Docs 菜单
Docs 主页
/
MongoDB Atlas
/ /

如何使用加权字段运行 Atlas Search 复合查询

在此页面上

  • 使用动态映射创建 Atlas Search 索引
  • 运行复合查询
  • 运行复合查询以提升结果
  • 运行复合查询以隐藏结果
  • 继续学习

本教程演示了如何为搜索字段添加权重,以提升或隐藏结果或结果类别中的文档。它演示了如何将一个或多个值分配给字段,以返回得分较高或较低的结果。

具体而言,本教程演示了如何在 sample_mflix.movies 集合上创建具有动态映射的索引。它展示了如何使用 constantfunctionboost 运行复合查询并更改分数。它将引导您完成以下步骤:

  1. sample_mflix.movies集合设置具有动态映射的 Atlas Search 索引。

  2. 运行以下 Atlas Search 查询:

    • 查询 year 字段,并使用 title 字段中的特定单词更改分数,以提高文档在结果中的排名。

    • 查询 titleplot 字段,并根据 genres 字段中的特定类型更改分数,以隐藏该类型中的结果。

开始之前,请确保 Atlas 集群满足先决条件中所述的要求。

要创建 Atlas Search 索引,您必须拥有 Project Data Access Admin 或更高的项目访问权限。

在本部分中,我们将创建一个 Atlas Search 索引,该索引使用动态映射为 sample_mflix.movies 集合的字段编制索引。

1
  1. 如果尚未显示,请从导航栏上的 Organizations 菜单中选择包含所需项目的组织。

  2. 如果尚未显示,请从导航栏的Projects菜单中选择所需的项目。

  3. 如果尚未出现,请单击侧边栏中的 Clusters(集群)。

    显示 集群页面。

2

您可以从侧边栏、 Data Explorer 或集群详细信息页面转到 Atlas Search 页面。

  1. 在侧边栏中,单击 Services 标题下的 Atlas Search

  2. Select data source 下拉菜单中选择您的集群并单击 Go to Atlas Search

    将显示 Atlas Search 页面。

  1. 单击集群的对应 Browse Collections 按钮。

  2. 展开数据库并选择集合。

  3. 单击该集合的 Search Indexes 标签页。

    将显示 Atlas Search 页面。

  1. 单击集群的名称。

  2. 单击 Atlas Search 标签页。

    将显示 Atlas Search 页面。

3
4
  • 要获得引导式体验,请选择 Atlas Search Visual Editor

  • 要编辑原始索引定义,请选择 Atlas SearchJSON Editor

5
  1. Index Name 字段中输入 compound-query-custom-score-tutorial

    如果将索引命名为 default,则在使用 $search 管道阶段时无需指定 index 参数。如果您为索引指定了自定义名称,则必须在 index 参数中指定此名称。

  2. Database and Collection(数据库和集合)部分中找到 sample_mflix 数据库,然后选择 movies 集合。

6

您可以创建使用动态映射静态映射的 Atlas Search 索引。要了解有关动态和静态映射的更多信息,请参阅静态和动态映射

以下索引定义对 movies 集合中的支持类型字段动态创建索引。您可以使用 Atlas Search Visual Editor 或 Atlas Search JSON Editor 在 Atlas 用户界面中创建索引。

  1. 单击 Next(连接)。

  2. 查看 movies 集合的 "default" 索引定义。

  1. 单击 Next(连接)。

  2. 查看索引定义。

    索引定义应类似于以下内容:

    {
    "mappings": {
    "dynamic": true
    }
    }

    上述索引定义对 movies 集合中每个文档中的支持类型字段动态创建索引。

  3. 单击 Next(连接)。

7
8

此时将显示一个模态窗口,让您知道索引正在构建中。点击 Close 按钮。

9

构建索引大约需要一分钟时间。在构建时,Status 列显示 Build in Progress。构建完成后,Status 列显示 Active

您可以使用复合操作符将两个或多个操作符组合成一个查询。Atlas Search 会根据相关性,按照从高分到低分的顺序,为查询返回的每个文档分配分数。这些查询演示了如何在结果中提升或隐藏文档。


➤ 使用选择语言下拉菜单设置本节中示例的语言。


提示

Atlas Search 提供一个包含指导的示例复合查询模板。要了解更多信息,请参阅查看查询指导模板

在本节中,您将连接到 Atlas 集群,并使用复合操作符针对 sample_mflix.movies 集合中的 titleyear 字段运行示例查询。示例查询使用自定义评分来更改 Atlas Search 对包含 snow 一词的电影标题返回的相关性分数。

1
  1. 如果尚未显示,请从导航栏上的 Organizations 菜单中选择包含所需项目的组织。

  2. 如果尚未显示,请从导航栏的Projects菜单中选择所需的项目。

  3. 如果尚未出现,请单击侧边栏中的 Clusters(集群)。

    会显示集群页面。

2

您可以从侧边栏、 Data Explorer 或集群详细信息页面转到 Atlas Search 页面。

  1. 在侧边栏中,单击 Services 标题下的 Atlas Search

  2. Select data source 下拉菜单中选择您的集群并单击 Go to Atlas Search

    将显示 Atlas Search 页面。

  1. 单击集群的对应 Browse Collections 按钮。

  2. 展开数据库并选择集合。

  3. 单击该集合的 Search Indexes 标签页。

    将显示 Atlas Search 页面。

  1. 单击集群的名称。

  2. 单击 Atlas Search 标签页。

    将显示 Atlas Search 页面。

3

单击要查询的索引右侧的 Query 按钮。

4

单击Edit Query查看 JSON格式的默认查询语法示例。

5

将以下查询复制并粘贴到 Query Editor 中,然后点击 Query Editor 中的 Search 按钮。

以下示例使用带有子查询的 compound 操作符来搜索 20132015 年间且 title 字段中包含词语 snow 的电影。

以下查询:

  • 使用以下 compound 操作符子句:

    • filter 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

    • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 constant 选项更改 scoreconstant 选项将搜索词的所有得分结果替换为 5

  • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

[
{
$search: {
index: "compound-query-custom-score-tutorial",
compound: {
filter: [{
range: {
path: "year",
gte: 2013,
lte: 2015
}
}],
should: [{
text: {
query: "snow",
path: "title",
score: {constant: {value: 5}}
}
}]
},
highlight:{
path: "title"
}
}
}
]
SCORE: 5 _id: "573a13d7f29313caabda38ad"
Snow in Paradise
Matching fields: title
SCORE: 5 _id: "573a13e2f29313caabdbeded"
Dead Snow 2: red vs.
Matching fields: title
SCORE: 5 _id: "573a13e6f29313caabdc66c4"
The Snow White Murder Case
Matching fields: title
SCORE: 5 _id: "573a13edf29313caabdd37bd"
Snow on the Blades
Matching fields: title
SCORE: 0 _id: "573a13acf29313caabd29366"
No highlights found.
Matching fields: unknown
SCORE: 0 _id: "573a13adf29313caabd2b765"
No highlights found.
Matching fields: unknown
SCORE: 0 _id: "573a13b0f29313caabd333e7"
No highlights found.
Matching fields: unknown
SCORE: 0 _id: "573a13b0f29313caabd3486a"
No highlights found.
Matching fields: unknown
SCORE: 0 _id: "573a13b1f29313caabd3719d"
No highlights found.
Matching fields: unknown
SCORE: 0 _id: "573a13b2f29313caabd3abb9"
No highlights found.
Matching fields: unknown

结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 constant 选项更改了查询词 snow 的分数。

以下查询:

  • 使用以下 compound 操作符子句:

    • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

    • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 boost 选项更改 scoreboost 选项将搜索词结果中的基本分数乘以 2

  • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

[
{
$search: {
index: "compound-query-custom-score-tutorial",
compound: {
must: [{
range: {
path: "year",
gte: 2013,
lte: 2015
}
}],
should: [{
text: {
query: "snow",
path: "title",
score: {boost: {value: 2}}
}
}]
},
highlight:{
path: "title"
}
}
}
]
SCORE: 6.7722930908203125 _id: "573a13d7f29313caabda38ad"
Snow in Paradise
Matching fields: title
SCORE: 6.063445568084717 _id: "573a13edf29313caabdd37bd"
Snow on the Blades
Matching fields: title
SCORE: 5.509652137756348 _id: "573a13e6f29313caabdc66c4"
The Snow White Murder Case
Matching fields: title
SCORE: 5.065053939819336 _id: "573a13e2f29313caabdbeded"
Dead Snow 2: Red vs.
Matching fields: title
SCORE: 1 _id: "573a13acf29313caabd29366"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13adf29313caabd2b765"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b0f29313caabd333e7"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b0f29313caabd3486a"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b1f29313caabd3719d"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b2f29313caabd3abb9"
No highlights found.
Matching fields: unknown

结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 boost 选项更改了查询词 snow 的分数。

以下查询:

  • 将以下 compound 操作符子句与 boost 选项结合使用,使某些字段的优先级高于其他字段:

    • must文本操作符的子句优先考虑 comedy 类型,然后是 title 字段中的术语 snowboost 选项将权重应用于字段。

    • should 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

    注意

    boost选项会对字段应用不同的权重,以确定字段的优先级。

[
{
$search: {
index: "compound-query-custom-score-tutorial",
compound: {
must: [{
text: {
query: "comedy",
path: "genres",
score: {boost: {value: 9}}
}
},
{
text: {
query: "snow",
path: "title",
score: {boost: {value: 5}}
}
}],
should: [{
range: {
path: "year",
gte: 2013,
lte: 2015,
score: {boost: {value: 3}}
}
}]
}
}
}
]
SCORE: 21.872983932495117 _id: "573a13c2f29313caabd6874c"
plot: "A ski vacation turns horrific for a group of medical students, as they…"
genres: Array
runtime: 91
SCORE: 21.043487548828125 _id: "573a139ff29313caabcffff8"
fullplot: "When an entire town in upstate New York is closed down by an unexpecte…"
imdb: Object
year: 2000
SCORE: 21.043487548828125 _id: "573a13a6f29313caabd16b02"
plot: "When a Miami dentist inherits a team of sled dogs, he's got to learn t…"
genres: Array
runtime: 99
SCORE: 19.523927688598633 _id: "573a13a1f29313caabd06765"
fullplot: "Our two young lovers meet on a series of snowy days in high school. Ye…"
imdb: Object
runtime: 1999
SCORE: 17.426334381103516 _id: "573a13e2f29313caabdbeded"
plot: "Still on the run from a group of Nazi zombies, a man seeks the aid of …"
genres: Array
runtime: 100
SCORE: 16.367326736450195 _id: "573a13c2f29313caabd6688e"
countries: Array
genres: Array
runtime: 108
SCORE: 15.537829399108887 _id: "573a13b1f29313caabd36d7d"
plot: "A love-struck Italian poet is stuck in Iraq at the onset of an America…"
genres: Array
runtime: 110
SCORE: 14.4263334274292 _id: "573a1395f29313caabce1925"
plot: "An ice-skating Snow White finds refuge from the Wicked Queen with the …"
genres: Array
runtime: 107

以下查询:

  • 使用以下 compound 操作符子句:

    • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

    • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 function 选项更改 scorefunction 选项使用算术表达式添加以下内容:

      • 搜索词查询的相关性评分

      • 名为 imdb.rating 的数字字段的值,或者对于没有 imdb.rating 字段的文档,数字 2 的值。

  • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

[
{
$search: {
index: "compound-query-custom-score-tutorial",
compound: {
must: [{
range: {
path: "year",
gte: 2013,
lte: 2015,
}
}],
should: [{
text: {
query: "snow",
path: "title",
score: {
function: {
add: [{
path: {
value: "imdb.rating",
undefined: 2
}
},
{
score: "relevance"
}]
}
}
}
}]
},
highlight: {
path: "title"
}
}
}
]
SCORE: 10.454826354980469 _id: "573a13e6f29313caabdc66c4"
The Snow White Murder Case
Matching fields: title
SCORE: 10.3317232131958 _id: "573a13edf29313caabdd37bd"
Snow on the Blades
Matching fields: title
SCORE: 10.032526969909668 _id: "573a13e2f29313caabdbeded"
Dead Snow 2: Red vs.
Matching fields: title
SCORE: 8.386146545410156 _id: "573a13d7f29313caabda38ad"
Snow in Paradise
Matching fields: title
SCORE: 1 _id: "573a13acf29313caabd29366"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13adf29313caabd2b765"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b0f29313caabd333e7"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b0f29313caabd3486a"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b1f29313caabd3719d"
No highlights found.
Matching fields: unknown
SCORE: 1 _id: "573a13b2f29313caabd3abb9"
No highlights found.
Matching fields: unknown

结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 function 选项更改了查询词 snow 的分数。

6

Search Tester 可能不会显示其所返回文档的所有字段。要查看所有字段,包括在查询路径中指定的字段,请展开结果中的文档。

1

在终端窗口中打开mongosh并连接到集群。 有关连接的详细说明,请参阅通过mongosh连接。

2

mongosh 提示符下运行以下命令:

use sample_mflix
3

以下示例使用带有子查询的 compound 操作符来搜索 20132015 年间且 title 字段中包含词语 snow 的电影。

此查询使用以下管道阶段:

  • $search 来查询集合。查询:

    • 使用以下 compound 操作符子句:

      • filter 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 constant 选项更改 scoreconstant 选项将搜索词的所有得分结果替换为 5

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

  • $limit 阶段将输出限制为 10 个结果。

  • $project 阶段到:

    • 排除 titleyear 之外的所有字段

    • 添加一个 score 字段

db.movies.aggregate([
{
"$search": {
"index": "compound-query-custom-score-tutorial",
"compound": {
"filter": [{
"range": {
"path": "year",
"gte": 2013,
"lte": 2015
}
}],
"should": [{
"text": {
"query": "snow",
"path": "title",
"score": {"constant": {"value": 5}}
}
}]
},
"highlight": {
"path": "title"
}
}
},
{
"$limit": 10
},
{
"$project": {
"_id": 0,
"title": 1,
"year": 1,
"score": { "$meta": "searchScore" },
"highlights": { "$meta": "searchHighlights" }
}
}
])

Atlas Search 返回 constant 的结果如下:

[
{
title: 'Snow in Paradise',
year: 2014,
score: 5,
highlights: [
{
score: 1.382846713066101,
path: 'title',
texts: [
{ value: 'Snow', type: 'hit' },
{ value: ' in Paradise', type: 'text' }
]
}
]
},
{
title: 'Dead Snow 2: Red vs. Dead',
year: 2014,
score: 5,
highlights: [
{
score: 1.3924485445022583,
path: 'title',
texts: [
{ value: 'Dead ', type: 'text' },
{ value: 'Snow', type: 'hit' },
{ value: ' 2: Red vs. ', type: 'text' }
]
}
]
},
{
title: 'The Snow White Murder Case',
year: 2014,
score: 5,
highlights: [
{
score: 1.3525336980819702,
path: 'title',
texts: [
{ value: 'The ', type: 'text' },
{ value: 'Snow', type: 'hit' },
{ value: ' White Murder Case', type: 'text' }
]
}
]
},
{
title: 'Snow on the Blades',
year: 2014,
score: 5,
highlights: [
{
score: 1.3766303062438965,
path: 'title',
texts: [
{ value: 'Snow', type: 'hit' },
{ value: ' on the Blades', type: 'text' }
]
}
]
},
{ year: 2013, title: 'The Secret Life of Walter Mitty', score: 0, highlights: [] },
{ title: 'Jurassic World', year: 2015, score: 0, highlights: [] },
{ title: 'Action Jackson', year: 2014, score: 0, highlights: [] },
{ year: 2013, title: 'In Secret', score: 0, highlights: [] },
{ title: 'The Stanford Prison Experiment', year: 2015, score: 0, highlights: [] },
{ year: 2014, title: 'The Giver', score: 0, highlights: [] }
]

