Menu Docs
Página inicial do Docs
/
MongoDB Atlas
/ / /

Como executar $unionWith com uma pesquisa no Atlas Search $search Query

Nesta página

  • Crie o índice de pesquisa do Atlas Search
  • Execute $unionWith com $search para Pesquisar as Coleções

A partir da v.6.0, o estágio de agregação do MongoDB suporta$unionWith $search dentro da $unionWith pipeline opção. Usando $unionWith, você pode combinar $search resultados de várias coleções no mesmo banco de dados no conjunto de resultados.

Este tutorial demonstra como executar uma consulta $unionWith com $search nas coleções companies e inspections no banco de dados sample_training. Ele conduz você pelas seguintes etapas:

  1. Configure um índice de pesquisa do Atlas Search com mapeamentos dinâmicos para as collection do companies e inspections no reconhecimento de data center do sample_training .

  2. Execute a consulta $unionWith com $search para realizar uma união de empresas com mobile em seu nome da coleção companies com empresas com nome comercial igual ou semelhante na coleção inspections.

Antes de começar, certifique-se de que seu Atlas cluster atenda aos requisitos descritos nos Pré-requisitos.

Observação

Para executar uma query do $unionWith com $search, seu cluster deve executar o MongoDB v6.0 ou superior.

Para criar um índice do Atlas Search, você deve ter acesso do Project Data Access Admin ou superior ao projeto.

Nesta seção, você criará um índice de pesquisa Atlas Search denominado default em todos os campo na collection companies no reconhecimento de data center sample_training . Você criará outro índice de pesquisa Atlas Search denominado default em todos os campo da collection inspections no reconhecimento de data center sample_training . Você deve executar as seguintes etapas para cada collection.

1
  1. Se ainda não tiver sido exibido, selecione a organização que contém seu projeto no menu Organizations na barra de navegação.

  2. Se ainda não estiver exibido, selecione o projeto desejado no menu Projects na barra de navegação.

  3. Se ainda não estiver exibido, clique em Clusters na barra lateral.

    A página Clusters é exibida.

2

Você pode acessar a página do Atlas Search pela barra lateral, pelo Data Explorer ou pela página de detalhes do cluster.

  1. Na barra lateral, clique em Atlas Search sob o título Services.

  2. No menu suspenso Select data source, selecione seu cluster e clique em Go to Atlas Search.

    A página Atlas Search é exibida.

  1. Clique no botão Browse Collections para o seu cluster.

  2. Expanda o banco de dados e selecione a coleção.

  3. Clique na guia Search Indexes da coleção.

    A página Atlas Search é exibida.

  1. Clique no nome do seu cluster.

  2. Clique na aba Atlas Search.

    A página Atlas Search é exibida.

3

Clique em Create Search Index.

4
  • Para uma experiência abada, selecione a Pesquisa Atlas Visual Editor.

  • Para editar a definição de índice bruto, selecione a Pesquisa Atlas JSON Editor.

5
  1. No campo Index Name, digite default.

    Se você nomear seu índice default, não precisará especificar um parâmetro index no estágio do pipeline $search . Se você der um nome personalizado ao seu índice, deverá especificar este nome no parâmetro index.

  2. Na seção Database and Collection, localize o reconhecimento de data center sample_training e selecione a collection.

    • Para criar um índice para a collection companies , selecione companies.

    • Para criar um índice para a collection inspections , selecione inspections.

6

A seguinte definição de índice indexa dinamicamente os campos de tipos suportados na collection. Você pode usar o Visual Editor do Atlas Search ou o JSON Editor do Atlas Search na interface de usuário do Atlas para criar o índice.

  1. Clique em Next.

  2. Revise a definição de índice "default" para a collection.

  1. Clique em Next.

  2. Revise a definição do índice.

    A definição do seu índice deve ser semelhante ao exemplo a seguir:

    {
    "mappings": {
    "dynamic": true
    }
    }
7
8

Uma janela modal é exibida para que você saiba que seu índice está sendo construído. Clique no botão Close.

9

O índice deve levar cerca de um minuto para ser criado. Enquanto está se formando, a coluna Status mostra Build in Progress. Quando terminar de se formar, a coluna Status mostrará Active.


➤ Use o menu suspenso Selecione a linguagem para definir a linguagem do exemplo nesta seção.


Nesta seção, você se conectará ao seu cluster do Atlas e executará a query de amostra em relação à collection indexada no reconhecimento de data center sample_training .

1

Abra o mongosh em uma janela do terminal e conecte ao seu cluster. Para obter instruções detalhadas sobre a conexão, consulte Conectar via mongosh.

2

Execute o seguinte comando no prompt mongosh:

use sample_training
switched to db sample_training
3

A query a seguir pesquisar as collection companies e inspections em busca do termo mobile no campo name e business_name , respectivamente.

Essa query usa os seguintes estágios:

  • $search para pesquisar empresas que incluem mobile no nome.

  • $unionWith para fazer o seguinte:

    • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

    • Realizar uma união de documento da companies e documento da collection inspections .

  • Etapa $set para adicionar um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

    • $project estágio para:

      • Inclua apenas os campos especificados nos resultados.

      • Adicione um campo denominado score.

db.companies.aggregate([
{
"$search": {
"text": {
"query": "Mobile",
"path": "name"
}
}
}, {
"$project": {
"score": {
"$meta": "searchScore"
},
"_id": 0,
"number_of_employees": 1,
"founded_year": 1,
"name": 1
}
}, {
"$set": {
"source": "companies"
}
}, {
"$limit": 3
}, {
"$unionWith": {
"coll": "inspections",
"pipeline": [
{
"$search": {
"text": {
"query": "Mobile",
"path": "business_name"
}
}
}, {
"$set": {
"source": "inspections"
}
}, {
"$project": {
"score": {
"$meta": "searchScore"
},
"source": 1,
"_id": 0,
"business_name": 1,
"address": 1
}
}, {
"$limit": 3
}, {
"$sort": {
"score": -1
}
}
]
}
}
])
[
{
name: 'XLR8 Mobile',
number_of_employees: 21,
founded_year: 2006,
score: 2.0815043449401855,
source: 'companies'
},
{
name: 'Pulse Mobile',
number_of_employees: null,
founded_year: null,
score: 2.0815043449401855,
source: 'companies'
},
{
name: 'T-Mobile',
number_of_employees: null,
founded_year: null,
score: 2.0815043449401855,
source: 'companies'
},
{
business_name: 'T. MOBILE',
address: { city: 'BROOKLYN', zip: 11209, street: '86TH ST', number: 440 },
score: 2.900916337966919,
source: 'inspections'
},
{
business_name: 'BOOST MOBILE',
address: { city: 'BRONX', zip: 10458, street: 'E FORDHAM RD', number: 261 },
score: 2.900916337966919,
source: 'inspections'
},
{
business_name: 'SPRING MOBILE',
address: {
city: 'SOUTH RICHMOND HILL',
zip: 11419,
street: 'LIBERTY AVE',
number: 12207
},
score: 2.900916337966919,
source: 'inspections'
}
]

Essa query usa os seguintes estágios:

  • $search para pesquisar empresas que incluem mobile no nome.

  • $project estágio para:

    • Inclua apenas os campos especificados nos resultados.

    • Adicione um campo denominado score.

  • $addFields para adicionar os seguintes novos campos:

    • Um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Um nome de campo source_count que mostra uma contagem dos documentos de saída.

  • $unionWith para fazer o seguinte:

    • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

    • Realizar uma união de documento da companies e documento da collection inspections .

  • $project estágio para:

    • Inclua apenas os campos especificados nos resultados.

    • Adicione um campo denominado score.

  • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

  • $set para adicionar os seguintes novos campos:

    • Um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Um novo campo chamado source_count que mostra uma contagem dos documentos de saída.

db.companies.aggregate([
{
"$search": {
"text": {
"query": "mobile",
"path": "name",
"score": {
"boost": {
"value": 1.6
}
}
}
}
}, {
"$project": {
"score": {
"$meta": "searchScore"
},
"_id": 0,
"number_of_employees": 1,
"founded_year": 1,
"name": 1
}
}, {
"$addFields": {
"source": "companies",
"source_count": "$$SEARCH_META.count.lowerBound"
}
}, {
"$limit": 3
}, {
"$unionWith": {
"coll": "inspections",
"pipeline": [
{
"$search": {
"text": {
"query": "mobile",
"path": "business_name"
}
}
}, {
"$project": {
"score": {
"$meta": "searchScore"
},
"business_name": 1,
"address": 1,
"_id": 0
}
}, {
"$limit": 3
}, {
"$set": {
"source": "inspections",
"source_count": "$$SEARCH_META.count.lowerBound"
}
}, {
"$sort": {
"score": -1
}
}
]
}
}, {
"$facet": {
"allDocs": [],
"totalCount": [
{
"$group": {
"_id": "$source",
"firstCount": {
"$first": "$source_count"
}
}
}, {
"$project": {
"totalCount": {
"$sum": "$firstCount"
}
}
}
]
}
}
])
[
{
allDocs: [
{
name: 'XLR8 Mobile',
number_of_employees: 21,
founded_year: 2006,
score: 3.33040714263916,
source: 'companies',
source_count: Long("52")
},
{
name: 'Pulse Mobile',
number_of_employees: null,
founded_year: null,
score: 3.33040714263916,
source: 'companies',
source_count: Long("52")
},
{
name: 'T-Mobile',
number_of_employees: null,
founded_year: null,
score: 3.33040714263916,
source: 'companies',
source_count: Long("52")
},
{
business_name: 'T. MOBILE',
address: {
city: 'BROOKLYN',
zip: 11209,
street: '86TH ST',
number: 440
},
score: 2.900916337966919,
source: 'inspections',
source_count: Long("456")
},
{
business_name: 'BOOST MOBILE',
address: {
city: 'BRONX',
zip: 10458,
street: 'E FORDHAM RD',
number: 261
},
score: 2.900916337966919,
source: 'inspections',
source_count: Long("456")
},
{
business_name: 'SPRING MOBILE',
address: {
city: 'SOUTH RICHMOND HILL',
zip: 11419,
street: 'LIBERTY AVE',
number: 12207
},
score: 2.900916337966919,
source: 'inspections',
source_count: Long("456")
}
],
totalCount: [
{ _id: 'companies', totalCount: Long("52") },
{ _id: 'inspections', totalCount: Long("456") }
]
}
]
1

Abra o MongoDB Compass e conecte-se ao cluster. Para obter instruções detalhadas sobre a conexão, consulte Conectar via Compass.

2

Na tela Database , clique no banco de dados sample_training e depois clique na coleção companies .

3

A query a seguir pesquisar as collection companies e inspections em busca do termo mobile no campo name e business_name , respectivamente.

Para executar esta consulta no MongoDB Compass:

  1. Clique na aba Aggregations.

  2. Clique em Select... e, em seguida, configure cada um dos seguintes estágios do pipeline, selecionando o estágio no menu suspenso e adicionando a consulta para esse estágio. Clique em Add Stage para adicionar estágios adicionais.

    Essa query usa os seguintes estágios:

    • $search para pesquisar empresas que incluem mobile no nome.

    • $unionWith para fazer o seguinte:

      • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

      • Realizar uma união de documento da companies e documento da collection inspections .

    • Etapa $set para adicionar um novo campo chamado source que identifica a coleção dos documentos de saída.

      • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

      • $project estágio para:

        • Inclua apenas os campos especificados nos resultados.

        • Adicione um campo denominado score.

    estágio do pipeline
    Query

    $search

    {
    "text": {
    "query": "Mobile",
    "path": "name"
    }
    }

    $project

    {
    "score": {
    "$meta": "searchScore",
    },
    "_id": 0,
    "number_of_employees": 1,
    "founded_year": 1,
    "name": 1
    }

    $set

    {
    "source": "companies"
    }

    $limit

    3

    $unionWith

    {
    "coll": "inspections",
    "pipeline": [
    {
    "$search": {
    "text": {
    "query": "Mobile",
    "path": "business_name",
    }
    }
    },
    {
    "$set": {
    "source": "inspections",
    }
    },
    {
    "$project": {
    "score": {
    "$meta": "searchScore"
    },
    "source": 1,
    "_id": 0,
    "business_name": 1,
    "address": 1
    }
    },
    {
    "$limit": 3
    },
    {
    "$sort": {
    "score": -1
    }
    }
    ]
    }

    Se você habilitou Auto Preview, o MongoDB Compass exibe os seguintes documentos ao lado da etapa de pipeline do $project:

    name: "XLR8 Mobile"
    number_of_employees: 21
    founded_year: 2006
    score: 2.0815043449401855
    source: "companies"
    name: "Pulse Mobile"
    number_of_employees: null
    founded_year: null
    score: 2.0815043449401855
    source: "companies"
    name: "T-Mobile"
    number_of_employees: null
    founded_year: null
    score: 2.0815043449401855
    source: "companies"
    business_name: "T. MOBILE"
    address: Object
    source: "inspections"
    score: 2.900916337966919
    business_name: "BOOST MOBILE"
    address: Object
    source: "inspections"
    score: 2.900916337966919
    business_name: "SPRING MOBILE"
    address: Object
    source: "inspections"
    score: 2.900916337966919

    Essa query usa os seguintes estágios:

    • $search para pesquisar empresas que incluem mobile no nome.

    • $project estágio para:

      • Inclua apenas os campos especificados nos resultados.

      • Adicione um campo denominado score.

    • $addFields para adicionar os seguintes novos campos:

      • Um novo campo chamado source que identifica a coleção dos documentos de saída.

      • Um nome de campo source_count que mostra uma contagem dos documentos de saída.

    • $unionWith para fazer o seguinte:

      • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

      • Realizar uma união de documento da companies e documento da collection inspections .

    • $project estágio para:

      • Inclua apenas os campos especificados nos resultados.

      • Adicione um campo denominado score.

    • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

    • $set para adicionar os seguintes novos campos:

      • Um novo campo chamado source que identifica a coleção dos documentos de saída.

      • Um novo campo chamado source_count que mostra uma contagem dos documentos de saída.

    estágio do pipeline
    Query

    $search

    {
    text: {
    query: "mobile",
    path: "name",
    score: {
    boost: {
    value: 1.6
    }
    }
    }
    }

    $project

    {
    "score": {
    "$meta": "searchScore",
    },
    "_id": 0,
    "number_of_employees": 1,
    "founded_year": 1,
    "name": 1
    }

    $addFields

    {
    source: "companies",
    source_count: "$$SEARCH_META.count.lowerBound"
    }

    $limit

    3

    $unionWith

    {
    coll: "inspections",
    pipeline: [
    {
    $search: {
    text: {
    query: "mobile",
    path: "business_name"
    }
    }
    },
    {
    $project: {
    score: {
    $meta: "searchScore"
    },
    business_name: 1,
    address: 1,
    _id: 0
    }
    },
    {
    $limit: 3,
    },
    {
    $set: {
    source: "inspections",
    source_count: "$$SEARCH_META.count.lowerBound"
    }
    },
    {
    $sort: {
    score: -1
    }
    }
    ]
    }

    $facet

    {
    allDocs: [],
    totalCount: [
    {
    $group: {
    _id: "$source",
    firstCount: { $first: "$source_count" }
    }
    },
    {
    $project: {
    totalCount: {
    $sum: "$firstCount"
    }
    }
    }
    ]
    }

    Se você habilitou Auto Preview, o MongoDB Compass exibe os seguintes documentos ao lado da etapa de pipeline do $project:

    allDocs: Array (6)
    0: Object
    name: "XLR8 Mobile"
    number_of_employees: 21
    founded_year: 2006
    score: 3.33040714263916
    source: "companies"
    source_count: 52
    1: Object
    name: "Pulse Mobile"
    number_of_employees: null
    founded_year: null
    score: 3.33040714263916
    source: "companies"
    source_count: 52
    2: Object
    name: "T-Mobile"
    number_of_employees: null
    founded_year: null
    score: 3.33040714263916
    source: "companies"
    source_count: 52
    3: Object
    business_name: "T. MOBILE"
    address: Object
    score: 2.900916337966919
    source: "inspections"
    source_count: 456
    4: Object
    business_name: "BOOST MOBILE"
    address: Object
    score: 2.900916337966919
    source: "inspections"
    source_count: 456
    5: Object
    business_name: "SPRING MOBILE"
    address: Object
    score: 2.900916337966919
    source: "inspections"
    source_count: 456
    totalCount: Array (2)
    0: Object
    _id: "companies"
    totalCount: 52
    1: Object
    _id: "inspections"
    totalCount: 456
4

O MongoDB Compass pode não exibir todos os campos dentro de objetos e todos os valores dentro de arrays dos documentos que retorna nos resultados. Para visualizar todos os campos e valores, expanda o campo nos resultados.

