$sum (aggregation)
On this page
Definition
Changed in version 5.0.
Calculates and returns the collective sum of numeric values.
$sum
ignores non-numeric values.
$sum
is available in these stages:
$setWindowFields
(Available starting in MongoDB 5.0)
Compatibility
You can use $sum
for deployments hosted in the following
environments:
MongoDB Atlas: The fully managed service for MongoDB deployments in the cloud
MongoDB Enterprise: The subscription-based, self-managed version of MongoDB
MongoDB Community: The source-available, free-to-use, and self-managed version of MongoDB
Syntax
When used as an accumulator,
$sum
has this syntax:
{ $sum: <expression> }
When not used as an accumulator, $sum
has this syntax:
{ $sum: [ <expression1>, <expression2> ... ] }
For more information on expressions, see Expressions.
Behavior
Result Data Type
When input types are mixed, $sum
promotes the smaller input
type to the larger of the two. A type is considered larger when it
represents a wider range of values. The order of numeric types from
smallest to largest is: integer → long → double → decimal
The larger of the input types also determines the result type unless
the operation overflows and is beyond the range represented by that
larger data type. In cases of overflow, $sum
promotes the
result according to the following order:
Non-Numeric or Non-Existent Fields
If used on a field that contains both numeric and non-numeric values,
$sum
ignores the non-numeric values and returns the sum of the
numeric values.
If used on a field that does not exist in any document in the collection,
$sum
returns 0
for that field.
If all operands are non-numeric, non-arrays, or contain null
values,
$sum
returns 0
. For details on how $sum
handles arrays,
see Array Operand.
Array Operand
In the $group
stage, if the expression resolves to an array,
$sum
treats the operand as a non-numeric value.
In the other supported stages:
With a single expression as its operand, if the expression resolves to an array,
$sum
traverses into the array to operate on the numeric elements of the array to return a single value.With a list of expressions as its operand, if any of the expressions resolves to an array,
$sum
does not traverse into the array but instead treats the array as a non-numeric value.
For example, when not used in a $group
stage:
If the
$sum
operand is[ 2, 2 ]
,$sum
adds the array elements and returns 4.If the
$sum
operand is[ 2, [ 3, 4 ] ]
,$sum
returns 2 because it treats the nested array[ 3, 4 ]
as a non-numeric value.
Examples
Use in $group
Stage
Consider a sales
collection with the following documents:
{ "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" : ISODate("2014-01-01T08:00:00Z") } { "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" : ISODate("2014-02-03T09:00:00Z") } { "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 5, "date" : ISODate("2014-02-03T09:05:00Z") } { "_id" : 4, "item" : "abc", "price" : 10, "quantity" : 10, "date" : ISODate("2014-02-15T08:00:00Z") } { "_id" : 5, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-02-15T09:05:00Z") }
Grouping the documents by the day and the year of the date
field,
the following operation uses the $sum
accumulator to compute the
total amount and the count for each group of documents.
db.sales.aggregate( [ { $group: { _id: { day: { $dayOfYear: "$date"}, year: { $year: "$date" } }, totalAmount: { $sum: { $multiply: [ "$price", "$quantity" ] } }, count: { $sum: 1 } } } ] )
The operation returns the following results:
{ "_id" : { "day" : 46, "year" : 2014 }, "totalAmount" : 150, "count" : 2 } { "_id" : { "day" : 34, "year" : 2014 }, "totalAmount" : 45, "count" : 2 } { "_id" : { "day" : 1, "year" : 2014 }, "totalAmount" : 20, "count" : 1 }
Using $sum
on a non-existent field returns a value of 0
.
The following operation attempts to $sum
on qty
:
db.sales.aggregate( [ { $group: { _id: { day: { $dayOfYear: "$date"}, year: { $year: "$date" } }, totalAmount: { $sum: "$qty" }, count: { $sum: 1 } } } ] )
The operation returns:
{ "_id" : { "day" : 46, "year" : 2014 }, "totalAmount" : 0, "count" : 2 } { "_id" : { "day" : 34, "year" : 2014 }, "totalAmount" : 0, "count" : 2 } { "_id" : { "day" : 1, "year" : 2014 }, "totalAmount" : 0, "count" : 1 }
The $count
aggregation accumulator can be used in place of
{ $sum : 1 }
in the $group
stage.
