions. For alternatives that use custom expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.
Create a sample collection orders
with these documents:
db.orders.insertMany([ { _id: 1, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-01"), price: 25, items: [ { sku: "oranges", qty: 5, price: 2.5 }, { sku: "apples", qty: 5, price: 2.5 } ], status: "A" }, { _id: 2, cust_id: "Ant O. Knee", ord_date: new Date("2020-03-08"), price: 70, items: [ { sku: "oranges", qty: 8, price: 2.5 }, { sku: "chocolates", qty: 5, price: 10 } ], status: "A" }, { _id: 3, cust_id: "Busby Bee", ord_date: new Date("2020-03-08"), price: 50, items: [ { sku: "oranges", qty: 10, price: 2.5 }, { sku: "pears", qty: 10, price: 2.5 } ], status: "A" }, { _id: 4, cust_id: "Busby Bee", ord_date: new Date("2020-03-18"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }, { _id: 5, cust_id: "Busby Bee", ord_date: new Date("2020-03-19"), price: 50, items: [ { sku: "chocolates", qty: 5, price: 10 } ], status: "A"}, { _id: 6, cust_id: "Cam Elot", ord_date: new Date("2020-03-19"), price: 35, items: [ { sku: "carrots", qty: 10, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" }, { _id: 7, cust_id: "Cam Elot", ord_date: new Date("2020-03-20"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }, { _id: 8, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 75, items: [ { sku: "chocolates", qty: 5, price: 10 }, { sku: "apples", qty: 10, price: 2.5 } ], status: "A" }, { _id: 9, cust_id: "Don Quis", ord_date: new Date("2020-03-20"), price: 55, items: [ { sku: "carrots", qty: 5, price: 1.0 }, { sku: "apples", qty: 10, price: 2.5 }, { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" }, { _id: 10, cust_id: "Don Quis", ord_date: new Date("2020-03-23"), price: 25, items: [ { sku: "oranges", qty: 10, price: 2.5 } ], status: "A" } ])
Return the Total Price Per Customer
Perform the map-reduce operation on the orders
collection to group
by the cust_id
, and calculate the sum of the price
for each
cust_id
:
Define the map function to process each input document:
In the function,
this
refers to the document that the map-reduce operation is processing.The function maps the
price
to thecust_id
for each document and emits thecust_id
andprice
.
var mapFunction1 = function() { emit(this.cust_id, this.price); }; Define the corresponding reduce function with two arguments
keyCustId
andvaluesPrices
:The
valuesPrices
is an array whose elements are theprice
values emitted by the map function and grouped bykeyCustId
.The function reduces the
valuesPrice
array to the sum of its elements.
var reduceFunction1 = function(keyCustId, valuesPrices) { return Array.sum(valuesPrices); }; Perform map-reduce on all documents in the
orders
collection using themapFunction1
map function and thereduceFunction1
reduce function:db.orders.mapReduce( mapFunction1, reduceFunction1, { out: "map_reduce_example" } ) This operation outputs the results to a collection named
map_reduce_example
. If themap_reduce_example
collection already exists, the operation will replace the contents with the results of this map-reduce operation.Query the
map_reduce_example
collection to verify the results:db.map_reduce_example.find().sort( { _id: 1 } ) The operation returns these documents:
{ "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Busby Bee", "value" : 125 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Don Quis", "value" : 155 }
Aggregation Alternative
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:
db.orders.aggregate([ { $group: { _id: "$cust_id", value: { $sum: "$price" } } }, { $out: "agg_alternative_1" } ])
The
$group
stage groups by thecust_id
and calculates thevalue
field (See also$sum
). Thevalue
field contains the totalprice
for eachcust_id
.The stage output the following documents to the next stage:
{ "_id" : "Don Quis", "value" : 155 } { "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Busby Bee", "value" : 125 } Then, the
$out
writes the output to the collectionagg_alternative_1
. Alternatively, you could use$merge
instead of$out
.Query the
agg_alternative_1
collection to verify the results:db.agg_alternative_1.find().sort( { _id: 1 } ) The operation returns the following documents:
{ "_id" : "Ant O. Knee", "value" : 95 } { "_id" : "Busby Bee", "value" : 125 } { "_id" : "Cam Elot", "value" : 60 } { "_id" : "Don Quis", "value" : 155 }
Tip
See also:
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.
Calculate Order and Total Quantity with Average Quantity Per Item
In the following example, you will see a map-reduce operation on the
orders
collection for all documents that have an ord_date
value
greater than or equal to 2020-03-01
.
The operation in the example:
Groups by the
item.sku
field, and calculates the number of orders and the total quantity ordered for eachsku
.Calculates the average quantity per order for each
sku
value and merges the results into the output collection.
When merging results, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.
