Docs Home → Develop Applications → MongoDB Manual
$reduce (aggregation)
On this page
Definition
$reduce
New in version 3.4.
Applies an expression to each element in an array and combines them into a single value.
$reduce
has the following syntax:{ $reduce: { input: <array>, initialValue: <expression>, in: <expression> } } FieldTypeDescriptioninput
arrayCan be any valid expression that resolves to an array. For more information on expressions, see Expressions.
If the argument resolves to a value of
null
or refers to a missing field,$reduce
returnsnull
.If the argument does not resolve to an array or
null
nor refers to a missing field,$reduce
returns an error.initialValue
expressionThe initial cumulativevalue
set beforein
is applied to the first element of theinput
array.in
expressionA valid expression that
$reduce
applies to each element in theinput
array in left-to-right order. Wrap theinput
value with$reverseArray
to yield the equivalent of applying the combining expression from right-to-left.During evaluation of the
in
expression, two variables will be available:If
input
resolves to an empty array,$reduce
returnsinitialValue
.
Example | Results | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
| "abc" | ||||||||||
| { "sum" : 15, "product" : 48 } | ||||||||||
| [ 1, 2, 3, 4, 5, 6 ] |
Examples
Multiplication
Probability
A collection named events
contains the events of a probability
experiment. Each experiment can have multiple events
, such as
rolling a die several times or drawing several cards (without replacement)
in succession to achieve a desired result. In order to obtain the
overall probability of the experiment, we will need to multiply the
probability of each event in the experiment.
{_id:1, "type":"die", "experimentId":"r5", "description":"Roll a 5", "eventNum":1, "probability":0.16666666666667} {_id:2, "type":"card", "experimentId":"d3rc", "description":"Draw 3 red cards", "eventNum":1, "probability":0.5} {_id:3, "type":"card", "experimentId":"d3rc", "description":"Draw 3 red cards", "eventNum":2, "probability":0.49019607843137} {_id:4, "type":"card", "experimentId":"d3rc", "description":"Draw 3 red cards", "eventNum":3, "probability":0.48} {_id:5, "type":"die", "experimentId":"r16", "description":"Roll a 1 then a 6", "eventNum":1, "probability":0.16666666666667} {_id:6, "type":"die", "experimentId":"r16", "description":"Roll a 1 then a 6", "eventNum":2, "probability":0.16666666666667} {_id:7, "type":"card", "experimentId":"dak", "description":"Draw an ace, then a king", "eventNum":1, "probability":0.07692307692308} {_id:8, "type":"card", "experimentId":"dak", "description":"Draw an ace, then a king", "eventNum":2, "probability":0.07843137254902}
Steps:
Use
$group
to group by theexperimentId
and use$push
to create an array with the probability of each event.Use
$reduce
with$multiply
to multiply and combine the elements ofprobabilityArr
into a single value and project it.
db.probability.aggregate( [ { $group: { _id: "$experimentId", "probabilityArr": { $push: "$probability" } } }, { $project: { "description": 1, "results": { $reduce: { input: "$probabilityArr", initialValue: 1, in: { $multiply: [ "$$value", "$$this" ] } } } } } ] )
The operation returns the following:
{ "_id" : "dak", "results" : 0.00603318250377101 } { "_id" : "r5", "results" : 0.16666666666667 } { "_id" : "r16", "results" : 0.027777777777778886 } { "_id" : "d3rc", "results" : 0.11764705882352879 }
Discounted Merchandise
A collection named clothes
contains the following documents:
{ "_id" : 1, "productId" : "ts1", "description" : "T-Shirt", "color" : "black", "size" : "M", "price" : 20, "discounts" : [ 0.5, 0.1 ] } { "_id" : 2, "productId" : "j1", "description" : "Jeans", "color" : "blue", "size" : "36", "price" : 40, "discounts" : [ 0.25, 0.15, 0.05 ] } { "_id" : 3, "productId" : "s1", "description" : "Shorts", "color" : "beige", "size" : "32", "price" : 30, "discounts" : [ 0.15, 0.05 ] } { "_id" : 4, "productId" : "ts2", "description" : "Cool T-Shirt", "color" : "White", "size" : "L", "price" : 25, "discounts" : [ 0.3 ] } { "_id" : 5, "productId" : "j2", "description" : "Designer Jeans", "color" : "blue", "size" : "30", "price" : 80, "discounts" : [ 0.1, 0.25 ] }
Each document contains a discounts
array containing the currently
available percent-off coupons for each item. If each discount can be
applied to the product once, we can calculate the lowest price by using
$reduce
to apply the following formula for each element in the
discounts
array: (1 - discount) * price.
