Docs Menu
Docs Home
/
MongoDB Manual
/ / /

$reduce (aggregation)

On this page

  • Definition
  • Examples
$reduce

Applies an expression to each element in an array and combines them into a single value.

$reduce has the following syntax:

{
$reduce: {
input: <array>,
initialValue: <expression>,
in: <expression>
}
}
Field
Type
Description
input
array

Can be any valid expression that resolves to an array. For more information on expressions, see Expressions.

If the argument resolves to a value of null or refers to a missing field, $reduce returns null.

If the argument does not resolve to an array or null nor refers to a missing field, $reduce returns an error.

initialValue
expression
The initial cumulative value set before in is applied to the first element of the input array.
in
expression

A valid expression that $reduce applies to each element in the input array in left-to-right order. Wrap the input value with $reverseArray to yield the equivalent of applying the combining expression from right-to-left.

During evaluation of the in expression, two variables will be available:

  • value is the variable that represents the cumulative value of the expression.

  • this is the variable that refers to the element being processed.

If input resolves to an empty array, $reduce returns initialValue.

Example
Results
{
$reduce: {
input: ["a", "b", "c"],
initialValue: "",
in: { $concat : ["$$value", "$$this"] }
}
}
"abc"
{
$reduce: {
input: [ 1, 2, 3, 4 ],
initialValue: { sum: 5, product: 2 },
in: {
sum: { $add : ["$$value.sum", "$$this"] },
product: { $multiply: [ "$$value.product", "$$this" ] }
}
}
}
{ "sum" : 15, "product" : 48 }
{
$reduce: {
input: [ [ 3, 4 ], [ 5, 6 ] ],
initialValue: [ 1, 2 ],
in: { $concatArrays : ["$$value", "$$this"] }
}
}
[ 1, 2, 3, 4, 5, 6 ]

A collection named events contains the events of a probability experiment. Each experiment can have multiple events, such as rolling a die several times or drawing several cards (without replacement) in succession to achieve a desired result. In order to obtain the overall probability of the experiment, we will need to multiply the probability of each event in the experiment.

{_id:1, "type":"die", "experimentId":"r5", "description":"Roll a 5", "eventNum":1, "probability":0.16666666666667}
{_id:2, "type":"card", "experimentId":"d3rc", "description":"Draw 3 red cards", "eventNum":1, "probability":0.5}
{_id:3, "type":"card", "experimentId":"d3rc", "description":"Draw 3 red cards", "eventNum":2, "probability":0.49019607843137}
{_id:4, "type":"card", "experimentId":"d3rc", "description":"Draw 3 red cards", "eventNum":3, "probability":0.48}
{_id:5, "type":"die", "experimentId":"r16", "description":"Roll a 1 then a 6", "eventNum":1, "probability":0.16666666666667}
{_id:6, "type":"die", "experimentId":"r16", "description":"Roll a 1 then a 6", "eventNum":2, "probability":0.16666666666667}
{_id:7, "type":"card", "experimentId":"dak", "description":"Draw an ace, then a king", "eventNum":1, "probability":0.07692307692308}
{_id:8, "type":"card", "experimentId":"dak", "description":"Draw an ace, then a king", "eventNum":2, "probability":0.07843137254902}

Steps:

  1. Use $group to group by the experimentId and use $push to create an array with the probability of each event.

  2. Use $reduce with $multiply to multiply and combine the elements of probabilityArr into a single value and project it.

db.probability.aggregate(
[
{
$group: {
_id: "$experimentId",
"probabilityArr": { $push: "$probability" }
}
},
{
$project: {
"description": 1,
"results": {
$reduce: {
input: "$probabilityArr",
initialValue: 1,
in: { $multiply: [ "$$value", "$$this" ] }
}
}
}
}
]
)

The operation returns the following:

{ "_id" : "dak", "results" : 0.00603318250377101 }
{ "_id" : "r5", "results" : 0.16666666666667 }
{ "_id" : "r16", "results" : 0.027777777777778886 }
{ "_id" : "d3rc", "results" : 0.11764705882352879 }

A collection named clothes contains the following documents:

{ "_id" : 1, "productId" : "ts1", "description" : "T-Shirt", "color" : "black", "size" : "M", "price" : 20, "discounts" : [ 0.5, 0.1 ] }
{ "_id" : 2, "productId" : "j1", "description" : "Jeans", "color" : "blue", "size" : "36", "price" : 40, "discounts" : [ 0.25, 0.15, 0.05 ] }
{ "_id" : 3, "productId" : "s1", "description" : "Shorts", "color" : "beige", "size" : "32", "price" : 30, "discounts" : [ 0.15, 0.05 ] }
{ "_id" : 4, "productId" : "ts2", "description" : "Cool T-Shirt", "color" : "White", "size" : "L", "price" : 25, "discounts" : [ 0.3 ] }
{ "_id" : 5, "productId" : "j2", "description" : "Designer Jeans", "color" : "blue", "size" : "30", "price" : 80, "discounts" : [ 0.1, 0.25 ] }

Each document contains a discounts array containing the currently available percent-off coupons for each item. If each discount can be applied to the product once, we can calculate the lowest price by using $reduce to apply the following formula for each element in the discounts array: (1 - discount) * price.

