Menu Docs
Página inicial do Docs
/
MongoDB Atlas
/ /

$validate

Nesta página

  • Definição
  • Sintaxe
  • Comportamento
  • Exemplo de validador
  • Exemplos

O estágio $validate verifica a conformidade dos documentos de streaming com um esquema de faixas, valores ou tipos de dados esperados.

$validate

Um estágio de pipeline do $validate tem a seguinte forma de protótipo:

{
"$validate": {
"validator": { <filter> },
"validationAction" : "discard" | "dlq"
}
}

O estágio $validate recebe um documento com os seguintes campos:

Campo
Tipo
necessidade
Descrição
validator
documento
Obrigatório

Documento de expressões usado para validar mensagens recebidas em relação a um esquema definido pelo usuário. Você pode usar todos, exceto os seguintes operadores de query, para definir expressões de validação:

  • $near

  • $nearSphere

  • $text

  • $where

validationAction
string
Opcional

Especifica a ação a ser tomada quando uma mensagem viola o esquema definido pelo usuário. Você pode especificar um dos seguintes valores:

  • discard: descarta a mensagem. Se você não especificar um valor para validationAction, este será o comportamento padrão.

  • dlq: Registra a violação na collection definida na configuração do Processador de Stream e executa o descarte da melhor maneira possível sem garantias transacionais.

Você pode usar $validate em qualquer ponto de um pipeline após o estágio $source e antes do estágio $emit ou $merge .

Se você especificar as opções discard ou dlq para o campo validationAction , o Atlas Stream Processing registrará mensagens que falharão na validação no seguinte formato:

{
"t": <datetime>,
"s": "<severity-level>",
"c": "streams-<job-name>",
"ctx": "<processed-pipeline>",
"msg": "<message-body>",
"attrs": {
<result-of-logAttributes-evaluation>
},
"tags": <array-of-strings>,
"truncated": {
<truncation-description>
},
"size": <size-of-entry>
}

A tabela a seguir descreve os campos de entrada de registro:

Campo
Tipo
Descrição
attrs
documento
documento que contém os resultados da avaliação do campo logAttributes na definição $validate . O resultado é uma lista de campos.
c
string
Nome da Atlas Stream Processing tarefa específica em que ocorreu a falha.
ctx
string
Nome do pipeline de dados de streaming que está sendo processado.
msg
string
Corpo da mensagem que falhou na validação.

Atlas Stream Processing suporta apenas JSON schema Rascunho 4 ou anterior.

O documento a seguir mostra um exemplo de expressão de validação que usa $and para executar uma operação lógica AND:

{
$validate: {
validator: {
$and: [{
$expr: {
$ne: [
"$Racer_Name",
"Pace Car"
]
}
},
{
$jsonSchema: {
required: [ "Racer_Num", "Racer_Name", "lap", "Corner_Num", "timestamp" ],
properties: {
Racer_Num: {
bsonType: "int",
description: "'Racer_Num' is the integer number of the race car and is required"
},
Racer_Name: {
bsonType: "string",
description: "'Racer_Name' must be a string and is required"
},
lap: {
bsonType: "int",
minimum: 1,
description: "'lap' must be a int and is required"
},
Corner_Num: {
bsonType: "int",
minimum: 1,
maximum: 4,
description: "'Corner_Num' must be a int between 1 and 4 and is required"
},
timestamp: {
bsonType: "string",
pattern: "^\\d{4}-\\d{2}-\\d{2}T\\d{2}:\\d{2}:\\d{2}\\.\\d{6}$",
description: "'timestamp' must be a string matching iso date pattern and is required"
}
}
}
}]
}, validationAction : "dlq"
}
}

Considere uma fonte de dados de streaming que gera relatórios meteorológicos detalhados de vários locais. No exemplo de pipeline de agregação a seguir, você inclui um estágio $validate para garantir que os documentos estejam em conformidade com o esquema do Exemplo de conjunto de dados meteorológicos. A agregação tem quatro etapas:

  1. O estágio $source estabelece uma conexão com o corretor Apache Kafka coletando esses relatórios em um tópico chamado my_weatherdata, passando cada registro conforme ele é ingerido para os estágios de agregação subsequentes.