Use in $project
Stage
A collection students
contains the following documents:
{ "_id": 1, "quizzes": [ 10, 6, 7 ], "labs": [ 5, 8 ], "final": 80, "midterm": 75 } { "_id": 2, "quizzes": [ 9, 10 ], "labs": [ 8, 8 ], "final": 95, "midterm": 80 } { "_id": 3, "quizzes": [ 4, 5, 5 ], "labs": [ 6, 5 ], "final": 78, "midterm": 70 }
The following example uses the $sum
in the
$project
stage to calculate the total quiz scores, the
total lab scores, and the total of the final and the midterm:
db.students.aggregate([ { $project: { quizTotal: { $sum: "$quizzes"}, labTotal: { $sum: "$labs" }, examTotal: { $sum: [ "$final", "$midterm" ] } } } ])
The operation results in the following documents:
{ "_id" : 1, "quizTotal" : 23, "labTotal" : 13, "examTotal" : 155 } { "_id" : 2, "quizTotal" : 19, "labTotal" : 16, "examTotal" : 175 } { "_id" : 3, "quizTotal" : 14, "labTotal" : 11, "examTotal" : 148 }
Use in $setWindowFields
Stage
New in version 5.0.
Create a cakeSales
collection that contains cake sales in the states
of California (CA
) and Washington (WA
):
db.cakeSales.insertMany( [ { _id: 0, type: "chocolate", orderDate: new Date("2020-05-18T14:10:30Z"), state: "CA", price: 13, quantity: 120 }, { _id: 1, type: "chocolate", orderDate: new Date("2021-03-20T11:30:05Z"), state: "WA", price: 14, quantity: 140 }, { _id: 2, type: "vanilla", orderDate: new Date("2021-01-11T06:31:15Z"), state: "CA", price: 12, quantity: 145 }, { _id: 3, type: "vanilla", orderDate: new Date("2020-02-08T13:13:23Z"), state: "WA", price: 13, quantity: 104 }, { _id: 4, type: "strawberry", orderDate: new Date("2019-05-18T16:09:01Z"), state: "CA", price: 41, quantity: 162 }, { _id: 5, type: "strawberry", orderDate: new Date("2019-01-08T06:12:03Z"), state: "WA", price: 43, quantity: 134 } ] )
This example uses $sum
in the $setWindowFields
stage to output the sum of the quantity
of cakes sold in each
state
:
db.cakeSales.aggregate( [ { $setWindowFields: { partitionBy: "$state", sortBy: { orderDate: 1 }, output: { sumQuantityForState: { $sum: "$quantity", window: { documents: [ "unbounded", "current" ] } } } } } ] )
In the example:
partitionBy: "$state"
partitions the documents in the collection bystate
. There are partitions forCA
andWA
.sortBy: { orderDate: 1 }
sorts the documents in each partition byorderDate
in ascending order (1
), so the earliestorderDate
is first.
output
sets thesumQuantityForState
field to the sum of thequantity
values using$sum
that is run in a documents window.The window contains documents between an
unbounded
lower limit and thecurrent
document in the output. This means$sum
returns the sum of thequantity
values for the documents between the beginning of the partition and the current document.
In this output, the sum of the quantity
values for CA
and WA
is shown in the sumQuantityForState
field:
{ "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"), "state" : "CA", "price" : 41, "quantity" : 162, "sumQuantityForState" : 162 } { "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"), "state" : "CA", "price" : 13, "quantity" : 120, "sumQuantityForState" : 282 } { "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"), "state" : "CA", "price" : 12, "quantity" : 145, "sumQuantityForState" : 427 } { "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"), "state" : "WA", "price" : 43, "quantity" : 134, "sumQuantityForState" : 134 } { "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"), "state" : "WA", "price" : 13, "quantity" : 104, "sumQuantityForState" : 238 } { "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"), "state" : "WA", "price" : 14, "quantity" : 140, "sumQuantityForState" : 378 }