结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 constant 选项更改了查询词 snow 的分数。

此查询使用以下管道阶段:

  • $search 来查询集合。查询:

    • 使用以下 compound 操作符子句:

      • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 boost 选项更改 scoreboost 选项将搜索词结果中的基本分数乘以 2

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

  • $limit 阶段将输出限制为 10 个结果。

  • $project 阶段到:

    • 排除 titleyear 之外的所有字段

    • 添加一个 score 字段

db.movies.aggregate([
{
"$search": {
"index": "compound-query-custom-score-tutorial",
"compound": {
"must": [{
"range": {
"path": "year",
"gte": 2013,
"lte": 2015
}
}],
"should": [{
"text": {
"query": "snow",
"path": "title",
"score": {"boost": {"value": 2}}
}
}]
},
"highlight": {
"path": "title"
}
}
},
{
"$limit": 10
},
{
"$project": {
"_id": 0,
"title": 1,
"year": 1,
"score": { "$meta": "searchScore" },
"highlights": { "$meta": "searchHighlights" }
}
}
])

Atlas Search 返回 boost 的结果如下:

[
{
title: 'Snow in Paradise',
year: 2014,
score: 6.7722930908203125,
highlights: [
{
score: 1.382846713066101,
path: 'title',
texts: [
{ value: 'Snow', type: 'hit' },
{ value: ' in Paradise', type: 'text' }
]
}
]
},
{
title: 'Snow on the Blades',
year: 2014,
score: 6.063445568084717,
highlights: [
{
score: 1.3766303062438965,
path: 'title',
texts: [
{ value: 'Snow', type: 'hit' },
{ value: ' on the Blades', type: 'text' }
]
}
]
},
{
title: 'The Snow White Murder Case',
year: 2014,
score: 5.509652137756348,
highlights: [
{
score: 1.3525336980819702,
path: 'title',
texts: [
{ value: 'The ', type: 'text' },
{ value: 'Snow', type: 'hit' },
{ value: ' White Murder Case', type: 'text' }
]
}
]
},
{
title: 'Dead Snow 2: Red vs. Dead',
year: 2014,
score: 5.065053939819336,
highlights: [
{
score: 1.3924485445022583,
path: 'title',
texts: [
{ value: 'Dead ', type: 'text' },
{ value: 'Snow', type: 'hit' },
{ value: ' 2: Red vs. ', type: 'text' }
]
}
]
},
{ year: 2013, title: 'The Secret Life of Walter Mitty', score: 1, highlights: [] },
{ title: 'Jurassic World', year: 2015, score: 1, highlights: [] },
{ title: 'Action Jackson', year: 2014, score: 1, highlights: [] },
{ year: 2013, title: 'In Secret', score: 1, highlights: [] },
{ title: 'The Stanford Prison Experiment', year: 2015, score: 1, highlights: [] },
{ year: 2014, title: 'The Giver', score: 1, highlights: [] }
]

结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 boost 选项更改了查询词 snow 的分数。

此查询使用以下管道阶段:

  • $search 查询集合。查询使用以下 compound 操作符子句和 boost 选项,使某些字段的优先级高于其他字段:

    • must文本操作符的子句优先考虑 comedy 类型,然后是 title 字段中的术语 snowboost 选项将权重应用于字段。

    • should 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

    注意

    boost选项会对字段应用不同的权重,以确定字段的优先级。

  • $limit 阶段将输出限制为 10 个结果。

  • $project 阶段到:

    • 排除 titleyeargenres 以外的所有字段

    • 添加一个 score 字段

db.movies.aggregate([
{
"$search": {
"index": "compound-query-custom-score-tutorial",
"compound": {
"must": [{
"text": {
"path": "genres",
"query": "comedy",
"score": {"boost": {"value": 9}}
}
},
{
"text": {
"path": "title",
"query": "snow",
"score": {"boost": {"value": 5}}
}
}],
"should": [{
"range": {
"path": "year",
"gte": 2013,
"lte": 2015,
"score": {"boost": {"value": 3}}
}
}]
}
}
},
{
"$limit": 10
},
{
"$project": {
"_id": 0,
"title": 1,
"year": 1,
"genres": 1,
"score": { "$meta": "searchScore" }
}
}
])
[
{
genres: [ 'Comedy', 'Horror' ],
title: 'Dead Snow',
year: 2009,
score: 21.872983932495117
},
{
year: 2000,
genres: [ 'Adventure', 'Comedy', 'Family' ],
title: 'Snow Day',
score: 21.043487548828125
},
{
genres: [ 'Adventure', 'Comedy', 'Family' ],
title: 'Snow Dogs',
year: 2002,
score: 21.043487548828125
},
{
year: 1999,
genres: [ 'Comedy', 'Romance' ],
title: 'Let It Snow',
score: 19.523927688598633
},
{
genres: [ 'Action', 'Comedy', 'Horror' ],
title: 'Dead Snow 2: Red vs. Dead',
year: 2014,
score: 17.426334381103516
},
{
genres: [ 'Comedy', 'Drama' ],
title: 'Snow White and Russian Red',
year: 2009,
score: 16.367326736450195
},
{
genres: [ 'Comedy', 'Drama', 'Romance' ],
title: 'The Tiger and the Snow',
year: 2005,
score: 15.537829399108887
},
{
genres: [ 'Adventure', 'Comedy', 'Family' ],
title: 'Snow White and the Three Stooges',
year: 1961,
score: 14.4263334274292
}
]

此查询使用以下管道阶段:

  • $search 来查询集合。查询:

    • 使用以下 compound 操作符子句:

      • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 function 选项更改 scorefunction 选项使用算术表达式添加以下内容:

        • 搜索词查询的相关性评分

        • 名为 imdb.rating 的数字字段的值,或者对于没有 imdb.rating 字段的文档,数字 2 的值。

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

  • $limit 阶段将输出限制为 10 个结果。

  • $project 阶段到:

    • 排除 titleyear 之外的所有字段

    • 添加一个 score 字段

db.movies.aggregate([
{
"$search": {
"index": "compound-query-custom-score-tutorial",
"compound": {
"must": [{
"range": {
"path": "year",
"gte": 2013,
"lte": 2015
}
}],
"should": [{
"text": {
"query": "snow",
"path": "title",
"score": {
"function": {
"add": [{
"path": {
"value": "imdb.rating",
"undefined": 2
}
},
{
"score": "relevance"
}]
}
}
}
}]
},
"highlight": {
"path": "title"
}
}
},
{
"$limit": 10
},
{
"$project": {
"_id": 0,
"title": 1,
"year": 1,
"score": { "$meta": "searchScore" },
"highlights": { "$meta": "searchHighlights" }
}
}
])

Atlas Search 返回 function 的结果如下:

[
{
title: 'The Snow White Murder Case',
year: 2014,
score: 10.454826354980469,
highlights: [
{
score: 1.3525336980819702,
path: 'title',
texts: [
{ value: 'The ', type: 'text' },
{ value: 'Snow', type: 'hit' },
{ value: ' White Murder Case', type: 'text' }
]
}
]
},
{
title: 'Snow on the Blades',
year: 2014,
score: 10.3317232131958,
highlights: [
{
score: 1.3766303062438965,
path: 'title',
texts: [
{ value: 'Snow', type: 'hit' },
{ value: ' on the Blades', type: 'text' }
]
}
]
},
{
title: 'Dead Snow 2: Red vs. Dead',
year: 2014,
score: 10.032526969909668,
highlights: [
{
score: 1.3924485445022583,
path: 'title',
texts: [
{ value: 'Dead ', type: 'text' },
{ value: 'Snow', type: 'hit' },
{ value: ' 2: Red vs. ', type: 'text' }
]
}
]
},
{
title: 'Snow in Paradise',
year: 2014,
score: 8.386146545410156,
highlights: [
{
score: 1.382846713066101,
path: 'title',
texts: [
{ value: 'Snow', type: 'hit' },
{ value: ' in Paradise', type: 'text' }
]
}
]
},
{ year: 2013, title: 'The Secret Life of Walter Mitty', score: 1, highlights: [] },
{ title: 'Jurassic World', year: 2015, score: 1, highlights: [] },
{ title: 'Action Jackson', year: 2014, score: 1, highlights: [] },
{ year: 2013, title: 'In Secret', score: 1, highlights: [] },
{ title: 'The Stanford Prison Experiment', year: 2015, score: 1, highlights: [] },
{ year: 2014, title: 'The Giver', score: 1, highlights: [] }
]

结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 function 选项更改了查询词 snow 的分数。

1

打开 MongoDB Compass 并连接到您的集群。有关连接的详细说明,请参阅通过 Compass 连接。

2

Database 屏幕上,依次单击 sample_mflix 数据库和 movies 集合。

3

该查询将执行以下任务:

  • 使用以下 compound 操作符子句:

    • filter 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

    • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 constant 选项更改 scoreconstant 选项将搜索词的所有得分结果替换为 5

  • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

  • 使用以下管道阶段:

    • $limit 阶段将输出限制为 10 个结果。

    • $project 阶段:

      • 排除 titleyear 之外的所有字段

      • 添加两个名为 scorehighlights 的字段

若要在 MongoDB Compass 中运行此查询:

  1. 单击 Aggregations 标签页。

  2. 单击 Select...,然后从下拉菜单中选择阶段并为该阶段添加查询,以配置以下每个管道阶段。单击 Add Stage 以添加其他阶段。

    管道阶段
    查询

    $search

    {
    "index": "compound-query-custom-score-tutorial",
    "compound": {
    "filter": [{
    "range": {
    "path": "year",
    "gte": 2013,
    "lte": 2015
    }
    }],
    "should": [{
    "text": {
    "query": "snow",
    "path": "title",
    "score": {"constant": {"value": 5}}
    }
    }]
    },
    "highlight": { "path": "title" }
    }

    $limit

    10

    $project

    {
    "_id": 0,
    "title": 1,
    "year": 1,
    "score": { "$meta": "searchScore" },
    "highlights": { "$meta": "searchHighlights" }
    }

    如果已启用 Auto Preview,则 MongoDB Compass 将在 $project 管道阶段旁边显示以下文档:

    {
    title: 'Snow in Paradise',
    year: 2014,
    score: 5,
    highlights: [{
    score: 1.382846713066101,
    path: 'title',
    texts: [
    { value: 'Snow', type: 'hit' },
    { value: ' in Paradise', type: 'text' }
    ]
    }]
    },
    {
    title: 'Dead Snow 2: Red vs. Dead',
    year: 2014,
    score: 5,
    highlights: [{
    score: 1.3924485445022583,
    path: 'title',
    texts: [
    { value: 'Dead ', type: 'text' },
    { value: 'Snow', type: 'hit' },
    { value: ' 2: Red vs. ', type: 'text' }
    ]
    }]
    },
    {
    title: 'The Snow White Murder Case',
    year: 2014,
    score: 5,
    highlights: [{
    score: 1.3525336980819702,
    path: 'title',
    texts: [
    { value: 'The ', type: 'text' },
    { value: 'Snow', type: 'hit' },
    { value: ' White Murder Case', type: 'text' }
    ]
    }]
    },
    {
    title: 'Snow on the Blades',
    year: 2014,
    score: 5,
    highlights: [{
    score: 1.3766303062438965,
    path: 'title',
    texts: [
    { value: 'Snow', type: 'hit' },
    { value: ' on the Blades', type: 'text' }
    ]
    }]
    },
    { year: 2013, title: 'The Secret Life of Walter Mitty', score: 0, highlights: [] },
    { title: 'Jurassic World', year: 2015, score: 0, highlights: [] },
    { title: 'Action Jackson', year: 2014, score: 0, highlights: [] },
    { year: 2013, title: 'In Secret', score: 0, highlights: [] },
    { title: 'The Stanford Prison Experiment', year: 2015, score: 0, highlights: [] },
    { year: 2014, title: 'The Giver', score: 0, highlights: [] }

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 constant 选项更改了查询词 snow 的分数。

4
  1. 单击 Aggregations 标签页。

  2. 单击 Select...,然后从下拉菜单中选择阶段并为该阶段添加查询,以配置以下每个管道阶段。单击 Add Stage 以添加其他阶段。

    查询使用了下列管道阶段:

    • $search 执行以下任务:

      • 查询使用以下 compound 操作符子句:

        • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

        • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 boost 选项更改 scoreboost 选项将搜索词结果中的基本分数乘以 2

      • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • $limit 阶段将输出限制为 10 个结果。

    • $project 阶段:

      • 排除 titleyear 之外的所有字段

      • 添加两个名为 scorehighlights 的字段

    管道阶段
    查询

    $search

    {
    "index": "compound-query-custom-score-tutorial",
    "compound": {
    "must": [{
    "range": {
    "path": "year",
    "gte": 2013,
    "lte": 2015
    }
    }],
    "should": [{
    "text": {
    "query": "snow",
    "path": "title",
    "score": {"boost": {"value": 2}}
    }
    }]
    },
    "highlight": { "path": "title" }
    }

    $limit

    10

    $project

    {
    "_id": 0,
    "title": 1,
    "year": 1,
    "score": { "$meta": "searchScore" },
    "highlights": { "$meta": "searchHighlights" }
    }

    此查询使用以下管道阶段:

    • $search 执行以下任务:

      • 查询使用 compound 操作符子句和 boost 选项,使某些字段的优先级高于其他字段:

        • must文本操作符的子句优先考虑 comedy 类型,然后是 title 字段中的术语 snowboost 选项将权重应用于字段。

        • should 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

        注意

        boost选项会对字段应用不同的权重,以确定字段的优先级。

    • $limit 阶段将输出限制为 10 个结果。

    • $project 阶段:

      • 排除 titleyear 之外的所有字段

      • 添加两个名为 scorehighlights 的字段

    • must文本操作符的子句优先考虑 comedy 类型,然后是 title 字段中的术语 snowboost 选项将权重应用于字段。

    • should 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

    注意

    boost选项会对字段应用不同的权重,以确定字段的优先级。

    管道阶段
    查询

    $search

    {
    "index": "compound-query-custom-score-tutorial",
    "compound": {
    "must": [{
    "text": {
    "path": "genres",
    "query": "comedy",
    "score": {"boost": {"value": 9}}
    }
    },
    {
    "text": {
    "path": "title",
    "query": "snow",
    "score": {"boost": {"value": 5}}
    }
    }],
    "should": [{
    "range": {
    "path": "year",
    "gte": 2013,
    "lte": 2015,
    "score": {"boost": {"value": 3}}
    }
    }]
    }
    }