  2. O estágio $validate verifica se um documento tem valores de array para os campos position.coordinates e sections , passando os documentos que têm para o restante do pipeline, e os documentos que não têm para um DLQ.

  3. O estágio $match elimina os documentos que têm um valor wind.speed.rate maior ou igual a 30 e encaminha os documentos com um valor wind.speed.rate menor que 30.

  4. O estágio $merge grava a saída na coleção do Atlas chamada stream no banco de dados sample_weatherstream. Se não existir tal banco de dados de dados ou coleção, o Atlas os criará.

{
'$source': {
connectionName: 'sample_weatherdata',
topic: 'my_weatherdata',
tsFieldName: 'ingestionTime'
}
},
{
'$validate': {
validator: {
'$jsonSchema': { properties: { position: [Object], sections: [Object] } }
},
validationAction: 'dlq'
}
},
{ '$match': { 'wind.speed.rate': { '$lt': 30 } } },
{
'$merge': {
into: {
connectionName: 'weatherStreamOutput',
db: 'sample_weatherstream',
coll: 'stream'
}
}
}

Para visualizar os documentos na coleção sample_weatherstream.sample resultante, você pode conectar ao seu cluster do Atlas usando mongosh para executar o seguinte comando:

Observação

O seguinte é um exemplo representativo. Os dados de streaming não são estáticos, e cada usuário vê documentos diferentes.

db.getSiblingDB("sample_weatherstream").stream.find()
{
_id: ObjectId('66b25302fe8bbac5f39dbdba'),
_stream_meta: {
source: {
type: 'kafka',
topic: 'my_weatherdata',
partition: 0,
offset: Long('168843')
}
},
airTemperature: { quality: '9', value: 3.5 },
atmosphericPressureChange: {
quantity24Hours: { quality: '9', value: 99.9 },
quantity3Hours: { quality: '1', value: 10.9 },
tendency: { code: '3', quality: '1' }
},
atmosphericPressureObservation: {
altimeterSetting: { quality: '1', value: 1015.9 },
stationPressure: { quality: '9', value: 1022.5 }
},
callLetters: 'JIVX',
dataSource: '4',
dewPoint: { quality: '9', value: 20.5 },
elevation: 9999,
extremeAirTemperature: { code: 'N', period: 99.9, quantity: '9', value: -30.4 },
ingestionTime: ISODate('2024-08-06T16:44:50.322Z'),
liquidPrecipitation: { condition: '9', depth: 7000, period: 12, quality: '9' },
pastWeatherObservationManual: {
atmosphericCondition: { quality: '1', value: '7' },
period: { quality: '1', value: 3 }
},
position: { coordinates: [ 120.7, -98.2 ], type: 'Point' },
precipitationEstimatedObservation: { discrepancy: '5', estimatedWaterDepth: 999 },
presentWeatherObservationManual: { condition: '90', quality: '1' },
pressure: { quality: '1', value: 1028.2 },
qualityControlProcess: 'V020',
seaSurfaceTemperature: { quality: '9', value: 11.1 },
sections: [ 'UG1', 'MA1', 'GA3', 'KA1', 'UA1' ],
skyCondition: {
cavok: 'N',
ceilingHeight: { determination: 'C', quality: '1', value: 390 }
},
skyConditionObservation: {
highCloudGenus: { quality: '1', value: '06' },
lowCloudGenus: { quality: '9', value: '07' },
lowestCloudBaseHeight: { quality: '1', value: 800 },
lowestCloudCoverage: { quality: '9', value: '06' },
midCloudGenus: { quality: '9', value: '07' },
totalCoverage: { opaque: '99', quality: '1', value: '99' }
},
skyCoverLayer: {
baseHeight: { quality: '9', value: 1200 },
cloudType: { quality: '9', value: '04' },
coverage: { quality: '1', value: '09' }
},
st: 'x+36700+144300',
type: 'FM-13',
visibility: {
distance: { quality: '9', value: 9000 },
variability: { quality: '9', value: 'N' }
},
waveMeasurement: {
method: 'I',
seaState: { code: '00', quality: '9' },
waves: { height: 9.5, period: 4, quality: '9' }
},
wind: {
direction: { angle: 140, quality: '1' },
speed: { quality: '2', rate: 15.9 },
type: 'N'
}
}