1
  1. Crie um novo diretório chamado search-with-unionwith e inicialize seu projeto com o comando dotnet new.

    mkdir search-with-unionwith
    cd search-with-unionwith
    dotnet new console
  2. Adicione o driver .NET/C# ao seu projeto como uma dependência.

    dotnet add package MongoDB.Driver
2

A query a seguir pesquisar as collection companies e inspections em busca do termo mobile no campo name e business_name , respectivamente.

Essa query usa os seguintes estágios:

  • $search para pesquisar empresas que incluem mobile no nome.

  • $unionWith para fazer o seguinte:

    • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

    • Realizar uma união de documento da companies e documento da collection inspections .

  • Etapa $set para adicionar um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

    • $project estágio para:

      • Inclua apenas os campos especificados nos resultados.

      • Adicione um campo denominado score.

1using MongoDB.Bson;
2using MongoDB.Driver;
3using MongoDB.Driver.Search;
4
5public class Program
6{
7 public static void Main(string[] args)
8 {
9 // connect to your Atlas cluster
10 string connectionString = "<connection-string>";
11 var client = new MongoClient(connectionString);
12
13 // define namespace
14 var database = client.GetDatabase("sample_training");
15 var collection = database.GetCollection<BsonDocument>("companies");
16
17 // define pipeline stage
18 var searchStage1 = new BsonDocument("$search", new BsonDocument{{ "text", new BsonDocument
19 {{ "query", "Mobile" },{ "path", "name" }}
20 }});
21 var projectStage1 = new BsonDocument("$project", new BsonDocument{
22 { "score", new BsonDocument("$meta", "searchScore") },
23 { "_id", 0 },{ "number_of_employees", 1 },{ "founded_year", 1 },{ "name", 1 }
24 });
25 var setStage1 = new BsonDocument("$set", new BsonDocument{{ "source", "companies" }});
26 var limitStage1 = new BsonDocument("$limit", 3);
27
28 // define subpipeline
29 var searchStage2 = new BsonDocument("$search", new BsonDocument{{ "text", new BsonDocument
30 {{ "query", "Mobile" },{ "path", "business_name" }}
31 }});
32 var setStage2 = new BsonDocument("$set", new BsonDocument{ { "source", "inspections" } });
33 var projectStage2 = new BsonDocument("$project", new BsonDocument{
34 { "score", new BsonDocument("$meta", "searchScore") },
35 { "source", 1 }, { "_id", 0 }, { "business_name", 1 }, { "address", 1 }
36 });
37 var limitStage2 = new BsonDocument("$limit", 3);
38 var sortStage2 = new BsonDocument("$sort", new BsonDocument{{ "score", -1 }});
39 var unionWithPipeline = new List<BsonDocument>{searchStage2, setStage2, projectStage2, limitStage2, sortStage2};
40 var unionWithStage = new BsonDocument("$unionWith", new BsonDocument
41 {
42 { "coll", "inspections" },
43 { "pipeline", new BsonArray(unionWithPipeline) }
44 });
45 var aggregationPipeline = new List<BsonDocument> {searchStage1, projectStage1, setStage1, limitStage1,unionWithStage};
46
47 // run pipeline
48 var result = collection.Aggregate<BsonDocument>(aggregationPipeline).ToList();
49
50 //print results
51 foreach (var document in result)
52 {
53 Console.WriteLine(document);
54 }
55 }
56}

Essa query usa os seguintes estágios:

  • $search para pesquisar empresas que incluem mobile no nome.

  • $project estágio para:

    • Inclua apenas os campos especificados nos resultados.

    • Adicione um campo denominado score.

  • $addFields para adicionar os seguintes novos campos:

    • Um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Um nome de campo source_count que mostra uma contagem dos documentos de saída.

  • $unionWith para fazer o seguinte:

    • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

    • Realizar uma união de documento da companies e documento da collection inspections .

  • $project estágio para:

    • Inclua apenas os campos especificados nos resultados.

    • Adicione um campo denominado score.

  • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

  • $set para adicionar os seguintes novos campos:

    • Um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Um novo campo chamado source_count que mostra uma contagem dos documentos de saída.

1using MongoDB.Bson;
2using MongoDB.Driver;
3
4public class Program
5{
6 public static void Main(string[] args)
7 {
8 // connect to your Atlas cluster
9 var client = new MongoClient("<connection-string>");
10
11 // define namespace
12 var database = client.GetDatabase("sample_training");
13 var collection = database.GetCollection<BsonDocument>("companies");
14
15 // define pipeline
16 var pipeline = new BsonDocument[]
17 {
18 new BsonDocument("$search", new BsonDocument{
19 { "text", new BsonDocument{
20 { "query", "mobile" }, { "path", "name" },
21 { "score", new BsonDocument{
22 { "boost", new BsonDocument{ { "value", 1.6 } }}
23 }}
24 }}
25 }),
26 new BsonDocument("$project", new BsonDocument{
27 { "score", new BsonDocument("$meta", "searchScore") },
28 { "_id", 0 },
29 { "number_of_employees", 1 }, { "founded_year", 1 }, { "name", 1 }
30 }),
31 new BsonDocument("$addFields", new BsonDocument{
32 { "source", "companies" },
33 { "source_count", "$$SEARCH_META.count.lowerBound" }
34 }),
35 new BsonDocument("$limit", 3),
36 new BsonDocument("$unionWith", new BsonDocument{
37 { "coll", "inspections" },
38 { "pipeline", new BsonArray{
39 new BsonDocument("$search", new BsonDocument{
40 { "text", new BsonDocument{
41 { "query", "mobile" },
42 { "path", "business_name" }
43 }}
44 }),
45 new BsonDocument("$project", new BsonDocument{
46 { "score", new BsonDocument("$meta", "searchScore") },
47 { "business_name", 1 }, { "address", 1 }, { "_id", 0 }
48 }),
49 new BsonDocument("$limit", 3),
50 new BsonDocument("$set", new BsonDocument{
51 { "source", "inspections" },
52 { "source_count", "$$SEARCH_META.count.lowerBound" }
53 }),
54 new BsonDocument("$sort", new BsonDocument{
55 { "score", -1 }
56 })
57 }}
58 }),
59 new BsonDocument("$facet", new BsonDocument{
60 { "allDocs", new BsonArray() },
61 { "totalCount", new BsonArray{
62 new BsonDocument("$group", new BsonDocument{
63 { "_id", "$source" },
64 { "firstCount", new BsonDocument("$first", "$source_count") }
65 }),
66 new BsonDocument("$project", new BsonDocument{
67 { "totalCount", new BsonDocument("$sum", "$firstCount") }
68 })
69 }}
70 })
71 };
72
73 // run pipeline
74 var result = collection.Aggregate<BsonDocument>(pipeline).ToList();
75
76 //print results
77 foreach (var document in result)
78 {
79 Console.WriteLine(document);
80 }
81 }
82}
3

Certifique-se de que sua cadeia de conexão inclui as credenciais do usuário do banco de dados. Para saber mais, consulte Conectar via Drivers.

4
dotnet run search-with-unionwith.csproj
{ "name" : "XLR8 Mobile", "number_of_employees" : 21, "founded_year" : 2006, "score" : 2.0815043449401855, "source" : "companies" }
{ "name" : "Pulse Mobile", "number_of_employees" : null, "founded_year" : null, "score" : 2.0815043449401855, "source" : "companies" }
{ "name" : "T-Mobile", "number_of_employees" : null, "founded_year" : null, "score" : 2.0815043449401855, "source" : "companies" }
{ "business_name" : "T. MOBILE", "address" : { "city" : "BROOKLYN", "zip" : 11209, "street" : "86TH ST", "number" : 440 }, "source" : "inspections", "score" : 2.9009163379669189 }
{ "business_name" : "BOOST MOBILE", "address" : { "city" : "BRONX", "zip" : 10458, "street" : "E FORDHAM RD", "number" : 261 }, "source" : "inspections", "score" : 2.9009163379669189 }
{ "business_name" : "SPRING MOBILE", "address" : { "city" : "SOUTH RICHMOND HILL", "zip" : 11419, "street" : "LIBERTY AVE", "number" : 12207 }, "source" : "inspections", "score" : 2.9009163379669189 }
dotnet run search-with-unionwith.csproj
{
"allDocs" : [
{ "name" : "XLR8 Mobile", "number_of_employees" : 21, "founded_year" : 2006, "score" : 3.3304071426391602, "source" : "companies", "source_count" : NumberLong(52) },
{ "name" : "Pulse Mobile", "number_of_employees" : null, "founded_year" : null, "score" : 3.3304071426391602, "source" : "companies", "source_count" : NumberLong(52) },
{ "name" : "T-Mobile", "number_of_employees" : null, "founded_year" : null, "score" : 3.3304071426391602, "source" : "companies", "source_count" : NumberLong(52) },
{ "business_name" : "T. MOBILE", "address" : { "city" : "BROOKLYN", "zip" : 11209, "street" : "86TH ST", "number" : 440 }, "score" : 2.9009163379669189, "source" : "inspections", "source_count" : NumberLong(456) },
{ "business_name" : "BOOST MOBILE", "address" : { "city" : "BRONX", "zip" : 10458, "street" : "E FORDHAM RD", "number" : 261 }, "score" : 2.9009163379669189, "source" : "inspections", "source_count" : NumberLong(456) },
{ "business_name" : "SPRING MOBILE", "address" : { "city" : "SOUTH RICHMOND HILL", "zip" : 11419, "street" : "LIBERTY AVE", "number" : 12207 }, "score" : 2.9009163379669189, "source" : "inspections", "source_count" : NumberLong(456) }
],
"totalCount" : [
{ "_id" : "companies", "totalCount" : NumberLong(52) },
{ "_id" : "inspections", "totalCount" : NumberLong(456) }
]
}
1
2

