$densify (aggregation)
Definition
$densify
New in version 5.1.
Creates new documents in a sequence of documents where certain values in a field are missing.
You can use
$densify
to:Fill gaps in time series data.
Add missing values between groups of data.
Populate your data with a specified range of values.
Syntax
The $densify
stage has this syntax:
{ $densify: { field: <fieldName>, partitionByFields: [ <field 1>, <field 2> ... <field n> ], range: { step: <number>, unit: <time unit>, bounds: < "full" || "partition" > || [ < lower bound >, < upper bound > ] } } }
The $densify
stage takes a document with these fields:
Field | Necessity | Description |
---|---|---|
Required | The field to densify. The values of the specified
Documents that do not contain the specified To specify a For restrictions, see | |
Optional | The set of fields to act as the compound key to group
the documents. In the If you omit this field, For an example, see Densifiction with Partitions. For restrictions, see | |
Required | An object that specifies how the data is densified. | |
Required | You can specify
If
If
If
| |
Required | The amount to increment the field value
in each document. If range.unit is specified, | |
Required if field is a date. | The unit to apply to the step field when incrementing date values in field. You can specify one of the following values for
For an example, see Densify Time Series Data. |
Behavior and Restrictions
field
Restrictions
For documents that contain the specified field,
$densify
errors if:
Any document in the collection has a
field
value of type date and the unit field is not specified.Any document in the collection has a
field
value of type numeric and the unit field is specified.The
field
name begins with$
. You must rename the field if you want to densify it. To rename fields, use$project
.
partitionByFields
Restrictions
$densify
errors if any field name in the
partitionByFields array:
Evaluates to a non-string value.
Begins with
$
.
range.bounds
Behavior
If range.bounds is an array:
The lower bound indicates the start value for the added documents, irrespective of documents already in the collection.
The lower bound is inclusive.
The upper bound is exclusive.
$densify
does not filter out documents with field values outside of the specified bounds.
Note
Starting in MongoDB 8.0, $densify
treats bounds with an equal
lower and upper bound as an empty set and does not generate a document
with the bound as the field value.
In prior versions, $densify
treats bounds with an equal lower
and upper bound as a closed interval and generates a document with the
bound value as a field value if the collection does not already contain
a document with the bound value.
For example, a range.bounds of [10, 10]
generates an extra document
with field value 10
in versions prior to 8.0, but does not generate such a
document in 8.0 and later.
Order of Output
$densify
does not guarantee sort order of the documents
it outputs.
To guarantee sort order, use $sort
on the field you want
to sort by.
Examples
Densify Time Series Data
Create a weather
collection that contains temperature readings over
four hour intervals.
db.weather.insertMany( [ { "metadata": { "sensorId": 5578, "type": "temperature" }, "timestamp": ISODate("2021-05-18T00:00:00.000Z"), "temp": 12 }, { "metadata": { "sensorId": 5578, "type": "temperature" }, "timestamp": ISODate("2021-05-18T04:00:00.000Z"), "temp": 11 }, { "metadata": { "sensorId": 5578, "type": "temperature" }, "timestamp": ISODate("2021-05-18T08:00:00.000Z"), "temp": 11 }, { "metadata": { "sensorId": 5578, "type": "temperature" }, "timestamp": ISODate("2021-05-18T12:00:00.000Z"), "temp": 12 } ] )
This example uses the $densify
stage to fill in the gaps
between the four-hour intervals to achieve hourly granularity for the
data points:
db.weather.aggregate( [ { $densify: { field: "timestamp", range: { step: 1, unit: "hour", bounds:[ ISODate("2021-05-18T00:00:00.000Z"), ISODate("2021-05-18T08:00:00.000Z") ] } } } ] )
In the example:
The
$densify
stage fills in the gaps of time in between the recorded temperatures.field: "timestamp"
densifies thetimestamp
field.range:
step: 1
increments thetimestamp
field by 1 unit.unit: hour
densifies thetimestamp
field by the hour.bounds: [ ISODate("2021-05-18T00:00:00.000Z"), ISODate("2021-05-18T08:00:00.000Z") ]
sets the range of time that is densified.
In the following output, the $densify
stage fills in the gaps of time
between the hours of 00:00:00
and 08:00:00
.