    $limit

    10

    $project

    {
    "_id": 0,
    "title": 1,
    "year": 1,
    "genres": 1,
    "score": { "$meta": "searchScore" }
    }

    如果已启用 Auto Preview,则 MongoDB Compass 将在 $project 管道阶段旁边显示以下文档:

    {
    title: 'Snow in Paradise',
    year: 2014,
    score: 6.7722930908203125,
    highlights: [{
    score: 1.382846713066101,
    path: 'title',
    texts: [
    { value: 'Snow', type: 'hit' },
    { value: ' in Paradise', type: 'text' }
    ]
    }]
    },
    {
    title: 'Snow on the Blades',
    year: 2014,
    score: 6.063445568084717,
    highlights: [{
    score: 1.3766303062438965,
    path: 'title',
    texts: [
    { value: 'Snow', type: 'hit' },
    { value: ' on the Blades', type: 'text' }
    ]
    }]
    },
    {
    title: 'The Snow White Murder Case',
    year: 2014,
    score: 5.509652137756348,
    highlights: [{
    score: 1.3525336980819702,
    path: 'title',
    texts: [
    { value: 'The ', type: 'text' },
    { value: 'Snow', type: 'hit' },
    { value: ' White Murder Case', type: 'text' }
    ]
    }]
    },
    {
    title: 'Dead Snow 2: Red vs. Dead',
    year: 2014,
    score: 5.065053939819336,
    highlights: [{
    score: 1.3924485445022583,
    path: 'title',
    texts: [
    { value: 'Dead ', type: 'text' },
    { value: 'Snow', type: 'hit' },
    { value: ' 2: Red vs. ', type: 'text' }
    ]
    }]
    },
    { year: 2013, title: 'The Secret Life of Walter Mitty',score: 1, highlights: [] },
    { title: 'Jurassic World', year: 2015, score: 1, highlights: [] },
    { title: 'Action Jackson', year: 2014, score: 1, highlights: [] },
    { year: 2013, title: 'In Secret', score: 1, highlights: [] },
    { title: 'The Stanford Prison Experiment', year: 2015, score: 1, highlights: [] },
    { year: 2014, title: 'The Giver', score: 1, highlights: [] }

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 boost 选项更改了查询词 snow 的分数。

    [
    {
    genres: [ 'Comedy', 'Horror' ],
    title: 'Dead Snow',
    year: 2009,
    score: 21.872983932495117
    },
    {
    year: 2000,
    genres: [ 'Adventure', 'Comedy', 'Family' ],
    title: 'Snow Day',
    score: 21.043487548828125
    },
    {
    genres: [ 'Adventure', 'Comedy', 'Family' ],
    title: 'Snow Dogs',
    year: 2002,
    score: 21.043487548828125
    },
    {
    year: 1999,
    genres: [ 'Comedy', 'Romance' ],
    title: 'Let It Snow',
    score: 19.523927688598633
    },
    {
    genres: [ 'Action', 'Comedy', 'Horror' ],
    title: 'Dead Snow 2: Red vs. Dead',
    year: 2014,
    score: 17.426334381103516
    },
    {
    genres: [ 'Comedy', 'Drama' ],
    title: 'Snow White and Russian Red',
    year: 2009,
    score: 16.367326736450195
    },
    {
    genres: [ 'Comedy', 'Drama', 'Romance' ],
    title: 'The Tiger and the Snow',
    year: 2005,
    score: 15.537829399108887
    },
    {
    genres: [ 'Adventure', 'Comedy', 'Family' ],
    title: 'Snow White and the Three Stooges',
    year: 1961,
    score: 14.4263334274292
    }
    ]
5

查询使用了下列管道阶段:

  • $search 阶段将执行以下任务:

    • 查询使用以下 compound 操作符子句:

      • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 function 选项更改 scorefunction 选项使用算术表达式添加以下内容:

        • 搜索词查询的相关性评分

        • 名为 imdb.rating 的数字字段的值,或者对于没有 imdb.rating 字段的文档,数字 2 的值。

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

  • $limit 阶段将输出限制为 10 个结果。

  • $project 阶段:

    • 排除 titleyear 之外的所有字段

    • 添加两个名为 scorehighlights 的字段

若要在 MongoDB Compass 中运行此查询:

  1. 单击 Aggregations 标签页。

  2. 单击 Select...,然后从下拉菜单中选择阶段并为该阶段添加查询,以配置以下每个管道阶段。单击 Add Stage 以添加其他阶段。

    管道阶段
    查询

    $search

    {
    "index": "compound-query-custom-score-tutorial",
    "compound": {
    "must": [{
    "range": {
    "path": "year",
    "gte": 2013,
    "lte": 2015
    }
    }],
    "should": [{
    "text": {
    "query": "snow",
    "path": "title",
    "score": {
    "function": {
    "add": [{
    "path": {
    "value": "imdb.rating",
    "undefined": 2
    }
    },
    {
    "score": "relevance"
    }]
    }
    }
    }
    }]},
    "highlight":{ "path": "title" }
    }

    $limit

    10

    $project

    {
    "_id": 0,
    "title": 1,
    "year": 1,
    "score": { "$meta": "searchScore" },
    "highlights": { "$meta": "searchHighlights" }
    }

    如果已启用 Auto Preview,则 MongoDB Compass 将在 $project 管道阶段旁边显示以下文档:

    {
    title: 'The Snow White Murder Case',
    year: 2014,
    score: 10.454826354980469,
    highlights: [{
    score: 1.3525336980819702,
    path: 'title',
    texts: [
    { value: 'The ', type: 'text' },
    { value: 'Snow', type: 'hit' },
    { value: ' White Murder Case', type: 'text' }
    ]
    }]
    },
    {
    title: 'Snow on the Blades',
    year: 2014,
    score: 10.3317232131958,
    highlights: [{
    score: 1.3766303062438965,
    path: 'title',
    texts: [
    { value: 'Snow', type: 'hit' },
    { value: ' on the Blades', type: 'text' }
    ]
    }]
    },
    {
    title: 'Dead Snow 2: Red vs. Dead',
    year: 2014,
    score: 10.032526969909668,
    highlights: [{
    score: 1.3924485445022583,
    path: 'title',
    texts: [
    { value: 'Dead ', type: 'text' },
    { value: 'Snow', type: 'hit' },
    { value: ' 2: Red vs. ', type: 'text' }
    ]
    }]
    },
    {
    title: 'Snow in Paradise',
    year: 2014,
    score: 8.386146545410156,
    highlights: [{
    score: 1.382846713066101,
    path: 'title',
    texts: [
    { value: 'Snow', type: 'hit' },
    { value: ' in Paradise', type: 'text' }
    ]
    }]
    },
    { year: 2013, title: 'The Secret Life of Walter Mitty', score: 1, highlights: [] },
    { title: 'Jurassic World', year: 2015, score: 1, highlights: [] },
    { title: 'Action Jackson', year: 2014, score: 1, highlights: [] },
    { year: 2013, title: 'In Secret', score: 1, highlights: [] },
    { title: 'The Stanford Prison Experiment', year: 2015, score: 1, highlights: [] },
    { year: 2014, title: 'The Giver', score: 1, highlights: [] }

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 function 选项更改了查询词 snow 的分数。

1
  1. 创建一个名为 compound-constant-example 的新目录,并使用 dotnet new 命令初始化项目。

    mkdir compound-constant-example
    cd compound-constant-example
    dotnet new console
  2. 将 .NET/C# 驱动程序作为依赖项添加到项目中。

    dotnet add package MongoDB.Driver
  3. Program.cs文件的内容替换为以下代码。

    此代码示例将执行以下任务:

    • 导入mongodb包和依赖项。

    • 建立与您的 Atlas 集群的连接。

    • 使用以下复合子句查询集合:

      • filter 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 constant 选项更改 scoreconstant 选项将搜索词的所有得分结果替换为 5

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • 使用以下管道阶段:

      • $limit 阶段将输出限制为 10 个结果。

      • $project 阶段:

        • 排除 titleyear 之外的所有字段

        • 添加两个名为 scorehighlights 的字段

    • 遍历游标以打印与查询匹配的文档。

    1using MongoDB.Bson;
    2using MongoDB.Bson.Serialization.Attributes;
    3using MongoDB.Bson.Serialization.Conventions;
    4using MongoDB.Driver;
    5using MongoDB.Driver.Search;
    6
    7public class CompoundConstantExample
    8{
    9 private const string MongoConnectionString = "<connection-string>";
    10
    11 public static void Main(string[] args)
    12 {
    13 // allow automapping of the camelCase database fields to our MovieDocument
    14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
    15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
    16
    17 // connect to your Atlas cluster
    18 var mongoClient = new MongoClient(MongoConnectionString);
    19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix");
    20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies");
    21
    22 // define and run pipeline
    23 var results = moviesCollection.Aggregate()
    24 .Search(Builders<MovieDocument>.Search.Compound()
    25 .Filter(Builders<MovieDocument>.Search.Range(movie => movie.Year, SearchRangeBuilder.Gte(2013).Lte(2015)))
    26 .Should(Builders<MovieDocument>.Search.Text(movie => movie.Title, "snow", score: new SearchScoreDefinitionBuilder<MovieDocument>().Constant(5))),
    27 new SearchHighlightOptions<MovieDocument>(movie => movie.Title),
    28 indexName: "compound-query-custom-score-tutorial")
    29 .Project<MovieDocument>(Builders<MovieDocument>.Projection
    30 .Include(movie => movie.Title)
    31 .Include(movie => movie.Year)
    32 .Exclude(movie => movie.Id)
    33 .MetaSearchScore(movie => movie.Score)
    34 .MetaSearchHighlights("highlights"))
    35 .Limit(10)
    36 .ToList();
    37
    38 // print results
    39 foreach (var movie in results)
    40 {
    41 Console.WriteLine(movie.ToJson());
    42 }
    43 }
    44}
    45
    46[BsonIgnoreExtraElements]
    47public class MovieDocument
    48{
    49 [BsonIgnoreIfDefault]
    50 public ObjectId Id { get; set; }
    51 public string Title { get; set; }
    52 public int Year { get; set; }
    53 [BsonElement("highlights")]
    54 public List<SearchHighlight> Highlights { get; set; }
    55 public double Score { get; set; }
    56}
  4. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  5. 编译并运行Program.cs文件。

    dotnet run compound-constant-example.csproj
    {
    "title" : "Snow in Paradise",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3828467130661011,
    "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " in Paradise" }]
    }],
    "score" : 5.0
    }
    {
    "title" : "Dead Snow 2: Red vs. Dead",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3924485445022583,
    "texts" : [{ "type" : "Text", "value" : "Dead " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " 2: Red vs. " }]
    }],
    "score" : 5.0
    }
    {
    "title" : "The Snow White Murder Case",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3525336980819702,
    "texts" : [{ "type" : "Text", "value" : "The " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " White Murder Case" }]
    }],
    "score" : 5.0
    }
    {
    "title" : "Snow on the Blades",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3766303062438965,
    "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " on the Blades" }]
    }],
    "score" : 5.0
    }
    { "title" : "The Secret Life of Walter Mitty", "year" : 2013, "highlights" : [], "score" : 0.0 }
    { "title" : "Jurassic World", "year" : 2015, "highlights" : [], "score" : 0.0 }
    { "title" : "Action Jackson", "year" : 2014, "highlights" : [], "score" : 0.0 }
    { "title" : "In Secret", "year" : 2013, "highlights" : [], "score" : 0.0 }
    { "title" : "The Stanford Prison Experiment", "year" : 2015, "highlights" : [], "score" : 0.0 }
    { "title" : "The Giver", "year" : 2014, "highlights" : [], "score" : 0.0 }

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 constant 选项更改了查询词 snow 的分数。

2
  1. 创建一个名为 compound-boost-example 的新目录,并使用 dotnet new 命令初始化项目。

    mkdir compound-boost-example
    cd compound-boost-example
    dotnet new console
  2. 将 .NET/C# 驱动程序作为依赖项添加到项目中。

    dotnet add package MongoDB.Driver
  3. Program.cs文件的内容替换为以下代码。

    此代码示例将执行以下任务:

    • 导入mongodb包和依赖项。

    • 建立与您的 Atlas 集群的连接。

    • 遍历游标以打印与查询匹配的文档。

    查询使用了下列管道阶段:

    • $search 查询集合阶段。查询:

      • 使用以下 compound 操作符子句:

        • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

        • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 boost 选项更改 scoreboost 选项将搜索词结果中的基本分数乘以 2

      指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • $limit 阶段将输出限制为 10 个结果。

    • $project 阶段:

      • 排除 titleyear 之外的所有字段

      • 添加两个名为 scorehighlights 的字段

    1using MongoDB.Bson;
    2using MongoDB.Bson.Serialization.Attributes;
    3using MongoDB.Bson.Serialization.Conventions;
    4using MongoDB.Driver;
    5using MongoDB.Driver.Search;
    6
    7public class CompoundBoostSingleExample
    8{
    9 private const string MongoConnectionString = "<connection-string>";
    10
    11 public static void Main(string[] args)
    12 {
    13 // allow automapping of the camelCase database fields to our MovieDocument
    14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
    15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
    16
    17 // connect to your Atlas cluster
    18 var mongoClient = new MongoClient(MongoConnectionString);
    19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix");
    20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies");
    21
    22 // define and run pipeline
    23 var results = moviesCollection.Aggregate()
    24 .Search(Builders<MovieDocument>.Search.Compound()
    25 .Must(Builders<MovieDocument>.Search.Range(movie => movie.Year, SearchRangeBuilder.Gte(2013).Lte(2015)))
    26 .Should(Builders<MovieDocument>.Search.Text(movie => movie.Title, "snow", score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(2))),
    27 new SearchHighlightOptions<MovieDocument>(movie => movie.Title),
    28 indexName: "compound-query-custom-score-tutorial")
    29 .Project<MovieDocument>(Builders<MovieDocument>.Projection
    30 .Include(movie => movie.Title)
    31 .Include(movie => movie.Year)
    32 .Exclude(movie => movie.Id)
    33 .MetaSearchScore(movie => movie.Score)
    34 .MetaSearchHighlights("highlights"))
    35 .Limit(10)
    36 .ToList();
    37
    38 // print results
    39 foreach (var movie in results)
    40 {
    41 Console.WriteLine(movie.ToJson());
    42 }
    43 }
    44}
    45
    46[BsonIgnoreExtraElements]
    47public class MovieDocument
    48{
    49 [BsonIgnoreIfDefault]
    50 public ObjectId Id { get; set; }
    51 public string Title { get; set; }
    52 public int Year { get; set; }
    53 [BsonElement("highlights")]
    54 public List<SearchHighlight> Highlights { get; set; }
    55 public double Score { get; set; }
    56}

    此查询使用以下带有boost选项的compound操作符子句,使某些字段的优先级高于其他字段:

