Sparse Indexes
On this page
Sparse indexes only contain entries for documents that have the indexed field, even if the index field contains a null value. The index skips over any document that is missing the indexed field. The index is "sparse" because it does not include all documents of a collection. By contrast, non-sparse indexes contain all documents in a collection, storing null values for those documents that do not contain the indexed field.
Important
MongoDB provides the option to create partial indexes. Partial indexes offer a superset of the functionality of sparse indexes. Partial Indexes should be preferred over sparse indexes.
Create a Sparse Index
To create a sparse index, use the db.collection.createIndex()
method with the sparse
option set to true
.
For example, the following operation in mongosh
creates a
sparse index on the xmpp_id
field of the addresses
collection:
db.addresses.createIndex( { "xmpp_id": 1 }, { sparse: true } )
The index does not index documents that do not include the xmpp_id
field.
Note
Do not confuse sparse indexes in MongoDB with block-level indexes in other databases. Think of them as dense indexes with a specific filter.
Behavior
Sparse Index and Incomplete Results
If a sparse index would result in an incomplete result set for queries
and sort operations, MongoDB will not use that index unless a
hint()
explicitly specifies the index.
For example, the query { x: { $exists: false } }
will not use a
sparse index on the x
field unless explicitly hinted. See
Sparse Index On A Collection Cannot Return Complete Results for an example that details the
behavior.
If you include a hint()
that specifies a
sparse index when you perform a
count()
of all documents in a collection (i.e. with
an empty query predicate), the sparse index is used even if the sparse
index results in an incorrect count.
db.collection.insertOne( { _id: 1, y: 1 } ); db.collection.createIndex( { x: 1 }, { sparse: true } ); db.collection.find().hint( { x: 1 } ).count();
To obtain the correct count, do not hint()
with a
sparse index when performing a count of all
documents in a collection.
db.collection.find().count(); db.collection.createIndex( { y: 1 } ); db.collection.find().hint( { y: 1 } ).count();
Indexes that are Sparse by Default
The following index types are always sparse:
Sparse Compound Indexes
Compound indexes can contain different types of sparse indexes. The combination of index types determines how the compound index matches documents.
This table summarizes the behavior of a compound index that contains different types of sparse indexes:
Compound Index Components | Compound Index Behavior |
---|---|
Ascending indexes Descending indexes | Only indexes documents that contain a value for at least one of
the keys. |
Only indexes a document when it contains a value for one of
the geospatial fields. Does not index documents in the
ascending or descending indexes. | |
Only indexes a document when it matches one of the text
fields. Does not index documents in the ascending or descending
indexes. |
sparse
and unique
Properties
An index that is both sparse and unique prevents a collection from having documents with duplicate values for a field but allows multiple documents that omit the key.
Examples
Create a Sparse Index On A Collection
Consider a collection scores
that contains the following documents:
{ "_id" : ObjectId("523b6e32fb408eea0eec2647"), "userid" : "newbie" } { "_id" : ObjectId("523b6e61fb408eea0eec2648"), "userid" : "abby", "score" : 82 } { "_id" : ObjectId("523b6e6ffb408eea0eec2649"), "userid" : "nina", "score" : 90 }
The collection has a sparse index on the field score
:
db.scores.createIndex( { score: 1 } , { sparse: true } )
Then, the following query on the scores
collection uses the sparse
index to return the documents that have the score
field less than
($lt
) 90
:
db.scores.find( { score: { $lt: 90 } } )
Because the document for the userid "newbie"
does not contain the
score
field and thus does not meet the query criteria, the query
can use the sparse index to return the results:
{ "_id" : ObjectId("523b6e61fb408eea0eec2648"), "userid" : "abby", "score" : 82 }
Sparse Index On A Collection Cannot Return Complete Results
Consider a collection scores
that contains the following documents:
{ "_id" : ObjectId("523b6e32fb408eea0eec2647"), "userid" : "newbie" } { "_id" : ObjectId("523b6e61fb408eea0eec2648"), "userid" : "abby", "score" : 82 } { "_id" : ObjectId("523b6e6ffb408eea0eec2649"), "userid" : "nina", "score" : 90 }
The collection has a sparse index on the field score
:
db.scores.createIndex( { score: 1 } , { sparse: true } )
Because the document for the userid "newbie"
does not contain the
score
field, the sparse index does not contain an entry for that
document.
Consider the following query to return all documents in the scores
collection, sorted by the score
field:
db.scores.find().sort( { score: -1 } )
Even though the sort is by the indexed field, MongoDB will not select the sparse index to fulfill the query in order to return complete results:
{ "_id" : ObjectId("523b6e6ffb408eea0eec2649"), "userid" : "nina", "score" : 90 } { "_id" : ObjectId("523b6e61fb408eea0eec2648"), "userid" : "abby", "score" : 82 } { "_id" : ObjectId("523b6e32fb408eea0eec2647"), "userid" : "newbie" }
To use the sparse index, explicitly specify the index with
hint()
:
db.scores.find().sort( { score: -1 } ).hint( { score: 1 } )
The use of the index results in the return of only those documents with
the score
field:
{ "_id" : ObjectId("523b6e6ffb408eea0eec2649"), "userid" : "nina", "score" : 90 } { "_id" : ObjectId("523b6e61fb408eea0eec2648"), "userid" : "abby", "score" : 82 }
Sparse Index with Unique Constraint
Consider a collection scores
that contains the following documents:
{ "_id" : ObjectId("523b6e32fb408eea0eec2647"), "userid" : "newbie" } { "_id" : ObjectId("523b6e61fb408eea0eec2648"), "userid" : "abby", "score" : 82 } { "_id" : ObjectId("523b6e6ffb408eea0eec2649"), "userid" : "nina", "score" : 90 }
You could create an index with a unique constraint and sparse filter on the score
field using
the following operation:
db.scores.createIndex( { score: 1 } , { sparse: true, unique: true } )
This index would permit the insertion of documents that had unique
values for the score
field or did not include a score
field.
As such, given the existing documents in the scores
collection, the
index permits the following insert operations:
db.scores.insertMany( [ { "userid": "newbie", "score": 43 }, { "userid": "abby", "score": 34 }, { "userid": "nina" } ] )
However, the index would not permit the addition of the following
documents since documents already exists with score
value of 82
and 90
:
db.scores.insertMany( [ { "userid": "newbie", "score": 82 }, { "userid": "abby", "score": 90 } ] )
Sparse and Non-Sparse Unique Indexes
Starting in MongoDB 5.0, unique sparse and unique non-sparse indexes with the same key pattern can exist on a single collection.
Unique and Sparse Index Creation
This example creates multiple indexes with the same key pattern and
different sparse
options:
db.scoreHistory.createIndex( { score : 1 }, { name: "unique_index", unique: true } ) db.scoreHistory.createIndex( { score : 1 }, { name: "unique_sparse_index", unique: true, sparse: true } )
Basic and Sparse Index Creation
You can also create basic indexes with the same key pattern with and without the sparse option:
db.scoreHistory.createIndex( { score : 1 }, { name: "sparse_index", sparse: true } ) db.scoreHistory.createIndex( { score : 1 }, { name: "basic_index" } )