A query a seguir pesquisar as collection companies e inspections em busca do termo mobile no campo name e business_name , respectivamente.

Essa query usa os seguintes estágios:

  • $search para pesquisar empresas que incluem mobile no nome.

  • $unionWith para fazer o seguinte:

    • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

    • Realizar uma união de documento da companies e documento da collection inspections .

  • Etapa $set para adicionar um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

    • $project estágio para:

      • Inclua apenas os campos especificados nos resultados.

      • Adicione um campo denominado score.

1package main
2import (
3 "context"
4 "fmt"
5 "time"
6
7 "go.mongodb.org/mongo-driver/bson"
8 "go.mongodb.org/mongo-driver/mongo"
9 "go.mongodb.org/mongo-driver/mongo/options"
10)
11
12func main() {
13 var err error
14 // connect to the Atlas cluster
15 ctx := context.Background()
16 client, err := mongo.Connect(ctx, options.Client().ApplyURI("<connection-string>"))
17 if err != nil {
18 panic(err)
19 }
20 defer client.Disconnect(ctx)
21
22 // set namespace
23 collection := client.Database("sample_training").Collection("companies")
24 // define pipeline
25 searchStage := bson.D{{"$search", bson.D{
26 {"text", bson.D{
27 {"query", "Mobile"}, {"path", "name"},
28 }},
29 }}}
30 projectStage := bson.D{{"$project", bson.D{
31 {"score", bson.D{{"$meta", "searchScore"}}},
32 {"_id", 0},
33 {"number_of_employees", 1},
34 {"founded_year", 1},
35 {"name", 1},
36 }}}
37 setStage := bson.D{{"$set", bson.D{{"source", "companies"}}}}
38 limitStage := bson.D{{"$limit", 5}}
39 uinionWithStage := bson.D{{"$unionWith", bson.D{
40 {"coll", "inspections"},
41 {"pipeline", bson.A{
42 bson.D{{"$search", bson.D{
43 {"text", bson.D{
44 {"query", "Mobile"}, {"path", "business_name"},
45 }},
46 }}},
47 bson.D{{"$set", bson.D{{"source", "inspections"}}}},
48 bson.D{{"$project", bson.D{
49 {"score", bson.D{{"$meta", "searchScore"}}},
50 {"source", 1},
51 {"_id", 0},
52 {"business_name", 1},
53 {"address", 1},
54 }}},
55 bson.D{{"$limit", 3}},
56 bson.D{{"$sort", bson.D{{"score", -1}}}},
57 }},
58 }}}
59 // specify the amount of time the operation can run on the server
60 opts := options.Aggregate().SetMaxTime(5 * time.Second)
61 // run pipeline
62 cursor, err := collection.Aggregate(ctx, mongo.Pipeline{searchStage, projectStage, setStage, limitStage, uinionWithStage}, opts)
63 if err != nil {
64 panic(err)
65 }
66 // print results
67 var results []bson.D
68 if err = cursor.All(context.TODO(), &results); err != nil {
69 panic(err)
70 }
71 for _, result := range results {
72 fmt.Println(result)
73 }
74}

Essa query usa os seguintes estágios:

  • $search para pesquisar empresas que incluem mobile no nome.

  • $project estágio para:

    • Inclua apenas os campos especificados nos resultados.

    • Adicione um campo denominado score.

  • $addFields para adicionar os seguintes novos campos:

    • Um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Um nome de campo source_count que mostra uma contagem dos documentos de saída.

  • $unionWith para fazer o seguinte:

    • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

    • Realizar uma união de documento da companies e documento da collection inspections .

  • $project estágio para:

    • Inclua apenas os campos especificados nos resultados.

    • Adicione um campo denominado score.

  • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

  • $set para adicionar os seguintes novos campos:

    • Um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Um novo campo chamado source_count que mostra uma contagem dos documentos de saída.

1package main
2import (
3 "context"
4 "fmt"
5 "time"
6
7 "go.mongodb.org/mongo-driver/bson"
8 "go.mongodb.org/mongo-driver/mongo"
9 "go.mongodb.org/mongo-driver/mongo/options"
10)
11
12func main() {
13 var err error
14 // connect to the Atlas cluster
15 ctx := context.Background()
16 client, err := mongo.Connect(ctx, options.Client().ApplyURI("<connection-string>"))
17 if err != nil {
18 panic(err)
19 }
20 defer client.Disconnect(ctx)
21 // set namespace
22 collection := client.Database("sample_training").Collection("companies")
23 // define pipeline
24 searchStage := bson.D{{"$search", bson.D{
25 {"text", bson.D{
26 {"query", "Mobile"}, {"path", "name"}, {"score", bson.D{{"boost", bson.D{{"value", 1.6}}}}},
27 }},
28 }}}
29 projectStage := bson.D{{"$project", bson.D{
30 {"score", bson.D{{"$meta", "searchScore"}}},
31 {"_id", 0},
32 {"number_of_employees", 1},
33 {"founded_year", 1},
34 {"name", 1},
35 }}}
36 addFieldsStage := bson.D{{"$set", bson.D{
37 {"source", "companies"},
38 {"source_count", "$$SEARCH_META.count.lowerBound"},
39 }}}
40 limitStage := bson.D{{"$limit", 3}}
41 uinionWithStage := bson.D{{"$unionWith", bson.D{
42 {"coll", "inspections"},
43 {"pipeline", bson.A{
44 bson.D{{"$search", bson.D{
45 {"text", bson.D{
46 {"query", "mobile"}, {"path", "business_name"},
47 }},
48 }}},
49 bson.D{{"$project", bson.D{
50 {"score", bson.D{{"$meta", "searchScore"}}},
51 {"business_name", 1},
52 {"address", 1},
53 {"_id", 0},
54 }}},
55 bson.D{{"$limit", 3}},
56 bson.D{{"$set", bson.D{
57 {"source", "inspections"},
58 {"source_count", "$$SEARCH_META.count.lowerBound"},
59 }}},
60 bson.D{{"$sort", bson.D{{"score", -1}}}},
61 }},
62 }}}
63 facetStage := bson.D{{"$facet", bson.D{
64 {"allDocs", bson.A{}},
65 {"totalCount", bson.A{
66 bson.D{
67 {"$group", bson.D{
68 {"_id", "$source"},
69 {"firstCount", bson.D{{"$first", "$source_count"}}},
70 }},
71 },
72 bson.D{{"$project", bson.D{{"totalCount", bson.D{{"$sum", "$firstCount"}}}}}},
73 }},
74 }}}
75 // specify the amount of time the operation can run on the server
76 opts := options.Aggregate().SetMaxTime(5 * time.Second)
77 // run pipeline
78 cursor, err := collection.Aggregate(ctx, mongo.Pipeline{searchStage, projectStage, addFieldsStage, limitStage, uinionWithStage, facetStage}, opts)
79 if err != nil {
80 panic(err)
81 }
82 // print results
83 var results []bson.D
84 if err = cursor.All(context.TODO(), &results); err != nil {
85 panic(err)
86 }
87 for _, result := range results {
88 fmt.Println(result)
89 }
90}
3

Certifique-se de que sua cadeia de conexão inclui as credenciais do usuário do banco de dados. Para saber mais, consulte Conectar via Drivers.