    • must文本操作符的子句优先考虑 comedy 类型,然后是 title 字段中的术语 snowboost 选项将权重应用于字段。

    • should 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

    注意

    boost选项会对字段应用不同的权重,以确定字段的优先级。

    1using MongoDB.Bson;
    2using MongoDB.Bson.Serialization.Attributes;
    3using MongoDB.Bson.Serialization.Conventions;
    4using MongoDB.Driver;
    5using MongoDB.Driver.Search;
    6
    7public class CompoundBoostMultipleExample
    8{
    9 private const string MongoConnectionString = "<connection-string>";
    10
    11 public static void Main(string[] args)
    12 {
    13 // allow automapping of the camelCase database fields to our MovieDocument
    14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
    15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
    16
    17 // connect to your Atlas cluster
    18 var mongoClient = new MongoClient(MongoConnectionString);
    19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix");
    20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies");
    21
    22 // define and run pipeline
    23 var results = moviesCollection.Aggregate()
    24 .Search(Builders<MovieDocument>.Search.Compound()
    25 .Must(Builders<MovieDocument>.Search.Text(movie => movie.Genres, "comedy", score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(9)))
    26 .Must(Builders<MovieDocument>.Search.Text(movie => movie.Title, "snow", score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(5)))
    27 .Should(Builders<MovieDocument>.Search.Range(movie => movie.Year, SearchRangeBuilder.Gte(2013).Lte(2015), score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(3))),
    28 indexName: "compound-query-custom-score-tutorial")
    29 .Project<MovieDocument>(Builders<MovieDocument>.Projection
    30 .Include(movie => movie.Genres)
    31 .Include(movie => movie.Title)
    32 .Include(movie => movie.Year)
    33 .Exclude(movie => movie.Id)
    34 .MetaSearchScore(movie => movie.Score))
    35 .Limit(10)
    36 .ToList();
    37
    38 // print results
    39 foreach (var movie in results)
    40 {
    41 Console.WriteLine(movie.ToJson());
    42 }
    43 }
    44}
    45
    46[BsonIgnoreExtraElements]
    47public class MovieDocument
    48{
    49 [BsonIgnoreIfDefault]
    50 public ObjectId Id { get; set; }
    51 public string [] Genres { get; set; }
    52 public string Title { get; set; }
    53 public int Year { get; set; }
    54 public double Score { get; set; }
    55}
  4. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  5. 编译并运行Program.cs文件。

    dotnet run compound-boost-example.csproj
    {
    "title" : "Snow in Paradise",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3828467130661011,
    "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " in Paradise" }]
    }],
    "score" : 6.7722930908203125
    }
    {
    "title" : "Snow on the Blades",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3766303062438965,
    "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " on the Blades" }]
    }],
    "score" : 6.0634455680847168
    }
    {
    "title" : "The Snow White Murder Case",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3525336980819702,
    "texts" : [{ "type" : "Text", "value" : "The " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " White Murder Case" }]
    }],
    "score" : 5.5096521377563477
    }
    {
    "title" : "Dead Snow 2: Red vs. Dead",
    "year" : 2014,
    "highlights" : [{
    "path" : "title",
    "score" : 1.3924485445022583,
    "texts" : [{ "type" : "Text", "value" : "Dead " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " 2: Red vs. " }]
    }],
    "score" : 5.0650539398193359
    }
    { "title" : "The Secret Life of Walter Mitty", "year" : 2013, "highlights" : [], "score" : 1.0 }
    { "title" : "Jurassic World", "year" : 2015, "highlights" : [], "score" : 1.0 }
    { "title" : "Action Jackson", "year" : 2014, "highlights" : [], "score" : 1.0 }
    { "title" : "In Secret", "year" : 2013, "highlights" : [], "score" : 1.0 }
    { "title" : "The Stanford Prison Experiment", "year" : 2015, "highlights" : [], "score" : 1.0 }
    { "title" : "The Giver", "year" : 2014, "highlights" : [], "score" : 1.0 }

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 boost 选项更改了查询词 snow 的分数。

    dotnet run compound-boost-example.csproj
    { "genres" : ["Comedy", "Horror"], "title" : "Dead Snow", "year" : 2009, "score" : 21.872983932495117 }
    { "genres" : ["Adventure", "Comedy", "Family"], "title" : "Snow Day", "year" : 2000, "score" : 21.043487548828125 }
    { "genres" : ["Adventure", "Comedy", "Family"], "title" : "Snow Dogs", "year" : 2002, "score" : 21.043487548828125 }
    { "genres" : ["Comedy", "Romance"], "title" : "Let It Snow", "year" : 1999, "score" : 19.523927688598633 }
    { "genres" : ["Action", "Comedy", "Horror"], "title" : "Dead Snow 2: Red vs. Dead", "year" : 2014, "score" : 17.426334381103516 }
    { "genres" : ["Comedy", "Drama"], "title" : "Snow White and Russian Red", "year" : 2009, "score" : 16.367326736450195 }
    { "genres" : ["Comedy", "Drama", "Romance"], "title" : "The Tiger and the Snow", "year" : 2005, "score" : 15.537829399108887 }
    { "genres" : ["Adventure", "Comedy", "Family"], "title" : "Snow White and the Three Stooges", "year" : 1961, "score" : 14.426333427429199 }
3
  1. 创建一个名为 compound-function-example 的新目录,并使用 dotnet new 命令初始化项目。

    mkdir compound-function-example
    cd compound-function-example
    dotnet new console
  2. 将 .NET/C# 驱动程序作为依赖项添加到项目中。

    dotnet add package MongoDB.Driver
  3. Program.cs文件的内容替换为以下代码。

    此代码示例将执行以下任务:

    • 导入mongodb包和依赖项。

    • 建立与您的 Atlas 集群的连接。

    • 使用以下管道阶段来查询集合:

      • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 function 选项更改 scorefunction 选项使用算术表达式添加以下内容:

        • 搜索词查询的相关性评分

        • 名为 imdb.rating 的数字字段的值,或者对于没有 imdb.rating 字段的文档,数字 2 的值。

    • 使用以下管道阶段:

      • $limit 阶段将输出限制为 10 个结果。

      • $project 阶段:

        • 排除 titleyear 之外的所有字段

        • 添加两个名为 scorehighlights 的字段

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • 遍历游标以打印与查询匹配的文档。

    1using MongoDB.Bson;
    2using MongoDB.Bson.Serialization.Attributes;
    3using MongoDB.Bson.Serialization.Conventions;
    4using MongoDB.Driver;
    5using MongoDB.Driver.Search;
    6
    7public class CompoundFunctionExample
    8{
    9 private const string MongoConnectionString = "<connection-string>";
    10
    11 public static void Main(string[] args)
    12 {
    13 // allow automapping of the camelCase database fields to our MovieDocument
    14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
    15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
    16
    17 // connect to your Atlas cluster
    18 var mongoClient = new MongoClient(MongoConnectionString);
    19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix");
    20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies");
    21
    22 var scoreFunction = Builders<MovieDocument>.SearchScore.Function(Builders<MovieDocument>.SearchScoreFunction.Add(Builders<MovieDocument>.SearchScoreFunction.Path(movie => movie.Imdb.Rating, 2), Builders<MovieDocument>.SearchScoreFunction.Relevance()));
    23 // define and run pipeline
    24 var results = moviesCollection.Aggregate()
    25 .Search(Builders<MovieDocument>.Search.Compound()
    26 .Must(Builders<MovieDocument>.Search.Range(movie => movie.Year, SearchRangeBuilder.Gte(2013).Lte(2015)))
    27 .Should(Builders<MovieDocument>.Search.Text(movie => movie.Title, "snow", score: scoreFunction)),
    28 new SearchHighlightOptions<MovieDocument>(movie => movie.Title),
    29 indexName: "compound-query-custom-score-tutorial")
    30 .Project<MovieDocument>(Builders<MovieDocument>.Projection
    31 .Include(movie => movie.Genres)
    32 .Include(movie => movie.Title)
    33 .Include(movie => movie.Year)
    34 .Exclude(movie => movie.Id)
    35 .MetaSearchScore(movie => movie.Score)
    36 .MetaSearchHighlights("highlights"))
    37 .Limit(10)
    38 .ToList();
    39
    40 // print results
    41 foreach (var movie in results)
    42 {
    43 Console.WriteLine(movie.ToJson());
    44 }
    45 }
    46}
    47
    48[BsonIgnoreExtraElements]
    49public class MovieDocument
    50{
    51 [BsonIgnoreIfDefault]
    52 public ObjectId Id { get; set; }
    53 public string [] Genres { get; set; }
    54 public IMDB Imdb { get; set; }
    55 public string Title { get; set; }
    56 public int Year { get; set; }
    57 [BsonElement("highlights")]
    58 public List<SearchHighlight> Highlights { get; set; }
    59 public double Score { get; set; }
    60}
    61
    62[BsonIgnoreExtraElements]
    63public class IMDB
    64{
    65 public double Rating { get; set; }
    66}
  4. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  5. 编译并运行Program.cs文件。

    dotnet run compound-function-example.csproj
    { "genres" : ["Drama", "Mystery"], "title" : "The Snow White Murder Case", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3525336980819702, "texts" : [{ "type" : "Text", "value" : "The " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " White Murder Case" }] }], "score" : 10.454826354980469 }
    { "genres" : ["Action", "Drama", "History"], "title" : "Snow on the Blades", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3766303062438965, "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " on the Blades" }] }], "score" : 10.331723213195801 }
    { "genres" : ["Action", "Comedy", "Horror"], "title" : "Dead Snow 2: Red vs. Dead", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3924485445022583, "texts" : [{ "type" : "Text", "value" : "Dead " }, { "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " 2: Red vs. " }] }], "score" : 10.032526969909668 }
    { "genres" : ["Thriller"], "title" : "Snow in Paradise", "year" : 2014, "highlights" : [{ "path" : "title", "score" : 1.3828467130661011, "texts" : [{ "type" : "Hit", "value" : "Snow" }, { "type" : "Text", "value" : " in Paradise" }] }], "score" : 8.3861465454101562 }
    { "genres" : ["Adventure", "Comedy", "Drama"], "title" : "The Secret Life of Walter Mitty", "year" : 2013, "highlights" : [], "score" : 1.0 }
    { "genres" : ["Action", "Adventure", "Sci-Fi"], "title" : "Jurassic World", "year" : 2015, "highlights" : [], "score" : 1.0 }
    { "genres" : ["Action", "Comedy", "Drama"], "title" : "Action Jackson", "year" : 2014, "highlights" : [], "score" : 1.0 }
    { "genres" : ["Crime", "Drama", "Thriller"], "title" : "In Secret", "year" : 2013, "highlights" : [], "score" : 1.0 }
    { "genres" : ["Drama", "Thriller"], "title" : "The Stanford Prison Experiment", "year" : 2015, "highlights" : [], "score" : 1.0 }
    { "genres" : ["Drama", "Sci-Fi"], "title" : "The Giver", "year" : 2014, "highlights" : [], "score" : 1.0 }

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 function 选项更改了查询词 snow 的分数。

1
  1. 创建一个名为 compound-constant-query.go 的文件。

  2. 将代码示例复制并粘贴到 compound-constant-query.go 文件中。

    此代码示例将执行以下任务:

    • 导入mongodb包和依赖项。

    • 建立与您的 Atlas 集群的连接。

    • 使用以下复合子句查询集合:

      • filter 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 constant 选项更改 scoreconstant 选项将搜索词的所有得分结果替换为 5

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • 使用以下管道阶段:

      • $limit 阶段将输出限制为 10 个结果。

      • $project 阶段:

        • 排除 titleyear 之外的所有字段

        • 添加两个名为 scorehighlights 的字段

    • 遍历游标以打印与查询匹配的文档。

    1package main
    2
    3import (
    4 "context"
    5 "fmt"
    6 "time"
    7
    8 "go.mongodb.org/mongo-driver/bson"
    9 "go.mongodb.org/mongo-driver/mongo"
    10 "go.mongodb.org/mongo-driver/mongo/options"
    11)
    12
    13func main() {
    14 // connect to your Atlas cluster
    15 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>"))
    16 if err != nil {
    17 panic(err)
    18 }
    19 defer client.Disconnect(context.TODO())
    20
    21 // set namespace
    22 collection := client.Database("sample_mflix").Collection("movies")
    23
    24 // define pipeline stages
    25 searchStage := bson.D{{"$search", bson.M{
    26 "index": "compound-query-custom-score-tutorial",
    27 "compound": bson.M{
    28 "filter": bson.M{
    29 "range": bson.M{
    30 "path": "year", "gte": 2013, "lte": 2015,
    31 },
    32 },
    33 "should": bson.D{
    34 {"text", bson.M{
    35 "path": "title", "query": "snow", "score": bson.M{
    36 "constant": bson.D{{"value", 5}},
    37 }}}},
    38 },
    39 "highlight": bson.D{{"path", "title"}},
    40 }}}
    41 limitStage := bson.D{{"$limit", 10}}
    42 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"year", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}, {"highlights", bson.D{{"$meta", "searchHighlights"}}}}}}
    43
    44 // specify the amount of time the operation can run on the server
    45 opts := options.Aggregate().SetMaxTime(5 * time.Second)
    46
    47 // run pipeline
    48 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage}, opts)
    49 if err != nil {
    50 panic(err)
    51 }
    52
    53 // print results
    54 var results []bson.D
    55 if err = cursor.All(context.TODO(), &results); err != nil {
    56 panic(err)
    57 }
    58 for _, result := range results {
    59 fmt.Println(result)
    60 }
    61}
  3. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  4. 运行以下命令来查询您的集合:

    go run compound-constant-query.go
    [{title Snow in Paradise} {year 2014} {score 5} {highlights [[{score 1.382846713066101} {path title} {texts [[{value Snow} {type hit}] [{value in Paradise} {type text}]]}]]}]
    [{title Dead Snow 2: Red vs. Dead} {year 2014} {score 5} {highlights [[{score 1.3924485445022583} {path title} {texts [[{value Dead } {type text}] [{value Snow} {type hit}] [{value 2: Red vs. } {type text}]]}]]}]
    [{title The Snow White Murder Case} {year 2014} {score 5} {highlights [[{score 1.3525336980819702} {path title} {texts [[{value The } {type text}] [{value Snow} {type hit}] [{value White Murder Case} {type text}]]}]]}]
    [{title Snow on the Blades} {year 2014} {score 5} {highlights [[{score 1.3766303062438965} {path title} {texts [[{value Snow} {type hit}] [{value on the Blades} {type text}]]}]]}]
    [{year 2013} {title The Secret Life of Walter Mitty} {score 0} {highlights []}]
    [{title Jurassic World} {year 2015} {score 0} {highlights []}]
    [{title Action Jackson} {year 2014} {score 0} {highlights []}]
    [{year 2013} {title In Secret} {score 0} {highlights []}]
    [{title The Stanford Prison Experiment} {year 2015} {score 0} {highlights []}]
    [{year 2014} {title The Giver} {score 0} {highlights []}]

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 constant 选项更改了查询词 snow 的分数。