Example steps:
Define the map function to process each input document:
In the function,
this
refers to the document that the map-reduce operation is processing.For each item, the function associates the
sku
with a new objectvalue
that contains thecount
of1
and the itemqty
for the order and emits thesku
(stored in thekey
) and thevalue
.
var mapFunction2 = function() { for (var idx = 0; idx < this.items.length; idx++) { var key = this.items[idx].sku; var value = { count: 1, qty: this.items[idx].qty }; emit(key, value); } }; Define the corresponding reduce function with two arguments
keySKU
andcountObjVals
:countObjVals
is an array whose elements are the objects mapped to the groupedkeySKU
values passed by map function to the reducer function.The function reduces the
countObjVals
array to a single objectreducedValue
that contains thecount
and theqty
fields.In
reducedVal
, thecount
field contains the sum of thecount
fields from the individual array elements, and theqty
field contains the sum of theqty
fields from the individual array elements.
var reduceFunction2 = function(keySKU, countObjVals) { reducedVal = { count: 0, qty: 0 }; for (var idx = 0; idx < countObjVals.length; idx++) { reducedVal.count += countObjVals[idx].count; reducedVal.qty += countObjVals[idx].qty; } return reducedVal; }; Define a finalize function with two arguments
key
andreducedVal
. The function modifies thereducedVal
object to add a computed field namedavg
and returns the modified object:var finalizeFunction2 = function (key, reducedVal) { reducedVal.avg = reducedVal.qty/reducedVal.count; return reducedVal; }; Perform the map-reduce operation on the
orders
collection using themapFunction2
,reduceFunction2
, andfinalizeFunction2
functions:db.orders.mapReduce( mapFunction2, reduceFunction2, { out: { merge: "map_reduce_example2" }, query: { ord_date: { $gte: new Date("2020-03-01") } }, finalize: finalizeFunction2 } ); This operation uses the
query
field to select only those documents withord_date
greater than or equal tonew Date("2020-03-01")
. Then it outputs the results to a collectionmap_reduce_example2
.If the
map_reduce_example2
collection already exists, the operation will merge the existing contents with the results of this map-reduce operation. That is, if an existing document has the same key as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.Query the
map_reduce_example2
collection to verify the results:db.map_reduce_example2.find().sort( { _id: 1 } ) The operation returns these documents:
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } } { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } } { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } } { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } } { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Aggregation Alternative
Using the available aggregation pipeline operators, you can rewrite the map-reduce operation without defining custom functions:
db.orders.aggregate( [ { $match: { ord_date: { $gte: new Date("2020-03-01") } } }, { $unwind: "$items" }, { $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } } }, { $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } }, { $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace", whenNotMatched: "insert" } } ] )
The
$match
stage selects only those documents withord_date
greater than or equal tonew Date("2020-03-01")
.The
$unwind
stage breaks down the document by theitems
array field to output a document for each array element. For example:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } ... The
$group
stage groups by theitems.sku
, calculating for each sku:- The
qty
field. Theqty
field contains the - total
qty
ordered per eachitems.sku
(See$sum
).
- The
- The
orders_ids
array. Theorders_ids
field contains an - array of distinct order
_id
's for theitems.sku
(See$addToSet
).
- The
{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] } { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] } { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] } { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] } { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] } The
$project
stage reshapes the output document to mirror the map-reduce's output to have two fields_id
andvalue
. The$project
sets:The
$unwind
stage breaks down the document by theitems
array field to output a document for each array element. For example:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } ... The
$group
stage groups by theitems.sku
, calculating for each sku:The
qty
field. Theqty
field contains the totalqty
ordered per eachitems.sku
using$sum
.The
orders_ids
array. Theorders_ids
field contains an array of distinct order_id
's for theitems.sku
using$addToSet
.
{ "_id" : "chocolates", "qty" : 15, "orders_ids" : [ 2, 5, 8 ] } { "_id" : "oranges", "qty" : 63, "orders_ids" : [ 4, 7, 3, 2, 9, 1, 10 ] } { "_id" : "carrots", "qty" : 15, "orders_ids" : [ 6, 9 ] } { "_id" : "apples", "qty" : 35, "orders_ids" : [ 9, 8, 1, 6 ] } { "_id" : "pears", "qty" : 10, "orders_ids" : [ 3 ] } The
$project
stage reshapes the output document to mirror the map-reduce's output to have two fields_id
andvalue
. The$project
sets:the
value.count
to the size of theorders_ids
array using$size
.the
value.qty
to theqty
field of input document.the
value.avg
to the average number of qty per order using$divide
and$size
.
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } } { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } } { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } } { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } } { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } } Finally, the
$merge
writes the output to the collectionagg_alternative_3
. If an existing document has the same key_id
as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.Query the
agg_alternative_3
collection to verify the results:db.agg_alternative_3.find().sort( { _id: 1 } ) The operation returns the following documents:
{ "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } } { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } } { "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } } { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } } { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } }
Tip
See also:
For an alternative that uses custom aggregation expressions, see Map-Reduce to Aggregation Pipeline Translation Examples.
Output
The output of the db.collection.mapReduce()
method is
identical to that of the mapReduce
command. See the
Output section of the mapReduce
command for information on the db.collection.mapReduce()
output.
Restrictions
MongoDB drivers automatically set afterClusterTime for operations associated with causally
consistent sessions. Starting in MongoDB 4.2, the
db.collection.mapReduce()
no longer support
afterClusterTime. As such,
db.collection.mapReduce()
cannot be associatd with
causally consistent sessions.