4
go run search-with-unionwith-query.go
[{name XLR8 Mobile} {number_of_employees 21} {founded_year 2006} {score 3.33040714263916} {source companies} {source_count 52}]
[{name Pulse Mobile} {number_of_employees <nil>} {founded_year <nil>} {score 3.33040714263916} {source companies} {source_count 52}]
[{name T-Mobile} {number_of_employees <nil>} {founded_year <nil>} {score 3.33040714263916} {source companies} {source_count 52}]
[{business_name T. MOBILE} {address [{city BROOKLYN} {zip 11209} {street 86TH ST} {number 440}]} {score 2.900916337966919} {source inspections} {source_count 456}]
[{business_name BOOST MOBILE} {address [{city BRONX} {zip 10458} {street E FORDHAM RD} {number 261}]} {score 2.900916337966919} {source inspections} {source_count 456}]
[{business_name SPRING MOBILE} {address [{city SOUTH RICHMOND HILL} {zip 11419} {street LIBERTY AVE} {number 12207}]} {score 2.900916337966919} {source inspections} {source_count 456}]
go run search-with-unionwith-query.go
[
{allDocs [
[{name XLR8 Mobile} {number_of_employees 21} {founded_year 2006} {score 3.33040714263916} {source companies} {source_count 52}]
[{name Pulse Mobile} {number_of_employees <nil>} {founded_year <nil>} {score 3.33040714263916} {source companies} {source_count 52}]
[{name T-Mobile} {number_of_employees <nil>} {founded_year <nil>} {score 3.33040714263916} {source companies} {source_count 52}]
[{business_name T. MOBILE} {address [{city BROOKLYN} {zip 11209} {street 86TH ST} {number 440}]} {score 2.900916337966919} {source inspections} {source_count 456}]
[{business_name BOOST MOBILE} {address [{city BRONX} {zip 10458} {street E FORDHAM RD} {number 261}]} {score 2.900916337966919} {source inspections} {source_count 456}]
[{business_name SPRING MOBILE} {address [{city SOUTH RICHMOND HILL} {zip 11419} {street LIBERTY AVE} {number 12207}]} {score 2.900916337966919} {source inspections} {source_count 456}]
]}
{totalCount [
[{_id inspections} {totalCount 456}]
[{_id companies} {totalCount 52}]
]}
]
1

junit

4.11 ou versão superior

mongodb-driver-sync

4.3.0 ou uma versão superior

slf4j-log4j12

1.7.30 ou uma versão superior

2
3

A query a seguir pesquisar as collection companies e inspections em busca do termo mobile no campo name e business_name , respectivamente.

Essa query usa os seguintes estágios:

  • $search para pesquisar empresas que incluem mobile no nome.

  • $unionWith para fazer o seguinte:

    • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

    • Realizar uma união de documento da companies e documento da collection inspections .

  • Etapa $set para adicionar um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

    • $project estágio para:

      • Inclua apenas os campos especificados nos resultados.

      • Adicione um campo denominado score.

1import com.mongodb.client.MongoClients;
2import com.mongodb.client.MongoClient;
3import com.mongodb.client.MongoDatabase;
4import org.bson.Document;
5import java.util.ArrayList;
6import java.util.Arrays;
7import java.util.List;
8
9public class SearchWithUnionwith {
10 public static void main(String[] args) {
11 // connect to Atlas cluster
12 try (MongoClient mongoClient = MongoClients.create("<connection-string>")) {
13 // get database name
14 MongoDatabase database = mongoClient.getDatabase("sample_training");
15 // define pipeline
16 List<Document> pipeline1 = Arrays.asList(
17 new Document("$search", new Document("text",
18 new Document("query", "Mobile")
19 .append("path", "name"))),
20 new Document("$project", new Document("score",
21 new Document("$meta", "searchScore"))
22 .append("_id", 0)
23 .append("number_of_employees", 1)
24 .append("founded_year", 1)
25 .append("name", 1)),
26 new Document("$set", new Document("source", "companies")),
27 new Document("$limit", 3)
28 );
29
30 List<Document> pipeline2 = Arrays.asList(
31 new Document("$search", new Document("text",
32 new Document("query", "Mobile")
33 .append("path", "business_name"))),
34 new Document("$set", new Document("source", "inspections")),
35 new Document("$project", new Document("score",
36 new Document("$meta", "searchScore"))
37 .append("source", 1)
38 .append("_id", 0)
39 .append("business_name", 1)
40 .append("address", 1)),
41 new Document("$limit", 3),
42 new Document("$sort", new Document("score", -1))
43 );
44
45 List<Document> unionWithStage = new ArrayList<>();
46 Document unionWith = new Document("$unionWith", new Document("coll", "inspections")
47 .append("pipeline", pipeline2));
48 unionWithStage.add(unionWith);
49
50 List<Document> finalPipeline = new ArrayList<>(pipeline1);
51 finalPipeline.addAll(unionWithStage);
52 // run pipeline and print results
53 database.getCollection("companies").aggregate(finalPipeline)
54 .forEach(doc -> System.out.println(doc.toJson()));
55 }
56 }
57}

Essa query usa os seguintes estágios:

  • $search para pesquisar empresas que incluem mobile no nome.

  • $project estágio para:

    • Inclua apenas os campos especificados nos resultados.

    • Adicione um campo denominado score.

  • $addFields para adicionar os seguintes novos campos:

    • Um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Um nome de campo source_count que mostra uma contagem dos documentos de saída.

  • $unionWith para fazer o seguinte:

    • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

    • Realizar uma união de documento da companies e documento da collection inspections .

  • $project estágio para:

    • Inclua apenas os campos especificados nos resultados.

    • Adicione um campo denominado score.

  • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

  • $set para adicionar os seguintes novos campos:

    • Um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Um novo campo chamado source_count que mostra uma contagem dos documentos de saída.

1import com.mongodb.client.MongoClients;
2import com.mongodb.client.MongoCollection;
3import com.mongodb.client.MongoClient;
4import org.bson.Document;
5
6public class SearchWithUnionwith {
7 public static void main(String[] args) {
8 // connect to Atlas cluster
9 try (MongoClient mongoClient = MongoClients.create("<connection-string>")) {
10 // define namespace
11 MongoCollection<Document> collection = mongoClient.getDatabase("sample_training").getCollection("companies");
12 // define pipeline
13 Document searchStage = new Document("$search", new Document("text",
14 new Document("query", "mobile")
15 .append("path", "name")
16 .append("score", new Document("boost", new Document("value", 1.6)))
17 )
18 );
19
20 Document projectStage = new Document("$project", new Document("score", new Document("$meta", "searchScore"))
21 .append("_id", 0)
22 .append("number_of_employees", 1)
23 .append("founded_year", 1)
24 .append("name", 1)
25 );
26
27 Document addFieldsStage = new Document("$addFields", new Document("source", "companies")
28 .append("source_count", "$$SEARCH_META.count.lowerBound")
29 );
30
31 Document limitStage = new Document("$limit", 3);
32
33 Document unionWithStage = new Document("$unionWith", new Document("coll", "inspections")
34 .append("pipeline", java.util.Arrays.asList(
35 new Document("$search", new Document("text",
36 new Document("query", "mobile")
37 .append("path", "business_name")
38 )),
39 new Document("$project", new Document("score", new Document("$meta", "searchScore"))
40 .append("business_name", 1)
41 .append("address", 1)
42 .append("_id", 0)
43 ),
44 new Document("$limit", 3),
45 new Document("$set", new Document("source", "inspections")
46 .append("source_count", "$$SEARCH_META.count.lowerBound")
47 ),
48 new Document("$sort", new Document("score", -1))
49 ))
50 );
51
52 Document facetStage = new Document("$facet", new Document("allDocs", java.util.Arrays.asList())
53 .append("totalCount", java.util.Arrays.asList(
54 new Document("$group", new Document("_id", "$source")
55 .append("firstCount", new Document("$first", "$source_count"))
56 ),
57 new Document("$project", new Document("totalCount",
58 new Document("$sum", "$firstCount")
59 ))
60 ))
61 );
62 // run pipeline and print results
63 collection.aggregate(java.util.Arrays.asList(
64 searchStage, projectStage, addFieldsStage, limitStage, unionWithStage, facetStage
65 )).forEach(doc -> System.out.println(doc.toJson()));
66 }
67 }
68}

Observação

Para executar o código de amostra em seu ambiente Maven, adicione o seguinte código acima das declarações de importação em seu arquivo.

package com.mongodb.drivers;
4

Certifique-se de que sua cadeia de conexão inclui as credenciais do usuário do banco de dados. Para saber mais, consulte Conectar via Drivers.