2
  1. 创建一个名为 compound-boost-query.go 的文件。

  2. 将代码示例复制并粘贴到 compound-boost-query.go 文件中。

    这些代码示例执行以下任务:

    • 导入mongodb包和依赖项。

    • 建立与您的 Atlas 集群的连接。

    • 遍历游标以打印与查询匹配的文档。

    查询使用了下列管道阶段:

    • $search 查询集合阶段。查询:

      • 使用以下 compound 子句查询集合:

        • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

        • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 boost 选项更改 scoreboost 选项将搜索词结果中的基本分数乘以 2

      • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • $limit 阶段将输出限制为 10 个结果。

    • $project 阶段:

      • 排除 titleyear 之外的所有字段

      • 添加两个名为 scorehighlights 的字段

    1package main
    2
    3import (
    4 "context"
    5 "fmt"
    6 "time"
    7
    8 "go.mongodb.org/mongo-driver/bson"
    9 "go.mongodb.org/mongo-driver/mongo"
    10 "go.mongodb.org/mongo-driver/mongo/options"
    11)
    12
    13// define structure of movies collection
    14type MovieCollection struct {
    15 title string `bson:"Title,omitempty"`
    16}
    17
    18func main() {
    19 var err error
    20 // connect to the Atlas cluster
    21 ctx := context.Background()
    22 client, err := mongo.Connect(ctx, options.Client().ApplyURI("<connection-string>"))
    23 if err != nil {
    24 panic(err)
    25 }
    26 defer client.Disconnect(ctx)
    27 // set namespace
    28 collection := client.Database("sample_mflix").Collection("movies")
    29 // define pipeline
    30 searchStage := bson.D{{"$search", bson.M{
    31 "index": "compound-query-custom-score-tutorial",
    32 "compound": bson.M{
    33 "must": bson.M{
    34 "range": bson.M{
    35 "path": "year", "gte": 2013, "lte": 2015,
    36 },
    37 },
    38 "should": bson.D{
    39 {"text", bson.M{
    40 "path": "title", "query": "snow", "score": bson.M{
    41 "boost": bson.D{{"value", 2}},
    42 },
    43 }},
    44 },
    45 },
    46 }}}
    47 limitStage := bson.D{{"$limit", 10}}
    48 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"year", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}}}}
    49 // specify the amount of time the operation can run on the server
    50 opts := options.Aggregate().SetMaxTime(5 * time.Second)
    51 // run pipeline
    52 cursor, err := collection.Aggregate(ctx, mongo.Pipeline{searchStage, limitStage, projectStage}, opts)
    53 if err != nil {
    54 panic(err)
    55 }
    56 // print results
    57 var results []bson.D
    58 if err = cursor.All(context.TODO(), &results); err != nil {
    59 panic(err)
    60 }
    61 for _, result := range results {
    62 fmt.Println(result)
    63 }
    64}

    此查询使用以下管道阶段:

    • $search 查询集合阶段。查询:

      • 使用带有 boost 选项的 compound 操作符子句,使某些字段的优先级高于其他字段:

        • must文本操作符的子句优先考虑 comedy 类型,然后是 title 字段中的术语 snowboost 选项将权重应用于字段。

        • should 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

        注意

        boost选项会对字段应用不同的权重,以确定字段的优先级。

    • $limit 阶段将输出限制为 10 个结果。

    • $project 阶段:

      • 排除 titleyear 之外的所有字段

      • 添加两个名为 scorehighlights 的字段

    1package main
    2
    3import (
    4 "context"
    5 "fmt"
    6 "time"
    7
    8 "go.mongodb.org/mongo-driver/bson"
    9 "go.mongodb.org/mongo-driver/mongo"
    10 "go.mongodb.org/mongo-driver/mongo/options"
    11)
    12
    13// define structure of movies collection
    14type MovieCollection struct {
    15 title string `bson:"Title,omitempty"`
    16}
    17
    18func main() {
    19 var err error
    20 // connect to the Atlas cluster
    21 ctx := context.Background()
    22 client, err := mongo.Connect(ctx, options.Client().ApplyURI("<connection-string>"))
    23 if err != nil {
    24 panic(err)
    25 }
    26 defer client.Disconnect(ctx)
    27 // set namespace
    28 collection := client.Database("sample_mflix").Collection("movies")
    29 // define pipeline
    30 searchStage := bson.D{{"$search", bson.M{
    31 "index": "compound-query-custom-score-tutorial",
    32 "compound": bson.M{
    33 "must": bson.A{
    34 bson.M{
    35 "text": bson.M{
    36 "path": "genres", "query": "comedy", "score": bson.M{
    37 "boost": bson.D{{"value", 9}},
    38 },
    39 },
    40 },
    41 bson.M{
    42 "text": bson.M{
    43 "path": "title", "query": "snow", "score": bson.M{
    44 "boost": bson.D{{"value", 5}},
    45 },
    46 },
    47 },
    48 },
    49 "should": bson.M{
    50 "range": bson.M{
    51 "path": "year", "gte": 2013, "lte": 2015, "score": bson.M{
    52 "boost": bson.D{{"value", 3}},
    53 },
    54 },
    55 },
    56 },
    57 }}}
    58 limitStage := bson.D{{"$limit", 10}}
    59 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"year", 1}, {"genres", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}}}}
    60 // specify the amount of time the operation can run on the server
    61 opts := options.Aggregate().SetMaxTime(5 * time.Second)
    62 // run pipeline
    63 cursor, err := collection.Aggregate(ctx, mongo.Pipeline{searchStage, limitStage, projectStage}, opts)
    64 if err != nil {
    65 panic(err)
    66 }
    67 // print results
    68 var results []bson.D
    69 if err = cursor.All(context.TODO(), &results); err != nil {
    70 panic(err)
    71 }
    72 for _, result := range results {
    73 fmt.Println(result)
    74 }
    75}
  3. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  4. 运行以下命令来查询您的集合:

    go run compound-boost-query.go
    [{title Snow in Paradise} {year 2014} {score 6.7722930908203125} {highlights [[{score 1.382846713066101} {path title} {texts [[{value Snow} {type hit}] [{value in Paradise} {type text}]]}]]}]
    [{title Snow on the Blades} {year 2014} {score 6.063445568084717} {highlights [[{score 1.3766303062438965} {path title} {texts [[{value Snow} {type hit}] [{value on the Blades} {type text}]]}]]}]
    [{title The Snow White Murder Case} {year 2014} {score 5.509652137756348} {highlights [[{score 1.3525336980819702} {path title} {texts [[{value The } {type text}] [{value Snow} {type hit}] [{value White Murder Case} {type text}]]}]]}]
    [{title Dead Snow 2: Red vs. Dead} {year 2014} {score 5.065053939819336} {highlights [[{score 1.3924485445022583} {path title} {texts [[{value Dead } {type text}] [{value Snow} {type hit}] [{value 2: Red vs. } {type text}]]}]]}]
    [{year 2013} {title The Secret Life of Walter Mitty} {score 1} {highlights []}]
    [{title Jurassic World} {year 2015} {score 1} {highlights []}]
    [{title Action Jackson} {year 2014} {score 1} {highlights []}]
    [{year 2013} {title In Secret} {score 1} {highlights []}]
    [{title The Stanford Prison Experiment} {year 2015} {score 1} {highlights []}]
    [{year 2014} {title The Giver} {score 1} {highlights []}]

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 boost 选项更改了查询词 snow 的分数。

    go run compound-boost-query.go
    [
    {
    genres: [ 'Comedy', 'Horror' ],
    title: 'Dead Snow',
    year: 2009,
    score: 21.872983932495117
    },
    {
    year: 2000,
    genres: [ 'Adventure', 'Comedy', 'Family' ],
    title: 'Snow Day',
    score: 21.043487548828125
    },
    {
    genres: [ 'Adventure', 'Comedy', 'Family' ],
    title: 'Snow Dogs',
    year: 2002,
    score: 21.043487548828125
    },
    {
    year: 1999,
    genres: [ 'Comedy', 'Romance' ],
    title: 'Let It Snow',
    score: 19.523927688598633
    },
    {
    genres: [ 'Action', 'Comedy', 'Horror' ],
    title: 'Dead Snow 2: Red vs. Dead',
    year: 2014,
    score: 17.426334381103516
    },
    {
    genres: [ 'Comedy', 'Drama' ],
    title: 'Snow White and Russian Red',
    year: 2009,
    score: 16.367326736450195
    },
    {
    genres: [ 'Comedy', 'Drama', 'Romance' ],
    title: 'The Tiger and the Snow',
    year: 2005,
    score: 15.537829399108887
    },
    {
    genres: [ 'Adventure', 'Comedy', 'Family' ],
    title: 'Snow White and the Three Stooges',
    year: 1961,
    score: 14.4263334274292
    }
    ]
3
  1. 创建一个名为 compound-boost-query.go 的文件。

  2. 将代码示例复制并粘贴到 compound-function-query.go 文件中。

    此代码示例将执行以下任务:

    • 导入mongodb包和依赖项。

    • 建立与您的 Atlas 集群的连接。

    • 使用以下 compound 操作符子句:

      • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 function 选项更改 scorefunction 选项使用算术表达式添加以下内容:

        • 搜索词查询的相关性评分

        • 名为 imdb.rating 的数字字段的值,或者对于没有 imdb.rating 字段的文档,数字 2 的值。

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • 使用以下管道阶段:

      • $limit 阶段将输出限制为 10 个结果。

      • $project 阶段:

        • 排除 titleyear 之外的所有字段

        • 添加两个名为 scorehighlights 的字段

    • 遍历游标以打印与查询匹配的文档。

    1package main
    2
    3import (
    4 "context"
    5 "fmt"
    6 "time"
    7
    8 "go.mongodb.org/mongo-driver/bson"
    9 "go.mongodb.org/mongo-driver/mongo"
    10 "go.mongodb.org/mongo-driver/mongo/options"
    11)
    12
    13func main() {
    14 // connect to your Atlas cluster
    15 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>"))
    16 if err != nil {
    17 panic(err)
    18 }
    19 defer client.Disconnect(context.TODO())
    20
    21 // set namespace
    22 collection := client.Database("sample_mflix").Collection("movies")
    23
    24 // define pipeline
    25 searchStage := bson.D{{"$search", bson.M{
    26 "index": "compound-query-custom-score-tutorial",
    27 "compound": bson.M{
    28 "must": bson.M{
    29 "range": bson.M{
    30 "path": "year", "gte": 2013, "lte": 2015,
    31 },
    32 },
    33 "should": bson.D{
    34 {"text", bson.M{
    35 "path": "title", "query": "snow", "score": bson.M{
    36 "function": bson.D{{"add", bson.A{
    37 bson.D{{"path", bson.D{
    38 {"value", "imdb.rating"}, {"undefined", 2},
    39 }}},
    40 bson.D{{"score", "relevance"}},
    41 }}},
    42 }}}},
    43 },
    44 "highlight": bson.D{{"path", "title"}},
    45 }}}
    46 limitStage := bson.D{{"$limit", 10}}
    47 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"year", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}, {"highlights", bson.D{{"$meta", "searchHighlights"}}}}}}
    48
    49 // specify the amount of time the operation can run on the server
    50 opts := options.Aggregate().SetMaxTime(5 * time.Second)
    51
    52 // run pipeline
    53 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage}, opts)
    54 if err != nil {
    55 panic(err)
    56 }
    57
    58 // print results
    59 var results []bson.D
    60 if err = cursor.All(context.TODO(), &results); err != nil {
    61 panic(err)
    62 }
    63 for _, result := range results {
    64 fmt.Println(result)
    65 }
    66}
  3. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  4. 运行以下命令来查询您的集合:

    go run compound-function-query.go
    [{title The Snow White Murder Case} {year 2014} {score 10.454826354980469} {highlights [[{score 1.3525336980819702} {path title} {texts [[{value The } {type text}] [{value Snow} {type hit}] [{value White Murder Case} {type text}]]}]]}]
    [{title Snow on the Blades} {year 2014} {score 10.3317232131958} {highlights [[{score 1.3766303062438965} {path title} {texts [[{value Snow} {type hit}] [{value on the Blades} {type text}]]}]]}]
    [{title Dead Snow 2: Red vs. Dead} {year 2014} {score 10.032526969909668} {highlights [[{score 1.3924485445022583} {path title} {texts [[{value Dead } {type text}] [{value Snow} {type hit}] [{value 2: Red vs. } {type text}]]}]]}]
    [{title Snow in Paradise} {year 2014} {score 8.386146545410156} {highlights [[{score 1.382846713066101} {path title} {texts [[{value Snow} {type hit}] [{value in Paradise} {type text}]]}]]}]
    [{year 2013} {title The Secret Life of Walter Mitty} {score 1} {highlights []}]
    [{title Jurassic World} {year 2015} {score 1} {highlights []}]
    [{title Action Jackson} {year 2014} {score 1} {highlights []}]
    [{year 2013} {title In Secret} {score 1} {highlights []}]
    [{title The Stanford Prison Experiment} {year 2015} {score 1} {highlights []}]
    [{year 2014} {title The Giver} {score 1} {highlights []}]

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 function 选项更改了查询词 snow 的分数。

1

junit

4.11 或更高版本

mongodb-driver-sync

4.3.0 或更高版本

slf4j-log4j12

1.7.30 或更高版本

2
  1. 创建一个名为 CompoundConstantQuery.java 的文件。

  2. 将以下代码复制并粘贴到该文件中。

    此代码示例将执行以下任务:

    • 导入mongodb包和依赖项。

    • 建立与您的 Atlas 集群的连接。

    • 使用以下复合子句查询集合:

      • filter 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 constant 选项更改 scoreconstant 选项将搜索词的所有得分结果替换为 5

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • 使用以下管道阶段:

      • $limit 阶段将输出限制为 10 个结果。

      • $project 阶段:

        • 排除 titleyear 之外的所有字段

        • 添加两个名为 scorehighlights 的字段

    • 遍历游标以打印与查询匹配的文档。

    1import java.util.Arrays;
    2import java.util.List;
    3
    4import static com.mongodb.client.model.Aggregates.limit;
    5import static com.mongodb.client.model.Aggregates.project;
    6import static com.mongodb.client.model.Projections.*;
    7import com.mongodb.client.MongoClient;
    8import com.mongodb.client.MongoClients;
    9import com.mongodb.client.MongoCollection;
    10import com.mongodb.client.MongoDatabase;
    11
    12import org.bson.Document;
    13
    14public class CompoundConstantQuery {
    15 public static void main( String[] args ) {
    16 // define clauses
    17 List<Document> mustClauses =
    18 List.of(
    19 new Document(
    20 "range", new Document("path", "year")
    21 .append("gte", 2013)
    22 .append("lte", 2015)));
    23 List<Document> shouldClauses =
    24 List.of(
    25 new Document("text",
    26 new Document("query", "snow")
    27 .append("path", "title")
    28 .append("score", new Document("constant", new Document("value", 5)))));
    29 Document highlightOption = new Document("path", "title");
    30 // define query
    31 Document agg =
    32 new Document("$search",
    33 new Document("index", "compound-query-custom-score-tutorial")
    34 .append("compound",
    35 new Document("must", mustClauses).append("should", shouldClauses))
    36 .append("highlight", highlightOption));
    37 // specify connection
    38 String uri = "<connection-string>";
    39 // establish connection and set namespace
    40 try (MongoClient mongoClient = MongoClients.create(uri)) {
    41 MongoDatabase database = mongoClient.getDatabase("sample_mflix");
    42 MongoCollection<Document> collection = database.getCollection("movies");
    43 // run query and print results
    44 collection.aggregate(Arrays.asList(agg,
    45 limit(10),
    46 project(fields(
    47 excludeId(),
    48 include("title", "year"),
    49 computed("score", new Document("$meta", "searchScore")),
    50 computed("highlights", new Document("$meta", "searchHighlights"))))))
    51 .forEach(doc -> System.out.println(doc.toJson()));
    52 }
    53 }
    54}