Observe que todos os documentos nesta coleção têm os valores de tipo arrayesperados para position.coordinates e sections. Para exibir os documentos que falharam na validação, dada uma fila de mensagens mortas chamada dlq, execute o seguinte comando:

db.getSiblingDB("sample_weatherstream").dlq.find()
{
_id: ObjectId('66b254d3a045fb1406047394'),
_stream_meta: {
source: {
type: 'kafka',
topic: 'my_weatherdata',
partition: 0,
offset: Long('168949'),
key: Binary.createFromBase64('', 0),
headers: []
}
},
errInfo: { reason: 'Input document found to be invalid in $validate stage' },
doc: {
airTemperature: { quality: '9', value: 7.6 },
atmosphericPressureChange: {
quantity24Hours: { quality: '9', value: 99.9 },
quantity3Hours: { quality: '1', value: 0.3 },
tendency: { code: '8', quality: '1' }
},
atmosphericPressureObservation: {
altimeterSetting: { quality: '9', value: 1015.9 },
stationPressure: { quality: '1', value: 1017 }
},
callLetters: 'WRGL',
dataSource: '4',
dewPoint: { quality: '9', value: 25.3 },
elevation: 9999,
extremeAirTemperature: { code: 'M', period: 99.9, quantity: '1', value: -30.9 },
liquidPrecipitation: { condition: '9', period: 99, quality: '9' },
pastWeatherObservationManual: {
atmosphericCondition: { quality: '1', value: '2' },
period: { quality: '1', value: 6 }
},
position: { coordinates: -100.2, type: 'Point' },
precipitationEstimatedObservation: { discrepancy: '5', estimatedWaterDepth: 17 },
presentWeatherObservationManual: { condition: '08', quality: '1' },
pressure: { quality: '9', value: 1001 },
qualityControlProcess: 'V020',
seaSurfaceTemperature: { quality: '9', value: 10.4 },
sections: [ 'GA2', 'GA1', 'KA1', 'AA1', 'OA1' ],
skyCondition: {
cavok: 'N',
ceilingHeight: { determination: 'C', quality: '1', value: 240 }
},
skyConditionObservation: {
highCloudGenus: { quality: '1', value: '02' },
lowCloudGenus: { quality: '9', value: '02' },
lowestCloudBaseHeight: { quality: '1', value: 150 },
lowestCloudCoverage: { quality: '1', value: '03' },
midCloudGenus: { quality: '1', value: '06' },
totalCoverage: { opaque: '99', quality: '1', value: '06' }
},
skyCoverLayer: {
baseHeight: { quality: '9', value: 450 },
cloudType: { quality: '9', value: '03' },
coverage: { quality: '1', value: '07' }
},
st: 'x+20500-074300',
type: 'SAO',
visibility: {
distance: { quality: '9', value: 3800 },
variability: { quality: '9', value: 'N' }
},
waveMeasurement: {
method: 'I',
seaState: { code: '00', quality: '9' },
waves: { height: 37.5, period: 7, quality: '9' }
},
wind: {
direction: { angle: 230, quality: '1' },
speed: { quality: '1', rate: 46.3 },
type: 'N'
},
ingestionTime: ISODate('2024-08-06T16:52:35.287Z'),
_stream_meta: {
source: {
type: 'kafka',
topic: 'my_weatherdata',
partition: 0,
offset: Long('168949')
}
}
},
processorName: 'sampleWeather'
}

Observe que todos os documentos na fila de letras mortas têm valores inválidos para position.coordinates, sections ou ambos.

Voltar

$source