5
javac SearchWithUnionwithQuery.java
java SearchWithUnionwithQuery
{"name": "XLR8 Mobile", "number_of_employees": 21, "founded_year": 2006, "score": 2.0815043449401855, "source": "companies"}
{"name": "Pulse Mobile", "number_of_employees": null, "founded_year": null, "score": 2.0815043449401855, "source": "companies"}
{"name": "T-Mobile", "number_of_employees": null, "founded_year": null, "score": 2.0815043449401855, "source": "companies"}
{"business_name": "T. MOBILE", "address": {"city": "BROOKLYN", "zip": 11209, "street": "86TH ST", "number": 440}, "source": "inspections", "score": 2.900916337966919}
{"business_name": "BOOST MOBILE", "address": {"city": "BRONX", "zip": 10458, "street": "E FORDHAM RD", "number": 261}, "source": "inspections", "score": 2.900916337966919}
{"business_name": "SPRING MOBILE", "address": {"city": "SOUTH RICHMOND HILL", "zip": 11419, "street": "LIBERTY AVE", "number": 12207}, "source": "inspections", "score": 2.900916337966919}
javac SearchWithUnionwithQuery.java
java SearchWithUnionwithQuery
{
"allDocs": [
{"name": "XLR8 Mobile", "number_of_employees": 21, "founded_year": 2006, "score": 3.33040714263916, "source": "companies", "source_count": 52},
{"name": "Pulse Mobile", "number_of_employees": null, "founded_year": null, "score": 3.33040714263916, "source": "companies", "source_count": 52},
{"name": "T-Mobile", "number_of_employees": null, "founded_year": null, "score": 3.33040714263916, "source": "companies", "source_count": 52},
{"business_name": "T. MOBILE", "address": {"city": "BROOKLYN", "zip": 11209, "street": "86TH ST", "number": 440}, "score": 2.900916337966919, "source": "inspections", "source_count": 456},
{"business_name": "BOOST MOBILE", "address": {"city": "BRONX", "zip": 10458, "street": "E FORDHAM RD", "number": 261}, "score": 2.900916337966919, "source": "inspections", "source_count": 456},
{"business_name": "SPRING MOBILE", "address": {"city": "SOUTH RICHMOND HILL", "zip": 11419, "street": "LIBERTY AVE", "number": 12207}, "score": 2.900916337966919, "source": "inspections", "source_count": 456}
],
"totalCount": [
{"_id": "companies", "totalCount": 52},
{"_id": "inspections", "totalCount": 456}
]
}
1

mongodb-driver-kotlin-coroutine

4.10.0 ou uma versão superior

2
3

A query a seguir pesquisar as collection companies e inspections em busca do termo mobile no campo name e business_name , respectivamente.

Essa query usa os seguintes estágios:

  • $search para pesquisar empresas que incluem mobile no nome.

  • $unionWith para fazer o seguinte:

    • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

    • Realizar uma união de documento da companies e documento da collection inspections .

  • Etapa $set para adicionar um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

    • $project estágio para:

      • Inclua apenas os campos especificados nos resultados.

      • Adicione um campo denominado score.

1import com.mongodb.kotlin.client.coroutine.MongoClient
2import kotlinx.coroutines.runBlocking
3import org.bson.Document
4
5fun main() {
6 // connect to Atlas cluster
7 val uri = "<connection-string>"
8 val mongoClient = MongoClient.create(uri)
9
10 // set namespace
11 val database = mongoClient.getDatabase("sample_training")
12 val collection = database.getCollection<Document>("companies")
13
14 runBlocking {
15 // define pipeline
16 val pipeline1 = listOf(
17 Document("\$search", Document("text",
18 Document("query", "Mobile")
19 .append("path", "name"))), Document("\$project", Document("score",
20 Document("\$meta", "searchScore"))
21 .append("_id", 0)
22 .append("number_of_employees", 1)
23 .append("founded_year", 1)
24 .append("name", 1)), Document("\$set", Document("source", "companies")),
25 Document("\$limit", 3)
26 )
27
28 val pipeline2 = listOf(
29 Document(
30 "\$search", Document(
31 "text",
32 Document("query", "Mobile")
33 .append("path", "business_name")
34 )
35 ),
36 Document("\$set", Document("source", "inspections")),
37 Document(
38 "\$project", Document(
39 "score",
40 Document("\$meta", "searchScore")
41 )
42 .append("source", 1)
43 .append("_id", 0)
44 .append("business_name", 1)
45 .append("address", 1)
46 ),
47 Document("\$limit", 3),
48 Document("\$sort", Document("score", -1))
49 )
50
51 val unionWithStage: MutableList<Document> = ArrayList()
52 val unionWith = Document(
53 "\$unionWith", Document("coll", "inspections")
54 .append("pipeline", pipeline2)
55 )
56 unionWithStage.add(unionWith)
57 val finalPipeline: MutableList<Document> = ArrayList(pipeline1)
58 finalPipeline.addAll(unionWithStage)
59
60 // run pipeline and print results
61 val resultsFlow = collection.aggregate<Document>(finalPipeline)
62 resultsFlow.collect { println(it) }
63
64 }
65 mongoClient.close()
66}

Essa query usa os seguintes estágios:

  • $search para pesquisar empresas que incluem mobile no nome.

  • $project estágio para:

    • Inclua apenas os campos especificados nos resultados.

    • Adicione um campo denominado score.

  • $addFields para adicionar os seguintes novos campos:

    • Um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Um nome de campo source_count que mostra uma contagem dos documentos de saída.

  • $unionWith para fazer o seguinte:

    • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

    • Realizar uma união de documento da companies e documento da collection inspections .

  • $project estágio para:

    • Inclua apenas os campos especificados nos resultados.

    • Adicione um campo denominado score.

  • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

  • $set para adicionar os seguintes novos campos:

    • Um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Um novo campo chamado source_count que mostra uma contagem dos documentos de saída.

1import com.mongodb.kotlin.client.coroutine.MongoClient
2import kotlinx.coroutines.runBlocking
3import org.bson.Document
4import java.util.*
5
6fun main() {
7 // connect to Atlas cluster
8 val uri = "<connection-string>"
9 val mongoClient = MongoClient.create(uri)
10
11 // set namespace
12 val database = mongoClient.getDatabase("sample_training")
13 val collection = database.getCollection<Document>("companies")
14
15 runBlocking {
16 // define pipeline stages
17 val searchStage = Document(
18 "\$search", Document(
19 "text",
20 Document("query", "mobile")
21 .append("path", "name")
22 .append("score", Document("boost", Document("value", 1.6)))
23 )
24 )
25
26 val projectStage = Document(
27 "\$project", Document("score", Document("\$meta", "searchScore"))
28 .append("_id", 0)
29 .append("number_of_employees", 1)
30 .append("founded_year", 1)
31 .append("name", 1)
32 )
33
34 val addFieldsStage = Document(
35 "\$addFields", Document("source", "companies")
36 .append("source_count", "$\$SEARCH_META.count.lowerBound")
37 )
38
39 val limitStage = Document("\$limit", 3)
40
41 val unionWithStage = Document(
42 "\$unionWith", Document("coll", "inspections")
43 .append(
44 "pipeline", Arrays.asList(
45 Document(
46 "\$search", Document(
47 "text",
48 Document("query", "mobile")
49 .append("path", "business_name")
50 )
51 ),
52 Document(
53 "\$project", Document("score", Document("\$meta", "searchScore"))
54 .append("business_name", 1)
55 .append("address", 1)
56 .append("_id", 0)
57 ),
58 Document("\$limit", 3),
59 Document(
60 "\$set", Document("source", "inspections")
61 .append("source_count", "$\$SEARCH_META.count.lowerBound")
62 ),
63 Document("\$sort", Document("score", -1))
64 )
65 )
66 )
67
68 val facetStage = Document(
69 "\$facet", Document("allDocs", Arrays.asList<Any>())
70 .append(
71 "totalCount", Arrays.asList(
72 Document(
73 "\$group", Document("_id", "\$source")
74 .append("firstCount", Document("\$first", "\$source_count"))
75 ),
76 Document(
77 "\$project", Document(
78 "totalCount",
79 Document("\$sum", "\$firstCount")
80 )
81 )
82 )
83 )
84 )
85
86 // run pipeline and print results
87 val resultsFlow = collection.aggregate<Document>(
88 listOf(
89 searchStage,
90 projectStage,
91 addFieldsStage,
92 limitStage,
93 unionWithStage,
94 facetStage
95 )
96 )
97 resultsFlow.collect { println(it) }
98
99 }
100 mongoClient.close()
101}
4

Certifique-se de que sua cadeia de conexão inclui as credenciais do usuário do banco de dados. Para saber mais, consulte Conectar via Drivers.