    注意

    要在 Maven 环境中运行示例代码,请在文件中的 import 语句上方添加以下内容。

    package com.mongodb.drivers;
  3. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  4. 编译并运行 CompoundConstantQuery.java 文件。

    javac CompoundConstantQuery.java
    java CompoundConstantQuery
    {"title": "Snow in Paradise", "year": 2014, "score": 5.0, "highlights": [{"score": 1.382846713066101, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " in Paradise", "type": "text"}]}]}
    {"title": "Dead Snow 2: Red vs. Dead", "year": 2014, "score": 5.0, "highlights": [{"score": 1.3924485445022583, "path": "title", "texts": [{"value": "Dead ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " 2: Red vs. ", "type": "text"}]}]}
    {"title": "The Snow White Murder Case", "year": 2014, "score": 5.0, "highlights": [{"score": 1.3525336980819702, "path": "title", "texts": [{"value": "The ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " White Murder Case", "type": "text"}]}]}
    {"title": "Snow on the Blades", "year": 2014, "score": 5.0, "highlights": [{"score": 1.3766303062438965, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " on the Blades", "type": "text"}]}]}
    {"year": 2013, "title": "The Secret Life of Walter Mitty", "score": 0.0, "highlights": []}
    {"title": "Jurassic World", "year": 2015, "score": 0.0, "highlights": []}
    {"title": "Action Jackson", "year": 2014, "score": 0.0, "highlights": []}
    {"year": 2013, "title": "In Secret", "score": 0.0, "highlights": []}
    {"title": "The Stanford Prison Experiment", "year": 2015, "score": 0.0, "highlights": []}
    {"year": 2014, "title": "The Giver", "score": 0.0, "highlights": []}

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 constant 选项更改了查询词 snow 的分数。

3
  1. 创建一个名为 CompoundBoostQuery.java 的文件。

  2. 将以下代码复制并粘贴到该文件中。

    此代码示例将执行以下任务:

    • 导入mongodb包和依赖项。

    • 建立与您的 Atlas 集群的连接。

    • 遍历游标以打印与查询匹配的文档。

    查询使用了下列管道阶段:

    • $search 查询集合阶段。查询:

      • 使用以下 compound 操作符子句:

        • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

        • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 boost 选项更改 scoreboost 选项将搜索词结果中的基本分数乘以 2

      指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • $limit 阶段将输出限制为 10 个结果。

    • $project 阶段:

      • 排除 titleyear 之外的所有字段

      • 添加两个名为 scorehighlights 的字段

    1import java.util.Arrays;
    2import java.util.List;
    3
    4import static com.mongodb.client.model.Aggregates.limit;
    5import static com.mongodb.client.model.Aggregates.project;
    6import static com.mongodb.client.model.Projections.*;
    7import com.mongodb.client.MongoClient;
    8import com.mongodb.client.MongoClients;
    9import com.mongodb.client.MongoCollection;
    10import com.mongodb.client.MongoDatabase;
    11import org.bson.Document;
    12
    13public class CompoundBoostQuery {
    14 public static void main( String[] args ) {
    15 // define clauses
    16 List<Document> mustClauses =
    17 List.of(
    18 new Document(
    19 "range", new Document("path", "year")
    20 .append("gte", 2013)
    21 .append("lte", 2015)));
    22 List<Document> shouldClauses =
    23 List.of(
    24 new Document(
    25 "text",
    26 new Document("query", "snow")
    27 .append("path", "title")
    28 .append("score", new Document("boost", new Document("value", 2)))));
    29 Document highlightOption = new Document("path", "title");
    30 // define query
    31 Document agg =
    32 new Document("$search",
    33 new Document("index", "compound-query-custom-score-tutorial")
    34 .append("compound",
    35 new Document("must", mustClauses).append("should", shouldClauses))
    36 .append("highlight", highlightOption));
    37 // specify connection
    38 String uri = "<connection-string>";
    39 // establish connection and set namespace
    40 try (MongoClient mongoClient = MongoClients.create(uri)) {
    41 MongoDatabase database = mongoClient.getDatabase("sample_mflix");
    42 MongoCollection<Document> collection = database.getCollection("movies");
    43 // run query and print results
    44 collection.aggregate(Arrays.asList(agg,
    45 limit(10),
    46 project(fields(
    47 excludeId(),
    48 include("title", "year"),
    49 computed("score", new Document("$meta", "searchScore")),
    50 computed("highlights", new Document("$meta", "searchHighlights"))))))
    51 .forEach(doc -> System.out.println(doc.toJson()));
    52 }
    53 }
    54}

    此查询使用以下带有boost选项的compound操作符子句,使某些字段的优先级高于其他字段:

    • must文本操作符的子句优先考虑 comedy 类型,然后是 title 字段中的术语 snowboost 选项将权重应用于字段。

    • should 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

    注意

    boost选项会对字段应用不同的权重,以确定字段的优先级。

    1import java.util.Arrays;
    2import static com.mongodb.client.model.Filters.eq;
    3import static com.mongodb.client.model.Aggregates.limit;
    4import static com.mongodb.client.model.Aggregates.project;
    5import static com.mongodb.client.model.Projections.computed;
    6import static com.mongodb.client.model.Projections.excludeId;
    7import static com.mongodb.client.model.Projections.fields;
    8import static com.mongodb.client.model.Projections.include;
    9import com.mongodb.client.MongoClient;
    10import com.mongodb.client.MongoClients;
    11import com.mongodb.client.MongoCollection;
    12import com.mongodb.client.MongoDatabase;
    13import org.bson.Document;
    14
    15public class CompoundBoostQuery {
    16 public static void main( String[] args ) {
    17 Document agg = new Document("index", "compound-query-custom-score-tutorial")
    18 .append("must", Arrays.asList(new Document("text",
    19 new Document("path", "genres")
    20 .append("query", "comedy")
    21 .append("score",
    22 new Document("boost",
    23 new Document("value", 9)))),
    24 new Document("text",
    25 new Document("path", "title")
    26 .append("query", "snow")
    27 .append("score",
    28 new Document("boost",
    29 new Document("value", 5))))))
    30 .append("should", Arrays.asList(new Document("range",
    31 new Document("path", "year")
    32 .append("gte", 2013)
    33 .append("lte", 2015)
    34 .append("score",
    35 new Document("boost",
    36 new Document("value", 3))))));
    37
    38 String uri = "<connection-string>";
    39
    40 try (MongoClient mongoClient = MongoClients.create(uri)) {
    41 MongoDatabase database = mongoClient.getDatabase("sample_mflix");
    42 MongoCollection<Document> collection = database.getCollection("movies");
    43
    44 collection.aggregate(Arrays.asList(
    45 eq("$search", eq("compound", agg)),
    46 limit(10),
    47 project(fields(excludeId(), include("title", "year","genres"), computed("score", new Document("$meta", "searchScore")))))
    48 ).forEach(doc -> System.out.println(doc.toJson()));
    49 }
    50 }
    51}

    注意

    要在 Maven 环境中运行示例代码,请在文件中的 import 语句上方添加以下内容。

    package com.mongodb.drivers;
  3. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  4. 编译并运行 CompoundBoostQuery.java 文件。

    javac CompoundBoostQuery.java
    java CompoundBoostQuery
    {"title": "Snow in Paradise", "year": 2014, "score": 6.7722930908203125, "highlights": [{"score": 1.382846713066101, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " in Paradise", "type": "text"}]}]}
    {"title": "Snow on the Blades", "year": 2014, "score": 6.063445568084717, "highlights": [{"score": 1.3766303062438965, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " on the Blades", "type": "text"}]}]}
    {"title": "The Snow White Murder Case", "year": 2014, "score": 5.509652137756348, "highlights": [{"score": 1.3525336980819702, "path": "title", "texts": [{"value": "The ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " White Murder Case", "type": "text"}]}]}
    {"title": "Dead Snow 2: Red vs. Dead", "year": 2014, "score": 5.065053939819336, "highlights": [{"score": 1.3924485445022583, "path": "title", "texts": [{"value": "Dead ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " 2: Red vs. ", "type": "text"}]}]}
    {"year": 2013, "title": "The Secret Life of Walter Mitty", "score": 1.0, "highlights": []}
    {"title": "Jurassic World", "year": 2015, "score": 1.0, "highlights": []}
    {"title": "Action Jackson", "year": 2014, "score": 1.0, "highlights": []}
    {"year": 2013, "title": "In Secret", "score": 1.0, "highlights": []}
    {"title": "The Stanford Prison Experiment", "year": 2015, "score": 1.0, "highlights": []}
    {"year": 2014, "title": "The Giver", "score": 1.0, "highlights": []}

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 boost 选项更改了查询词 snow 的分数。

    javac CompoundBoostQuery.java
    java CompoundBoostQuery
    {
    "genres": ["Comedy", "Horror"],
    "title": "Dead Snow",
    "year": 2009,
    "score": 21.872983932495117
    }
    {
    "year": 2000,
    "genres": ["Adventure", "Comedy", "Family"],
    "title": "Snow Day",
    "score": 21.043487548828125
    }
    {
    "genres": ["Adventure", "Comedy", "Family"],
    "title": "Snow Dogs",
    "year": 2002,
    "score": 21.043487548828125
    }
    {
    "year": 1999,
    "genres": ["Comedy", "Romance"],
    "title": "Let It Snow",
    "score": 19.523927688598633
    }
    {
    "genres": ["Action", "Comedy", "Horror"],
    "title": "Dead Snow 2: Red vs. Dead",
    "year": 2014,
    "score": 17.426334381103516
    }
    {
    "genres": ["Comedy", "Drama"],
    "title": "Snow White and Russian Red",
    "year": 2009,
    "score": 16.367326736450195}
    {
    "genres": ["Comedy", "Drama", "Romance"],
    "title": "The Tiger and the Snow",
    "year": 2005,
    "score": 15.537829399108887
    }
    {
    "genres": ["Adventure", "Comedy", "Family"],
    "title": "Snow White and the Three Stooges",
    "year": 1961,
    "score": 14.4263334274292
    }
4
  1. 创建一个名为 CompoundFunctionQuery.java 的文件。

  2. 将以下代码复制并粘贴到该文件中。

    此代码示例将执行以下任务:

    • 导入mongodb包和依赖项。

    • 建立与您的 Atlas 集群的连接。

    • 使用以下管道阶段来查询集合:

      • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 function 选项更改 scorefunction 选项使用算术表达式添加以下内容:

        • 搜索词查询的相关性评分

        • 名为 imdb.rating 的数字字段的值,或者对于没有 imdb.rating 字段的文档,数字 2 的值。

    • 使用以下管道阶段:

      • $limit 阶段将输出限制为 10 个结果。

      • $project 阶段:

        • 排除 titleyear 之外的所有字段

        • 添加两个名为 scorehighlights 的字段

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • 遍历游标以打印与查询匹配的文档。

    1import java.util.Arrays;
    2import java.util.List;
    3
    4import static com.mongodb.client.model.Aggregates.limit;
    5import static com.mongodb.client.model.Aggregates.project;
    6import static com.mongodb.client.model.Projections.*;
    7import com.mongodb.client.MongoClient;
    8import com.mongodb.client.MongoClients;
    9import com.mongodb.client.MongoCollection;
    10import com.mongodb.client.MongoDatabase;
    11import org.bson.Document;
    12
    13public class CompoundFunctionQuery {
    14 public static void main( String[] args ) {
    15 // define clauses
    16 List<Document> mustClauses =
    17 List.of(
    18 new Document("range", new Document("path", "year")
    19 .append("gte", 2013)
    20 .append("lte", 2015)));
    21 List<Document> shouldClauses =
    22 List.of(
    23 new Document("text",
    24 new Document("query", "snow")
    25 .append("path", "title")
    26 .append("score", new Document("function",
    27 new Document("add", Arrays.asList(
    28 new Document("path", new Document("value", "imdb.rating")
    29 .append("undefined", 2)), new Document("score", "relevance")))))));
    30 Document highlightOption = new Document("path", "title");
    31 // define query
    32 Document agg =
    33 new Document("$search",
    34 new Document("index", "compound-query-custom-score-tutorial")
    35 .append("compound",
    36 new Document("must", mustClauses).append("should", shouldClauses))
    37 .append("highlight", highlightOption));
    38 // specify connection
    39 String uri = "<connection-string>";
    40 // establish connection and set namespace
    41 try (MongoClient mongoClient = MongoClients.create(uri)) {
    42 MongoDatabase database = mongoClient.getDatabase("sample_mflix");
    43 MongoCollection<Document> collection = database.getCollection("movies");
    44 // run query and print results
    45 collection.aggregate(Arrays.asList(agg,
    46 limit(10),
    47 project(fields(
    48 excludeId(),
    49 include("title", "year"),
    50 computed("score", new Document("$meta", "searchScore")),
    51 computed("highlights", new Document("$meta", "searchHighlights"))))))
    52 .forEach(doc -> System.out.println(doc.toJson()));
    53 }
    54 }
    55}

    注意

    要在 Maven 环境中运行示例代码,请在文件中的 import 语句上方添加以下内容。

    package com.mongodb.drivers;
  3. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  4. 编译并运行 CompoundFunctionQuery.java 文件。

    javac CompoundFunctionQuery.java
    java CompoundFunctionQuery
    {"title": "The Snow White Murder Case", "year": 2014, "score": 10.454826354980469, "highlights": [{"score": 1.3525336980819702, "path": "title", "texts": [{"value": "The ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " White Murder Case", "type": "text"}]}]}
    {"title": "Snow on the Blades", "year": 2014, "score": 10.3317232131958, "highlights": [{"score": 1.3766303062438965, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " on the Blades", "type": "text"}]}]}
    {"title": "Dead Snow 2: Red vs. Dead", "year": 2014, "score": 10.032526969909668, "highlights": [{"score": 1.3924485445022583, "path": "title", "texts": [{"value": "Dead ", "type": "text"}, {"value": "Snow", "type": "hit"}, {"value": " 2: Red vs. ", "type": "text"}]}]}
    {"title": "Snow in Paradise", "year": 2014, "score": 8.386146545410156, "highlights": [{"score": 1.382846713066101, "path": "title", "texts": [{"value": "Snow", "type": "hit"}, {"value": " in Paradise", "type": "text"}]}]}
    {"year": 2013, "title": "The Secret Life of Walter Mitty", "score": 1.0, "highlights": []}
    {"title": "Jurassic World", "year": 2015, "score": 1.0, "highlights": []}
    {"title": "Action Jackson", "year": 2014, "score": 1.0, "highlights": []}
    {"year": 2013, "title": "In Secret", "score": 1.0, "highlights": []}
    {"title": "The Stanford Prison Experiment", "year": 2015, "score": 1.0, "highlights": []}
    {"year": 2014, "title": "The Giver", "score": 1.0, "highlights": []}