db.clothes.aggregate(
[
{
$project: {
"discountedPrice": {
$reduce: {
input: "$discounts",
initialValue: "$price",
in: { $multiply: [ "$$value", { $subtract: [ 1, "$$this" ] } ] }
}
}
}
}
]
)

The operation returns the following:

{ "_id" : ObjectId("57c893067054e6e47674ce01"), "discountedPrice" : 9 }
{ "_id" : ObjectId("57c9932b7054e6e47674ce12"), "discountedPrice" : 24.224999999999998 }
{ "_id" : ObjectId("57c993457054e6e47674ce13"), "discountedPrice" : 24.224999999999998 }
{ "_id" : ObjectId("57c993687054e6e47674ce14"), "discountedPrice" : 17.5 }
{ "_id" : ObjectId("57c993837054e6e47674ce15"), "discountedPrice" : 54 }

A collection named people contains the following documents:

{ "_id" : 1, "name" : "Melissa", "hobbies" : [ "softball", "drawing", "reading" ] }
{ "_id" : 2, "name" : "Brad", "hobbies" : [ "gaming", "skateboarding" ] }
{ "_id" : 3, "name" : "Scott", "hobbies" : [ "basketball", "music", "fishing" ] }
{ "_id" : 4, "name" : "Tracey", "hobbies" : [ "acting", "yoga" ] }
{ "_id" : 5, "name" : "Josh", "hobbies" : [ "programming" ] }
{ "_id" : 6, "name" : "Claire" }

The following example reduces the hobbies array of strings into a single string bio:

db.people.aggregate(
[
// Filter to return only non-empty arrays
{ $match: { "hobbies": { $gt: [ ] } } },
{
$project: {
"name": 1,
"bio": {
$reduce: {
input: "$hobbies",
initialValue: "My hobbies include:",
in: {
$concat: [
"$$value",
{
$cond: {
if: { $eq: [ "$$value", "My hobbies include:" ] },
then: " ",
else: ", "
}
},
"$$this"
]
}
}
}
}
}
]
)

The operation returns the following:

{ "_id" : 1, "name" : "Melissa", "bio" : "My hobbies include: softball, drawing, reading" }
{ "_id" : 2, "name" : "Brad", "bio" : "My hobbies include: gaming, skateboarding" }
{ "_id" : 3, "name" : "Scott", "bio" : "My hobbies include: basketball, music, fishing" }
{ "_id" : 4, "name" : "Tracey", "bio" : "My hobbies include: acting, yoga" }
{ "_id" : 5, "name" : "Josh", "bio" : "My hobbies include: programming" }

A collection named matrices contains the following documents:

{ "_id" : 1, "arr" : [ [ 24, 55, 79 ], [ 14, 78, 35 ], [ 84, 90, 3 ], [ 50, 89, 70 ] ] }
{ "_id" : 2, "arr" : [ [ 39, 32, 43, 7 ], [ 62, 17, 80, 64 ], [ 17, 88, 11, 73 ] ] }
{ "_id" : 3, "arr" : [ [ 42 ], [ 26, 59 ], [ 17 ], [ 72, 19, 35 ] ] }
{ "_id" : 4 }

The following example collapses the two dimensional arrays into a single array collapsed:

db.arrayconcat.aggregate(
[
{
$project: {
"collapsed": {
$reduce: {
input: "$arr",
initialValue: [ ],
in: { $concatArrays: [ "$$value", "$$this" ] }
}
}
}
}
]
)

The operation returns the following:

{ "_id" : 1, "collapsed" : [ 24, 55, 79, 14, 78, 35, 84, 90, 3, 50, 89, 70 ] }
{ "_id" : 2, "collapsed" : [ 39, 32, 43, 7, 62, 17, 80, 64, 17, 88, 11, 73 ] }
{ "_id" : 3, "collapsed" : [ 42, 26, 59, 17, 72, 19, 35 ] }
{ "_id" : 4, "collapsed" : null }

The following example performs the same two dimensional array collapse as the example above, but also creates a new array containing only the first element of each array.

db.arrayconcat.aggregate(
[
{
$project: {
"results": {
$reduce: {
input: "$arr",
initialValue: [ ],
in: {
"collapsed": {
$concatArrays: [ "$$value.collapsed", "$$this" ]
},
"firstValues": {
$concatArrays: [ "$$value.firstValues", { $slice: [ "$$this", 1 ] } ]
}
}
}
}
}
}
]
)

The operation returns the following:

{ "_id" : 1, "results" : { "collapsed" : [ 24, 55, 79, 14, 78, 35, 84, 90, 3, 50, 89, 70 ], "firstValues" : [ 24, 14, 84, 50 ] } }
{ "_id" : 2, "results" : { "collapsed" : [ 39, 32, 43, 7, 62, 17, 80, 64, 17, 88, 11, 73 ], "firstValues" : [ 39, 62, 17 ] } }
{ "_id" : 3, "results" : { "collapsed" : [ 42, 26, 59, 17, 72, 19, 35 ], "firstValues" : [ 42, 26, 17, 72 ] } }
{ "_id" : 4, "results" : null }

Back

$rank (aggregation)

On this page