5

Ao executar o programa SearchWithUnionwithQuery.kt no seu IDE, ele imprime os seguintes documentos:

Document{{name=XLR8 Mobile, number_of_employees=21, founded_year=2006, score=2.0815043449401855, source=companies}}
Document{{name=Pulse Mobile, number_of_employees=null, founded_year=null, score=2.0815043449401855, source=companies}}
Document{{name=Mobile Trend, number_of_employees=null, founded_year=2003, score=2.0815043449401855, source=companies}}
Document{{business_name=T-MOBILE, address=Document{{city=BROOKLYN, zip=11229, street=AVENUE U, number=1616}}, source=inspections, score=2.900916337966919}}
Document{{business_name=BOOST MOBILE, address=Document{{city=BRONX, zip=10458, street=E FORDHAM RD, number=261}}, source=inspections, score=2.900916337966919}}
Document{{business_name=SPRING MOBILE, address=Document{{city=SOUTH RICHMOND HILL, zip=11419, street=LIBERTY AVE, number=12207}}, source=inspections, score=2.900916337966919}}

Quando você executa o programa SearchWithUnionwithQuery.kt no seu IDE, ele imprime o seguinte resultado:

Document{{allDocs=[Document{{name=XLR8 Mobile,
number_of_employees=21, founded_year=2006,
score=3.33040714263916, source=companies,
source_count=52}}, Document{{name=Pulse Mobile,
number_of_employees=null, founded_year=null,
score=3.33040714263916, source=companies,
source_count=52}}, Document{{name=Mobile Trend,
number_of_employees=null, founded_year=2003,
score=3.33040714263916, source=companies,
source_count=52}}, Document{{business_name=T-MOBILE,
address=Document{{city=BROOKLYN, zip=11229, street=AVENUE
U, number=1616}}, score=2.900916337966919,
source=inspections, source_count=456}},
Document{{business_name=BOOST MOBILE,
address=Document{{city=BRONX, zip=10458, street=E FORDHAM
RD, number=261}}, score=2.900916337966919,
source=inspections, source_count=456}},
Document{{business_name=SPRING MOBILE,
address=Document{{city=SOUTH RICHMOND HILL, zip=11419,
street=LIBERTY AVE, number=12207}},
score=2.900916337966919, source=inspections,
source_count=456}}],
totalCount=[Document{{_id=inspections, totalCount=456}},
Document{{_id=companies, totalCount=52}}]}}
1
2

A query a seguir pesquisar as collection companies e inspections em busca do termo mobile no campo name e business_name , respectivamente.

Essa query usa os seguintes estágios:

  • $search para pesquisar empresas que incluem mobile no nome.

  • $unionWith para fazer o seguinte:

    • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

    • Realizar uma união de documento da companies e documento da collection inspections .

  • Etapa $set para adicionar um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

    • $project estágio para:

      • Inclua apenas os campos especificados nos resultados.

      • Adicione um campo denominado score.

1const MongoClient = require("mongodb").MongoClient;
2const assert = require("assert");
3
4const agg = [
5 {
6 '$search': {
7 'text': { 'query': 'Mobile', 'path': 'name' }
8 }
9 }, {
10 '$project': {
11 'score': { '$meta': 'searchScore' },
12 '_id': 0, 'number_of_employees': 1, 'founded_year': 1, 'name': 1
13 }
14 }, {
15 '$set': { 'source': 'companies' }
16 }, {
17 '$limit': 3
18 }, {
19 '$unionWith': {
20 'coll': 'inspections',
21 'pipeline': [
22 {
23 '$search': {
24 'text': { 'query': 'Mobile', 'path': 'business_name' }
25 }
26 }, {
27 '$set': { 'source': 'inspections' }
28 }, {
29 '$project': {
30 'score': { '$meta': 'searchScore' },
31 'source': 1, '_id': 0, 'business_name': 1, 'address': 1
32 }
33 }, {
34 '$limit': 3
35 }, {
36 '$sort': { 'score': -1 }
37 }
38 ]
39 }
40 }
41 ];
42
43MongoClient.connect(
44 "<connection-string>",
45 { useNewUrlParser: true, useUnifiedTopology: true },
46 async function (connectErr, client) {
47 assert.equal(null, connectErr);
48 const coll = client.db("sample_training").collection("companies");
49 let cursor = await coll.aggregate(agg);
50 await cursor.forEach((doc) => console.log(doc));
51 client.close();
52 }
53);

Essa query usa os seguintes estágios:

  • $search para pesquisar empresas que incluem mobile no nome.

  • $project estágio para:

    • Inclua apenas os campos especificados nos resultados.

    • Adicione um campo denominado score.

  • $addFields para adicionar os seguintes novos campos:

    • Um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Um nome de campo source_count que mostra uma contagem dos documentos de saída.

  • $unionWith para fazer o seguinte:

    • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

    • Realizar uma união de documento da companies e documento da collection inspections .

  • $project estágio para:

    • Inclua apenas os campos especificados nos resultados.

    • Adicione um campo denominado score.

  • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

  • $set para adicionar os seguintes novos campos:

    • Um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Um novo campo chamado source_count que mostra uma contagem dos documentos de saída.

1const MongoClient = require("mongodb").MongoClient;
2const assert = require("assert");
3
4const agg = [
5 {'$search': { 'text': {
6 'query': 'mobile',
7 'path': 'name',
8 'score': {
9 'boost': { 'value': 1.6 }
10 }
11 }}},
12 {'$project': {
13 'score': { '$meta': 'searchScore' },
14 '_id': 0,
15 'number_of_employees': 1,
16 'founded_year': 1,
17 'name': 1
18 }},
19 {'$addFields': {
20 'source': 'companies',
21 'source_count': '$$SEARCH_META.count.lowerBound'
22 }},
23 {'$limit': 3},
24 {'$unionWith': {
25 'coll': 'inspections',
26 'pipeline': [
27 {'$search': {
28 'text': { 'query': 'mobile', 'path': 'business_name' }
29 }},
30 {'$project': {
31 'score': { '$meta': 'searchScore' },
32 'business_name': 1,
33 'address': 1,
34 '_id': 0
35 }},
36 {'$limit': 3},
37 {'$set': {
38 'source': 'inspections',
39 'source_count': '$$SEARCH_META.count.lowerBound'
40 }},
41 {'$sort': { 'score': -1 } }
42 ]
43 }},
44 {'$facet': {
45 'allDocs': [],
46 'totalCount': [
47 {'$group': {
48 '_id': '$source',
49 'firstCount': { '$first': '$source_count' }
50 }},
51 {'$project': {
52 'totalCount': { '$sum': '$firstCount' }
53 }}
54 ]
55 }}
56];
57
58MongoClient.connect(
59 "<connection-string>",
60 { useNewUrlParser: true, useUnifiedTopology: true },
61 async function (connectErr, client) {
62 assert.equal(null, connectErr);
63 const coll = client.db("sample_training").collection("companies");
64 let cursor = await coll.aggregate(agg);
65 await cursor.forEach((doc) => console.log(doc));
66 client.close();
67 }
68);
3

Certifique-se de que sua cadeia de conexão inclui as credenciais do usuário do banco de dados. Para saber mais, consulte Conectar via Drivers.