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 function 选项更改了查询词 snow 的分数。

1

mongodb-driver-kotlin-coroutine

4.10.0 或更高版本

2
  1. 创建一个名为 CompoundConstantQuery.kt 的文件。

  2. 将以下代码复制并粘贴到该文件中。

    此代码示例将执行以下任务:

    • 导入mongodb包和依赖项。

    • 建立与您的 Atlas 集群的连接。

    • 使用以下复合子句查询集合:

      • filter 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 constant 选项更改 scoreconstant 选项将搜索词的所有得分结果替换为 5

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • 使用以下管道阶段:

      • $limit 阶段将输出限制为 10 个结果。

      • $project 阶段:

        • 排除 titleyear 之外的所有字段

        • 添加两个名为 scorehighlights 的字段

    • 打印与 AggregateFlow 实例中的查询相匹配的文档。

    1import com.mongodb.client.model.Aggregates.limit
    2import com.mongodb.client.model.Aggregates.project
    3import com.mongodb.client.model.Projections.*
    4import com.mongodb.kotlin.client.coroutine.MongoClient
    5import kotlinx.coroutines.runBlocking
    6import org.bson.Document
    7
    8fun main() {
    9 // establish connection and set namespace
    10 val uri = "<connection-string>"
    11 val mongoClient = MongoClient.create(uri)
    12 val database = mongoClient.getDatabase("sample_mflix")
    13 val collection = database.getCollection<Document>("movies")
    14
    15 runBlocking {
    16 // define clauses
    17 val mustClauses = listOf(
    18 Document(
    19 "range", Document("path", "year")
    20 .append("gte", 2013)
    21 .append("lte", 2015)
    22 )
    23 )
    24
    25 val shouldClauses = listOf(
    26 Document(
    27 "text",
    28 Document("query", "snow")
    29 .append("path", "title")
    30 .append("score", Document("constant", Document("value", 5)))
    31 )
    32 )
    33
    34 val highlightOption = Document("path", "title")
    35
    36 // define pipeline
    37 val agg = Document(
    38 "\$search",
    39 Document("index", "compound-query-custom-score-tutorial")
    40 .append(
    41 "compound",
    42 Document("must", mustClauses).append("should", shouldClauses)
    43 )
    44 .append("highlight", highlightOption)
    45 )
    46
    47 val resultsFlow = collection.aggregate<Document>(
    48 listOf(
    49 agg,
    50 limit(10),
    51 project(fields(
    52 excludeId(),
    53 include("title", "year"),
    54 computed("score", Document("\$meta", "searchScore")),
    55 computed("highlights", Document("\$meta", "searchHighlights"))
    56 ))
    57 )
    58 )
    59 resultsFlow.collect { println(it) }
    60 }
    61 mongoClient.close()
    62}
  3. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  4. 运行 CompoundConstantQuery.kt 文件。

    当你在 IDE 中运行 CompoundConstantQuery.kt 程序时,它会打印以下文档:

    Document{{title=Snow in Paradise, year=2014, score=6.0, highlights=[Document{{score=1.382846713066101, path=title, texts=[Document{{value=Snow, type=hit}}, Document{{value= in Paradise, type=text}}]}}]}}
    Document{{title=Dead Snow 2: Red vs. Dead, year=2014, score=6.0, highlights=[Document{{score=1.3924485445022583, path=title, texts=[Document{{value=Dead , type=text}}, Document{{value=Snow, type=hit}}, Document{{value= 2: Red vs. , type=text}}]}}]}}
    Document{{title=The Snow White Murder Case, year=2014, score=6.0, highlights=[Document{{score=1.3525336980819702, path=title, texts=[Document{{value=The , type=text}}, Document{{value=Snow, type=hit}}, Document{{value= White Murder Case, type=text}}]}}]}}
    Document{{title=Snow on the Blades, year=2014, score=6.0, highlights=[Document{{score=1.3766303062438965, path=title, texts=[Document{{value=Snow, type=hit}}, Document{{value= on the Blades, type=text}}]}}]}}
    Document{{year=2013, title=The Secret Life of Walter Mitty, score=1.0, highlights=[]}}
    Document{{title=Jurassic World, year=2015, score=1.0, highlights=[]}}
    Document{{title=Action Jackson, year=2014, score=1.0, highlights=[]}}
    Document{{year=2013, title=In Secret, score=1.0, highlights=[]}}
    Document{{title=The Stanford Prison Experiment, year=2015, score=1.0, highlights=[]}}
    Document{{year=2014, title=The Giver, score=1.0, highlights=[]}}

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 constant 选项更改了查询词 snow 的分数。

3
  1. 创建一个名为 CompoundBoostQuery.kt 的文件。

  2. 将以下代码复制并粘贴到该文件中。

    此代码示例将执行以下任务:

    • 导入mongodb包和依赖项。

    • 建立与您的 Atlas 集群的连接。

    • 打印与 AggregateFlow 实例中的查询相匹配的文档。

    查询使用了下列管道阶段:

    • $search 查询集合阶段。查询:

      • 使用以下 compound 操作符子句:

        • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

        • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 boost 选项更改 scoreboost 选项将搜索词结果中的基本分数乘以 2

      指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • $limit 阶段将输出限制为 10 个结果。

    • $project 阶段:

      • 排除 titleyear 之外的所有字段

      • 添加两个名为 scorehighlights 的字段

    1import com.mongodb.client.model.Aggregates.limit
    2import com.mongodb.client.model.Aggregates.project
    3import com.mongodb.client.model.Projections.*
    4import com.mongodb.kotlin.client.coroutine.MongoClient
    5import kotlinx.coroutines.runBlocking
    6import org.bson.Document
    7
    8fun main() {
    9 // establish connection and set namespace
    10 val uri = "<connection-string>"
    11 val mongoClient = MongoClient.create(uri)
    12
    13 val database = mongoClient.getDatabase("sample_mflix")
    14 val collection = database.getCollection<Document>("movies")
    15
    16 runBlocking {
    17 // define clauses
    18 val mustClauses = listOf(
    19 Document(
    20 "range", Document("path", "year")
    21 .append("gte", 2013)
    22 .append("lte", 2015)
    23 )
    24 )
    25
    26 val shouldClauses = listOf(
    27 Document(
    28 "text",
    29 Document("query", "snow")
    30 .append("path", "title")
    31 .append("score", Document("boost", Document("value", 2)))
    32 )
    33 )
    34
    35 val highlightOption = Document("path", "title")
    36
    37 // define pipeline
    38 val agg = Document(
    39 "\$search",
    40 Document("index", "compound-query-custom-score-tutorial")
    41 .append(
    42 "compound",
    43 Document("must", mustClauses).append("should", shouldClauses)
    44 )
    45 .append("highlight", highlightOption)
    46 )
    47
    48 // run query and print results
    49 val resultsFlow = collection.aggregate<Document>(
    50 listOf(
    51 agg,
    52 limit(10),
    53 project(fields(
    54 excludeId(),
    55 include("title", "year"),
    56 computed("score", Document("\$meta", "searchScore")),
    57 computed("highlights", Document("\$meta", "searchHighlights"))
    58 ))
    59 )
    60 )
    61 resultsFlow.collect { println(it) }
    62 }
    63 mongoClient.close()
    64}

    此查询使用以下带有boost选项的compound操作符子句,使某些字段的优先级高于其他字段:

    • must文本操作符的子句优先考虑 comedy 类型,然后是 title 字段中的术语 snowboost 选项将权重应用于字段。

    • should 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

    注意

    boost选项会对字段应用不同的权重,以确定字段的优先级。

    1import com.mongodb.client.model.Aggregates.limit
    2import com.mongodb.client.model.Aggregates.project
    3import com.mongodb.client.model.Projections.*
    4import com.mongodb.kotlin.client.coroutine.MongoClient
    5import kotlinx.coroutines.runBlocking
    6import org.bson.Document
    7
    8fun main() {
    9 // establish connection and set namespace
    10 val uri = "<connection-string>"
    11 val mongoClient = MongoClient.create(uri)
    12
    13 val database = mongoClient.getDatabase("sample_mflix")
    14 val collection = database.getCollection<Document>("movies")
    15
    16 runBlocking {
    17 // define pipeline
    18 val agg = Document(
    19 "\$search",
    20 Document("index", "compound-query-custom-score-tutorial")
    21 .append(
    22 "compound",
    23 Document(
    24 "must", listOf(
    25 Document(
    26 "text",
    27 Document("path", "genres")
    28 .append("query", "comedy")
    29 .append(
    30 "score",
    31 Document(
    32 "boost",
    33 Document("value", 9)
    34 )
    35 )
    36 ),
    37 Document(
    38 "text",
    39 Document("path", "title")
    40 .append("query", "snow")
    41 .append(
    42 "score",
    43 Document(
    44 "boost",
    45 Document("value", 5)
    46 )
    47 )
    48 )
    49 )
    50 )
    51 .append(
    52 "should", listOf(
    53 Document(
    54 "range",
    55 Document("path", "year")
    56 .append("gte", 2013)
    57 .append("lte", 2015)
    58 .append(
    59 "score",
    60 Document(
    61 "boost",
    62 Document("value", 3)
    63 )
    64 )
    65 )
    66 )
    67 )
    68 )
    69 )
    70
    71 // run query and print results
    72 val resultsFlow = collection.aggregate<Document>(
    73 listOf(
    74 agg,
    75 limit(10),
    76 project(fields(
    77 excludeId(),
    78 include("title", "year","genres"),
    79 computed("score", Document("\$meta", "searchScore"))
    80 ))
    81 )
    82 )
    83 resultsFlow.collect { println(it) }
    84 }
    85 mongoClient.close()
    86}
  3. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  4. 运行 CompoundBoostQuery.kt 文件。

    当你在 IDE 中运行 CompoundBoostQuery.kt 程序时,它会打印以下文档:

    Document{{title=Snow in Paradise, year=2014, score=6.784297466278076, highlights=[Document{{score=1.382846713066101, path=title, texts=[Document{{value=Snow, type=hit}}, Document{{value= in Paradise, type=text}}]}}]}}
    Document{{title=Snow on the Blades, year=2014, score=6.073266506195068, highlights=[Document{{score=1.3766303062438965, path=title, texts=[Document{{value=Snow, type=hit}}, Document{{value= on the Blades, type=text}}]}}]}}
    Document{{title=The Snow White Murder Case, year=2014, score=5.517906188964844, highlights=[Document{{score=1.3525336980819702, path=title, texts=[Document{{value=The , type=text}}, Document{{value=Snow, type=hit}}, Document{{value= White Murder Case, type=text}}]}}]}}
    Document{{title=Dead Snow 2: Red vs. Dead, year=2014, score=5.072136878967285, highlights=[Document{{score=1.3924485445022583, path=title, texts=[Document{{value=Dead , type=text}}, Document{{value=Snow, type=hit}}, Document{{value= 2: Red vs. , type=text}}]}}]}}
    Document{{year=2013, title=The Secret Life of Walter Mitty, score=1.0, highlights=[]}}
    Document{{title=Jurassic World, year=2015, score=1.0, highlights=[]}}
    Document{{title=Action Jackson, year=2014, score=1.0, highlights=[]}}
    Document{{year=2013, title=In Secret, score=1.0, highlights=[]}}
    Document{{title=The Stanford Prison Experiment, year=2015, score=1.0, highlights=[]}}
    Document{{year=2014, title=The Giver, score=1.0, highlights=[]}}

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 boost 选项更改了查询词 snow 的分数。

    当你在 IDE 中运行 CompoundBoostQuery.kt 程序时,它会打印以下文档:

    Document{{year=2000, genres=[Adventure, Comedy, Family], title=Snow Day, score=20.998544692993164}}
    Document{{genres=[Adventure, Comedy, Family], title=Snow Dogs, year=2002, score=20.998544692993164}}
    Document{{year=1999, genres=[Comedy, Romance], title=Let It Snow, score=19.45327377319336}}
    Document{{genres=[Action, Comedy, Horror], title=Dead Snow 2: Red vs. Dead, year=2014, score=17.361087799072266}}
    Document{{genres=[Comedy, Drama], title=Snow White and Russian Red, year=2009, score=16.287294387817383}}
    Document{{genres=[Comedy, Drama, Romance], title=The Tiger and the Snow, year=2005, score=15.475509643554688}}
    Document{{genres=[Adventure, Comedy, Family], title=Snow White and the Three Stooges, year=1961, score=14.361087799072266}}
4
  1. 创建一个名为 CompoundFunctionQuery.kt 的文件。

  2. 将以下代码复制并粘贴到该文件中。

    此代码示例将执行以下任务:

    • 导入mongodb包和依赖项。

    • 建立与您的 Atlas 集群的连接。

    • 使用以下管道阶段来查询集合:

      • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 function 选项更改 scorefunction 选项使用算术表达式添加以下内容:

        • 搜索词查询的相关性评分

        • 名为 imdb.rating 的数字字段的值,或者对于没有 imdb.rating 字段的文档,数字 2 的值。

    • 使用以下管道阶段:

      • $limit 阶段将输出限制为 10 个结果。

      • $project 阶段:

        • 排除 titleyear 之外的所有字段

        • 添加两个名为 scorehighlights 的字段

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • 打印与 AggregateFlow 实例中的查询相匹配的文档。

    1import com.mongodb.client.model.Aggregates.limit
    2import com.mongodb.client.model.Aggregates.project
    3import com.mongodb.client.model.Projections.*
    4import com.mongodb.kotlin.client.coroutine.MongoClient
    5import kotlinx.coroutines.runBlocking
    6import org.bson.Document
    7
    8fun main() {
    9 // establish connection and set namespace
    10 val uri = "<connection-string>"
    11 val mongoClient = MongoClient.create(uri)
    12
    13 val database = mongoClient.getDatabase("sample_mflix")
    14 val collection = database.getCollection<Document>("movies")
    15
    16 runBlocking {
    17 // define clauses
    18 val mustClauses = listOf(
    19 Document(
    20 "range", Document("path", "year")
    21 .append("gte", 2013)
    22 .append("lte", 2015)
    23 )
    24 )
    25
    26 val shouldClauses = listOf(
    27 Document("text", Document("query", "snow")
    28 .append("path", "title")
    29 .append("score",
    30 Document("function", Document("add", listOf(
    31 Document("path", Document("value", "imdb.rating").append("undefined", 2)),
    32 Document("score", "relevance")
    33 )))
    34 )
    35 )
    36 )
    37
    38 val highlightOption = Document("path", "title")
    39
    40 // define pipeline
    41 val agg = Document(
    42 "\$search",
    43 Document("index", "compound-query-custom-score-tutorial")
    44 .append(
    45 "compound",
    46 Document("must", mustClauses).append("should", shouldClauses)
    47 )
    48 .append("highlight", highlightOption)
    49 )
    50
    51 // run query and print results
    52 val resultsFlow = collection.aggregate<Document>(
    53 listOf(
    54 agg,
    55 limit(10),
    56 project(fields(
    57 excludeId(),
    58 include("title", "year"),
    59 computed("score", Document("\$meta", "searchScore")),
    60 computed("highlights", Document("\$meta", "searchHighlights"))
    61 ))
    62 )
    63 )
    64 resultsFlow.collect { println(it) }
    65 }
    66 mongoClient.close()
    67}
  3. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  4. 运行 CompoundFunctionQuery.kt 文件。