db.clothes.aggregate( [ { $project: { "discountedPrice": { $reduce: { input: "$discounts", initialValue: "$price", in: { $multiply: [ "$$value", { $subtract: [ 1, "$$this" ] } ] } } } } } ] )
The operation returns the following:
{ "_id" : ObjectId("57c893067054e6e47674ce01"), "discountedPrice" : 9 } { "_id" : ObjectId("57c9932b7054e6e47674ce12"), "discountedPrice" : 24.224999999999998 } { "_id" : ObjectId("57c993457054e6e47674ce13"), "discountedPrice" : 24.224999999999998 } { "_id" : ObjectId("57c993687054e6e47674ce14"), "discountedPrice" : 17.5 } { "_id" : ObjectId("57c993837054e6e47674ce15"), "discountedPrice" : 54 }
String Concatenation
A collection named people
contains the following documents:
{ "_id" : 1, "name" : "Melissa", "hobbies" : [ "softball", "drawing", "reading" ] } { "_id" : 2, "name" : "Brad", "hobbies" : [ "gaming", "skateboarding" ] } { "_id" : 3, "name" : "Scott", "hobbies" : [ "basketball", "music", "fishing" ] } { "_id" : 4, "name" : "Tracey", "hobbies" : [ "acting", "yoga" ] } { "_id" : 5, "name" : "Josh", "hobbies" : [ "programming" ] } { "_id" : 6, "name" : "Claire" }
The following example reduces the hobbies
array of strings into a single string
bio
:
db.people.aggregate( [ // Filter to return only non-empty arrays { $match: { "hobbies": { $gt: [ ] } } }, { $project: { "name": 1, "bio": { $reduce: { input: "$hobbies", initialValue: "My hobbies include:", in: { $concat: [ "$$value", { $cond: { if: { $eq: [ "$$value", "My hobbies include:" ] }, then: " ", else: ", " } }, "$$this" ] } } } } } ] )
The operation returns the following:
{ "_id" : 1, "name" : "Melissa", "bio" : "My hobbies include: softball, drawing, reading" } { "_id" : 2, "name" : "Brad", "bio" : "My hobbies include: gaming, skateboarding" } { "_id" : 3, "name" : "Scott", "bio" : "My hobbies include: basketball, music, fishing" } { "_id" : 4, "name" : "Tracey", "bio" : "My hobbies include: acting, yoga" } { "_id" : 5, "name" : "Josh", "bio" : "My hobbies include: programming" }
Array Concatenation
A collection named matrices
contains the following documents:
{ "_id" : 1, "arr" : [ [ 24, 55, 79 ], [ 14, 78, 35 ], [ 84, 90, 3 ], [ 50, 89, 70 ] ] } { "_id" : 2, "arr" : [ [ 39, 32, 43, 7 ], [ 62, 17, 80, 64 ], [ 17, 88, 11, 73 ] ] } { "_id" : 3, "arr" : [ [ 42 ], [ 26, 59 ], [ 17 ], [ 72, 19, 35 ] ] } { "_id" : 4 }
Computing a Single Reduction
The following example collapses the two dimensional arrays into a single array collapsed
:
db.arrayconcat.aggregate( [ { $project: { "collapsed": { $reduce: { input: "$arr", initialValue: [ ], in: { $concatArrays: [ "$$value", "$$this" ] } } } } } ] )
The operation returns the following:
{ "_id" : 1, "collapsed" : [ 24, 55, 79, 14, 78, 35, 84, 90, 3, 50, 89, 70 ] } { "_id" : 2, "collapsed" : [ 39, 32, 43, 7, 62, 17, 80, 64, 17, 88, 11, 73 ] } { "_id" : 3, "collapsed" : [ 42, 26, 59, 17, 72, 19, 35 ] } { "_id" : 4, "collapsed" : null }
Computing a Multiple Reductions
The following example performs the same two dimensional array collapse as the example above, but also creates a new array containing only the first element of each array.
db.arrayconcat.aggregate( [ { $project: { "results": { $reduce: { input: "$arr", initialValue: [ ], in: { "collapsed": { $concatArrays: [ "$$value.collapsed", "$$this" ] }, "firstValues": { $concatArrays: [ "$$value.firstValues", { $slice: [ "$$this", 1 ] } ] } } } } } } ] )
The operation returns the following:
{ "_id" : 1, "results" : { "collapsed" : [ 24, 55, 79, 14, 78, 35, 84, 90, 3, 50, 89, 70 ], "firstValues" : [ 24, 14, 84, 50 ] } } { "_id" : 2, "results" : { "collapsed" : [ 39, 32, 43, 7, 62, 17, 80, 64, 17, 88, 11, 73 ], "firstValues" : [ 39, 62, 17 ] } } { "_id" : 3, "results" : { "collapsed" : [ 42, 26, 59, 17, 72, 19, 35 ], "firstValues" : [ 42, 26, 17, 72 ] } } { "_id" : 4, "results" : null }