[ { _id: ObjectId("618c207c63056cfad0ca4309"), metadata: { sensorId: 5578, type: 'temperature' }, timestamp: ISODate("2021-05-18T00:00:00.000Z"), temp: 12 }, { timestamp: ISODate("2021-05-18T01:00:00.000Z") }, { timestamp: ISODate("2021-05-18T02:00:00.000Z") }, { timestamp: ISODate("2021-05-18T03:00:00.000Z") }, { _id: ObjectId("618c207c63056cfad0ca430a"), metadata: { sensorId: 5578, type: 'temperature' }, timestamp: ISODate("2021-05-18T04:00:00.000Z"), temp: 11 }, { timestamp: ISODate("2021-05-18T05:00:00.000Z") }, { timestamp: ISODate("2021-05-18T06:00:00.000Z") }, { timestamp: ISODate("2021-05-18T07:00:00.000Z") }, { _id: ObjectId("618c207c63056cfad0ca430b"), metadata: { sensorId: 5578, type: 'temperature' }, timestamp: ISODate("2021-05-18T08:00:00.000Z"), temp: 11 } { _id: ObjectId("618c207c63056cfad0ca430c"), metadata: { sensorId: 5578, type: 'temperature' }, timestamp: ISODate("2021-05-18T12:00:00.000Z"), temp: 12 } ]
Densifiction with Partitions
Create a coffee
collection that contains data for two
varieties of coffee beans:
db.coffee.insertMany( [ { "altitude": 600, "variety": "Arabica Typica", "score": 68.3 }, { "altitude": 750, "variety": "Arabica Typica", "score": 69.5 }, { "altitude": 950, "variety": "Arabica Typica", "score": 70.5 }, { "altitude": 1250, "variety": "Gesha", "score": 88.15 }, { "altitude": 1700, "variety": "Gesha", "score": 95.5, "price": 1029 } ] )
Densify the Full Range of Values
This example uses $densify
to densify the
altitude
field for each coffee variety
:
db.coffee.aggregate( [ { $densify: { field: "altitude", partitionByFields: [ "variety" ], range: { bounds: "full", step: 200 } } } ] )
The example aggregation:
Partitions the documents by
variety
to create one grouping forArabica Typica
and one forGesha
coffee.Specifies a
full
range, meaning that the data is densified across the full range of existing documents for each partition.Specifies a
step
of200
, meaning new documents are created ataltitude
intervals of200
.
The aggregation outputs the following documents:
[ { _id: ObjectId("618c031814fbe03334480475"), altitude: 600, variety: 'Arabica Typica', score: 68.3 }, { _id: ObjectId("618c031814fbe03334480476"), altitude: 750, variety: 'Arabica Typica', score: 69.5 }, { variety: 'Arabica Typica', altitude: 800 }, { _id: ObjectId("618c031814fbe03334480477"), altitude: 950, variety: 'Arabica Typica', score: 70.5 }, { variety: 'Gesha', altitude: 600 }, { variety: 'Gesha', altitude: 800 }, { variety: 'Gesha', altitude: 1000 }, { variety: 'Gesha', altitude: 1200 }, { _id: ObjectId("618c031814fbe03334480478"), altitude: 1250, variety: 'Gesha', score: 88.15 }, { variety: 'Gesha', altitude: 1400 }, { variety: 'Gesha', altitude: 1600 }, { _id: ObjectId("618c031814fbe03334480479"), altitude: 1700, variety: 'Gesha', score: 95.5, price: 1029 }, { variety: 'Arabica Typica', altitude: 1000 }, { variety: 'Arabica Typica', altitude: 1200 }, { variety: 'Arabica Typica', altitude: 1400 }, { variety: 'Arabica Typica', altitude: 1600 } ]
This image visualizes the documents created with $densify
:
![State of the coffee collection after full-range densifiction](/docs/upcoming/static/57b73dd19140d1d03bc4cd05ea6b8b0c/8131d/densification-full-range.webp)
The darker squares represent the original documents in the collection.
The lighter squares represent the documents created with
$densify
.
Densify Values within Each Partition
This example uses $densify
to only densify gaps in the
altitude
field within each variety
:
db.coffee.aggregate( [ { $densify: { field: "altitude", partitionByFields: [ "variety" ], range: { bounds: "partition", step: 200 } } } ] )
The example aggregation:
Partitions the documents by
variety
to create one grouping forArabica Typica
and one forGesha
coffee.Specifies a
partition
range, meaning that the data is densified within each partition.For the
Arabica Typica
partition, the range is600
-950
.For the
Gesha
partition, the range is1250
-1700
.
Specifies a
step
of200
, meaning new documents are created ataltitude
intervals of200
.
The aggregation outputs the following documents:
[ { _id: ObjectId("618c031814fbe03334480475"), altitude: 600, variety: 'Arabica Typica', score: 68.3 }, { _id: ObjectId("618c031814fbe03334480476"), altitude: 750, variety: 'Arabica Typica', score: 69.5 }, { variety: 'Arabica Typica', altitude: 800 }, { _id: ObjectId("618c031814fbe03334480477"), altitude: 950, variety: 'Arabica Typica', score: 70.5 }, { _id: ObjectId("618c031814fbe03334480478"), altitude: 1250, variety: 'Gesha', score: 88.15 }, { variety: 'Gesha', altitude: 1450 }, { variety: 'Gesha', altitude: 1650 }, { _id: ObjectId("618c031814fbe03334480479"), altitude: 1700, variety: 'Gesha', score: 95.5, price: 1029 } ]
This image visualizes the documents created with $densify
:
![State of the coffee collection after partition range densification](/docs/upcoming/static/5edec880fd39c8e07681e582cbf98a13/9a463/densification-by-partition.webp)
The darker squares represent the original documents in the collection.
The lighter squares represent the documents created with
$densify
.