4

Execute o seguinte comando para consultar sua collection:

node unionwith-with-search-query.js
{
name: 'SoftBank Mobile',
number_of_employees: null,
founded_year: null,
score: 2.0815043449401855,
source: 'companies'
}
{
name: 'Mobile Factory',
number_of_employees: 53,
founded_year: 2001,
score: 2.0815043449401855,
source: 'companies'
}
{
name: 'ZOOZ Mobile',
number_of_employees: 5,
founded_year: 2008,
score: 2.0815043449401855,
source: 'companies'
}
{
business_name: 'T. MOBILE',
address: { city: 'BROOKLYN', zip: 11209, street: '86TH ST', number: 440 },
source: 'inspections',
score: 2.900916337966919
}
{
business_name: 'BOOST MOBILE',
address: { city: 'BRONX', zip: 10458, street: 'E FORDHAM RD', number: 261 },
source: 'inspections',
score: 2.900916337966919
}
{
business_name: 'T-MOBILE',
address: { city: 'BROOKLYN', zip: 11229, street: 'AVENUE U', number: 1616 },
source: 'inspections',
score: 2.900916337966919
}
node unionwith-with-search-query.js
{
allDocs: [
{
name: 'XLR8 Mobile',
number_of_employees: 21,
founded_year: 2006,
score: 3.33040714263916,
source: 'companies',
source_count: 52
},
{
name: 'Pulse Mobile',
number_of_employees: null,
founded_year: null,
score: 3.33040714263916,
source: 'companies',
source_count: 52
},
{
name: 'T-Mobile',
number_of_employees: null,
founded_year: null,
score: 3.33040714263916,
source: 'companies',
source_count: 52
},
{
business_name: 'T. MOBILE',
address: [Object],
score: 2.900916337966919,
source: 'inspections',
source_count: 456
},
{
business_name: 'BOOST MOBILE',
address: [Object],
score: 2.900916337966919,
source: 'inspections',
source_count: 456
},
{
business_name: 'SPRING MOBILE',
address: [Object],
score: 2.900916337966919,
source: 'inspections',
source_count: 456
}
],
totalCount: [
{ _id: 'companies', totalCount: 52 },
{ _id: 'inspections', totalCount: 456 }
]
}
1
2

A query a seguir pesquisar as collection companies e inspections em busca do termo mobile no campo name e business_name , respectivamente.

Essa query usa os seguintes estágios:

  • $search para pesquisar empresas que incluem mobile no nome.

  • $unionWith para fazer o seguinte:

    • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

    • Realizar uma união de documento da companies e documento da collection inspections .

  • Etapa $set para adicionar um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

    • $project estágio para:

      • Inclua apenas os campos especificados nos resultados.

      • Adicione um campo denominado score.

1import pymongo
2import dns
3
4client = pymongo.MongoClient('<connection-string>')
5result = client['sample_training']['companies'].aggregate([
6 {
7 '$search': {
8 'text': { 'query': 'Mobile', 'path': 'name' }
9 }
10 }, {
11 '$project': {
12 'score': { '$meta': 'searchScore' }, '_id': 0, 'number_of_employees': 1, 'founded_year': 1, 'name': 1
13 }
14 }, {
15 '$set': { 'source': 'companies' }
16 }, {
17 '$limit': 3
18 }, {
19 '$unionWith': {
20 'coll': 'inspections',
21 'pipeline': [
22 {
23 '$search': {
24 'text': { 'query': 'Mobile', 'path': 'business_name' }
25 }
26 }, {
27 '$set': { 'source': 'inspections' }
28 }, {
29 '$project': {
30 'score': { '$meta': 'searchScore' }, 'source': 1, '_id': 0, 'business_name': 1, 'address': 1
31 }
32 }, {
33 '$limit': 3
34 }, {
35 '$sort': { 'score': -1 }
36 }
37 ]
38 }
39 }
40])
41
42for i in result:
43 print(i)

Essa query usa os seguintes estágios:

  • $search para pesquisar empresas que incluem mobile no nome.

  • $project estágio para:

    • Inclua apenas os campos especificados nos resultados.

    • Adicione um campo denominado score.

  • $addFields para adicionar os seguintes novos campos:

    • Um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Um nome de campo source_count que mostra uma contagem dos documentos de saída.

  • $unionWith para fazer o seguinte:

    • Use o estágio $search no subpipeline para pesquisar inspeções de empresas que incluem mobile no nome.

    • Realizar uma união de documento da companies e documento da collection inspections .

  • $project estágio para:

    • Inclua apenas os campos especificados nos resultados.

    • Adicione um campo denominado score.

  • Estágio $limit para limitar a saída a 3 resultados de cada coleção.

  • $set para adicionar os seguintes novos campos:

    • Um novo campo chamado source que identifica a coleção dos documentos de saída.

    • Um novo campo chamado source_count que mostra uma contagem dos documentos de saída.

1import pymongo
2import dns
3
4client = pymongo.MongoClient('<connection-string>')
5result = client['sample_training']['companies'].aggregate([
6 {'$search': { 'text': {
7 'query': 'mobile',
8 'path': 'name',
9 'score': { 'boost': { 'value': 1.6 } }
10 }}},
11 {'$project': {
12 'score': { '$meta': 'searchScore' },
13 '_id': 0,
14 'number_of_employees': 1,
15 'founded_year': 1,
16 'name': 1
17 }},
18 {'$addFields': {
19 'source': 'companies',
20 'source_count': '$$SEARCH_META.count.lowerBound'
21 }},
22 {'$limit': 3},
23 {'$unionWith': {
24 'coll': 'inspections',
25 'pipeline': [
26 {'$search': { 'text': {
27 'query': 'mobile',
28 'path': 'business_name'
29 }} },
30 {'$project': {
31 'score': { '$meta': 'searchScore' },
32 'business_name': 1,
33 'address': 1,
34 '_id': 0
35 }},
36 {'$limit': 3},
37 {'$set': {
38 'source': 'inspections',
39 'source_count': '$$SEARCH_META.count.lowerBound'
40 }},
41 {'$sort': { 'score': -1 }}
42 ]
43 }},
44 {'$facet': {
45 'allDocs': [],
46 'totalCount': [
47 {'$group': {
48 '_id': '$source',
49 'firstCount': { '$first': '$source_count' }
50 }},
51 {'$project': {
52 'totalCount': { '$sum': '$firstCount' }
53 }}
54 ]
55 }}
56])
57
58for i in result:
59 print(i)
3

Certifique-se de que sua cadeia de conexão inclui as credenciais do usuário do banco de dados. Para saber mais, consulte Conectar via Drivers.

4
python search-with-unionwith-query.py
{'name': 'XLR8 Mobile', 'number_of_employees': 21, 'founded_year': 2006, 'score': 2.0815043449401855, 'source': 'companies'}
{'name': 'Pulse Mobile', 'number_of_employees': None, 'founded_year': None, 'score': 2.0815043449401855, 'source': 'companies'}
{'name': 'T-Mobile', 'number_of_employees': None, 'founded_year': None, 'score': 2.0815043449401855, 'source': 'companies'}
{'business_name': 'T. MOBILE', 'address': {'city': 'BROOKLYN', 'zip': 11209, 'street': '86TH ST', 'number': 440}, 'source': 'inspections', 'score': 2.900916337966919}
{'business_name': 'BOOST MOBILE', 'address': {'city': 'BRONX', 'zip': 10458, 'street': 'E FORDHAM RD', 'number': 261}, 'source': 'inspections', 'score': 2.900916337966919}
{'business_name': 'SPRING MOBILE', 'address': {'city': 'SOUTH RICHMOND HILL', 'zip': 11419, 'street': 'LIBERTY AVE', 'number': 12207}, 'source': 'inspections', 'score': 2.900916337966919}
python search-with-unionwith-query.py
{
'allDocs': [
{'name': 'XLR8 Mobile', 'number_of_employees': 21, 'founded_year': 2006, 'score': 3.33040714263916, 'source': 'companies', 'source_count': 52},
{'name': 'Pulse Mobile', 'number_of_employees': None, 'founded_year': None, 'score': 3.33040714263916, 'source': 'companies', 'source_count': 52},
{'name': 'T-Mobile', 'number_of_employees': None, 'founded_year': None, 'score': 3.33040714263916, 'source': 'companies', 'source_count': 52},
{'business_name': 'T. MOBILE', 'address': {'city': 'BROOKLYN', 'zip': 11209, 'street': '86TH ST', 'number': 440}, 'score': 2.900916337966919, 'source': 'inspections', 'source_count': 456},
{'business_name': 'BOOST MOBILE', 'address': {'city': 'BRONX', 'zip': 10458, 'street': 'E FORDHAM RD', 'number': 261}, 'score': 2.900916337966919, 'source': 'inspections', 'source_count': 456},
{'business_name': 'SPRING MOBILE', 'address': {'city': 'SOUTH RICHMOND HILL', 'zip': 11419, 'street': 'LIBERTY AVE', 'number': 12207}, 'score': 2.900916337966919, 'source': 'inspections', 'source_count': 456}
],
'totalCount': [
{'_id': 'companies', 'totalCount': 52},
{'_id': 'inspections', 'totalCount': 456}
]
}

Voltar

$lookup com $search