    当你在 IDE 中运行 CompoundFunctionQuery.kt 程序时,它会打印以下文档:

    Document{{title=The Snow White Murder Case, year=2014, score=10.458952903747559, highlights=[Document{{score=1.3525336980819702, path=title, texts=[Document{{value=The , type=text}}, Document{{value=Snow, type=hit}}, Document{{value= White Murder Case, type=text}}]}}]}}
    Document{{title=Snow on the Blades, year=2014, score=10.336633682250977, highlights=[Document{{score=1.3766303062438965, path=title, texts=[Document{{value=Snow, type=hit}}, Document{{value= on the Blades, type=text}}]}}]}}
    Document{{title=Dead Snow 2: Red vs. Dead, year=2014, score=10.036067962646484, highlights=[Document{{score=1.3924485445022583, path=title, texts=[Document{{value=Dead , type=text}}, Document{{value=Snow, type=hit}}, Document{{value= 2: Red vs. , type=text}}]}}]}}
    Document{{title=Snow in Paradise, year=2014, score=8.392148971557617, highlights=[Document{{score=1.382846713066101, path=title, texts=[Document{{value=Snow, type=hit}}, Document{{value= in Paradise, type=text}}]}}]}}
    Document{{year=2013, title=The Secret Life of Walter Mitty, score=1.0, highlights=[]}}
    Document{{title=Jurassic World, year=2015, score=1.0, highlights=[]}}
    Document{{title=Action Jackson, year=2014, score=1.0, highlights=[]}}
    Document{{year=2013, title=In Secret, score=1.0, highlights=[]}}
    Document{{title=The Stanford Prison Experiment, year=2015, score=1.0, highlights=[]}}
    Document{{year=2014, title=The Giver, score=1.0, highlights=[]}}

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 function 选项更改了查询词 snow 的分数。

1
  1. 创建一个名为 compound-constant-query.js 的文件。

  2. 将代码示例复制并粘贴到 compound-constant-query.js 文件中。

    此代码示例将执行以下任务:

    • 导入 mongodb,即 MongoDB 的 Node.js 驱动程序。

    • 创建一个 MongoClient 类实例,以建立与 Atlas 集群的连接。

    • 使用以下复合子句查询集合:

      • filter 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 constant 选项更改 scoreconstant 选项将搜索词的所有得分结果替换为 5

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • 使用以下管道阶段:

      • $limit 阶段将输出限制为 10 个结果。

      • $project 阶段:

        • 排除 titleyear 之外的所有字段

        • 添加两个名为 scorehighlights 的字段

    • 遍历游标以打印与查询匹配的文档。

    1const MongoClient = require("mongodb").MongoClient;
    2const assert = require("assert");
    3
    4const agg = [
    5 {
    6 '$search': {
    7 'index': 'compound-query-custom-score-tutorial',
    8 'compound': {
    9 'filter': [
    10 {
    11 'range': {
    12 'path': 'year',
    13 'gte': 2013,
    14 'lte': 2015
    15 }
    16 }
    17 ],
    18 'should': [
    19 {
    20 'text': {
    21 'query': 'snow',
    22 'path': 'title',
    23 'score': {
    24 'constant': {
    25 'value': 5
    26 }
    27 }
    28 }
    29 }
    30 ]
    31 },
    32 'highlight': {
    33 'path': 'title'
    34 }
    35 }
    36 }, {
    37 '$limit': 10
    38 }, {
    39 '$project': {
    40 '_id': 0,
    41 'title': 1,
    42 'year': 1,
    43 'score': {
    44 '$meta': 'searchScore'
    45 },
    46 'highlights': {
    47 '$meta': 'searchHighlights'
    48 }
    49 }
    50 }
    51];
    52
    53MongoClient.connect(
    54 "<connection-string>",
    55 { useNewUrlParser: true, useUnifiedTopology: true },
    56 async function (connectErr, client) {
    57 assert.equal(null, connectErr);
    58 const coll = client.db("sample_mflix").collection("movies");
    59 let cursor = await coll.aggregate(agg);
    60 await cursor.forEach((doc) => console.log(doc));
    61 client.close();
    62 }
    63);
  3. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  4. 运行以下命令来查询您的集合:

    node compound-constant-query.js
    '{"title":"Snow in Paradise","year":2014,"score":5,"highlights":[{"score":1.382846713066101,"path":"title","texts":[{"value":"Snow","type":"hit"},{"value":" in Paradise","type":"text"}]}]}'
    '{"title":"Dead Snow 2: Red vs. Dead","year":2014,"score":5,"highlights":[{"score":1.3924485445022583,"path":"title","texts":[{"value":"Dead ","type":"text"},{"value":"Snow","type":"hit"},{"value":" 2: Red vs. ","type":"text"}]}]}'
    '{"title":"The Snow White Murder Case","year":2014,"score":5,"highlights":[{"score":1.3525336980819702,"path":"title","texts":[{"value":"The ","type":"text"},{"value":"Snow","type":"hit"},{"value":" White Murder Case","type":"text"}]}]}'
    '{"title":"Snow on the Blades","year":2014,"score":5,"highlights":[{"score":1.3766303062438965,"path":"title","texts":[{"value":"Snow","type":"hit"},{"value":" on the Blades","type":"text"}]}]}'
    '{"year":2013,"title":"The Secret Life of Walter Mitty","score":0,"highlights":[]}'
    '{"title":"Jurassic World","year":2015,"score":0,"highlights":[]}'
    '{"title":"Action Jackson","year":2014,"score":0,"highlights":[]}'
    '{"year":2013,"title":"In Secret","score":0,"highlights":[]}'
    '{"title":"The Stanford Prison Experiment","year":2015,"score":0,"highlights":[]}'
    '{"year":2014,"title":"The Giver","score":0,"highlights":[]}'

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 constant 选项更改了查询词 snow 的分数。

2
  1. 创建一个名为 compound-boost-query.js 的文件。

  2. 将代码示例复制并粘贴到 compound-boost-query.js 文件中。

    此代码示例将执行以下任务:

    • 导入 mongodb,即 MongoDB 的 Node.js 驱动程序。

    • 创建一个 MongoClient 类实例,以建立与 Atlas 集群的连接。

    • 遍历游标以打印与查询匹配的文档。

    查询使用了下列管道阶段:

    • $search 查询集合阶段。查询:

      • 使用以下 compound 操作符子句:

        • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

        • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 boost 选项更改 scoreboost 选项将搜索词结果中的基本分数乘以 2

      • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • $limit 阶段将输出限制为 10 个结果。

    • $project 阶段:

      • 排除 titleyear 之外的所有字段

      • 添加两个名为 scorehighlights 的字段

    1const MongoClient = require("mongodb").MongoClient;
    2const assert = require("assert");
    3
    4const agg = [
    5 {
    6 '$search': {
    7 'index': 'compound-query-custom-score-tutorial',
    8 'compound': {
    9 'must': [
    10 {
    11 'range': {
    12 'path': 'year',
    13 'gte': 2013,
    14 'lte': 2015
    15 }
    16 }
    17 ],
    18 'should': [
    19 {
    20 'text': {
    21 'query': 'snow',
    22 'path': 'title',
    23 'score': {
    24 'boost': {
    25 'value': 2
    26 }
    27 }
    28 }
    29 }
    30 ]
    31 }
    32 }
    33 }, {
    34 '$limit': 10
    35 }, {
    36 '$project': {
    37 '_id': 0,
    38 'title': 1,
    39 'year': 1,
    40 'score': {
    41 '$meta': 'searchScore'
    42 }
    43 }
    44 }
    45];
    46
    47MongoClient.connect(
    48 "<connection-string>",
    49 { useNewUrlParser: true, useUnifiedTopology: true },
    50 async function (connectErr, client) {
    51 assert.equal(null, connectErr);
    52 const coll = client.db("sample_mflix").collection("movies");
    53 let cursor = await coll.aggregate(agg);
    54 await cursor.forEach((doc) => console.log(doc));
    55 client.close();
    56 }
    57);

    查询使用了下列管道阶段:

    • $search 查询集合阶段。查询:

      • 将以下 compound 操作符子句与 boost 选项结合使用,使某些字段的优先级高于其他字段:

        • must文本操作符的子句优先考虑 comedy 类型,然后是 title 字段中的术语 snowboost 选项将权重应用于字段。

        • should 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

        注意

        boost选项会对字段应用不同的权重,以确定字段的优先级。

      • $limit 阶段将输出限制为 10 个结果。

      • $project 阶段:

        • 排除 titleyear 之外的所有字段

        • 添加两个名为 scorehighlights 的字段

    1const MongoClient = require("mongodb").MongoClient;
    2const assert = require("assert");
    3
    4const agg = [
    5 {
    6 '$search': {
    7 'index': 'compound-query-custom-score-tutorial',
    8 'compound': {
    9 'must': [
    10 {
    11 'text': {
    12 'path': 'genres',
    13 'query': 'comedy',
    14 'score': {
    15 'boost': {
    16 'value': 9
    17 }
    18 }
    19 }
    20 }, {
    21 'text': {
    22 'path': 'title',
    23 'query': 'snow',
    24 'score': {
    25 'boost': {
    26 'value': 5
    27 }
    28 }
    29 }
    30 }
    31 ],
    32 'should': [
    33 {
    34 'range': {
    35 'path': 'year',
    36 'gte': 2013,
    37 'lte': 2015,
    38 'score': {
    39 'boost': {
    40 'value': 3
    41 }
    42 }
    43 }
    44 }
    45 ]
    46 }
    47 }
    48 }, {
    49 '$limit': 10
    50 }, {
    51 '$project': {
    52 '_id': 0,
    53 'title': 1,
    54 'year': 1,
    55 'genres': 1,
    56 'score': {
    57 '$meta': 'searchScore'
    58 }
    59 }
    60 }
    61];
    62
    63MongoClient.connect(
    64 "<connection-string>",
    65 { useNewUrlParser: true, useUnifiedTopology: true },
    66 async function (connectErr, client) {
    67 assert.equal(null, connectErr);
    68 const coll = client.db("sample_mflix").collection("movies");
    69 let cursor = await coll.aggregate(agg);
    70 await cursor.forEach((doc) => console.log(doc));
    71 client.close();
    72 }
    73);
  3. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  4. 运行以下命令来查询您的集合:

    node compound-boost-query.js
    '{"title":"Snow in Paradise","year":2014,"score":6.7722930908203125,"highlights":[{"score":1.382846713066101,"path":"title","texts":[{"value":"Snow","type":"hit"},{"value":" in Paradise","type":"text"}]}]}'
    '{"title":"Snow on the Blades","year":2014,"score":6.063445568084717,"highlights":[{"score":1.3766303062438965,"path":"title","texts":[{"value":"Snow","type":"hit"},{"value":" on the Blades","type":"text"}]}]}'
    '{"title":"The Snow White Murder Case","year":2014,"score":5.509652137756348,"highlights":[{"score":1.3525336980819702,"path":"title","texts":[{"value":"The ","type":"text"},{"value":"Snow","type":"hit"},{"value":" White Murder Case","type":"text"}]}]}'
    '{"title":"Dead Snow 2: Red vs. Dead","year":2014,"score":5.065053939819336,"highlights":[{"score":1.3924485445022583,"path":"title","texts":[{"value":"Dead ","type":"text"},{"value":"Snow","type":"hit"},{"value":" 2: Red vs. ","type":"text"}]}]}'
    '{"year":2013,"title":"The Secret Life of Walter Mitty","score":1,"highlights":[]}'
    '{"title":"Jurassic World","year":2015,"score":1,"highlights":[]}'
    '{"title":"Action Jackson","year":2014,"score":1,"highlights":[]}'
    '{"year":2013,"title":"In Secret","score":1,"highlights":[]}'
    '{"title":"The Stanford Prison Experiment","year":2015,"score":1,"highlights":[]}'
    '{"year":2014,"title":"The Giver","score":1,"highlights":[]}'

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 boost 选项更改了查询词 snow 的分数。

    node compound-boost-query.js
    {
    genres: [ 'Comedy', 'Horror' ],
    title: 'Dead Snow',
    year: 2009,
    score: 21.872983932495117
    }
    {
    year: 2000,
    genres: [ 'Adventure', 'Comedy', 'Family' ],
    title: 'Snow Day',
    score: 21.043487548828125
    }
    {
    genres: [ 'Adventure', 'Comedy', 'Family' ],
    title: 'Snow Dogs',
    year: 2002,
    score: 21.043487548828125
    }
    {
    year: 1999,
    genres: [ 'Comedy', 'Romance' ],
    title: 'Let It Snow',
    score: 19.523927688598633
    }
    {
    genres: [ 'Action', 'Comedy', 'Horror' ],
    title: 'Dead Snow 2: Red vs. Dead',
    year: 2014,
    score: 17.426334381103516
    }
    {
    genres: [ 'Comedy', 'Drama' ],
    title: 'Snow White and Russian Red',
    year: 2009,
    score: 16.367326736450195
    }
    {
    genres: [ 'Comedy', 'Drama', 'Romance' ],
    title: 'The Tiger and the Snow',
    year: 2005,
    score: 15.537829399108887
    }
    {
    genres: [ 'Adventure', 'Comedy', 'Family' ],
    title: 'Snow White and the Three Stooges',
    year: 1961,
    score: 14.4263334274292
    }
3
  1. 创建一个名为 compound-function-query.js 的文件。

  2. 将代码示例复制并粘贴到 compound-function-query.js 文件中。

    此代码示例将执行以下任务:

    • 导入 mongodb,即 MongoDB 的 Node.js 驱动程序。

    • 创建一个 MongoClient 类实例,以建立与 Atlas 集群的连接。

    • 使用以下复合子句查询集合:

      • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 function 选项更改 scorefunction 选项使用算术表达式添加以下内容:

        • 搜索词查询的相关性评分

        • 名为 imdb.rating 的数字字段的值,或者对于没有 imdb.rating 字段的文档,数字 2 的值。

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • 使用以下管道阶段:

      • $limit 阶段将输出限制为 10 个结果。

      • $project 阶段:

        • 排除 titleyear 之外的所有字段

        • 添加两个名为 scorehighlights 的字段

    • 遍历游标以打印与查询匹配的文档。

    1const MongoClient = require("mongodb").MongoClient;
    2const assert = require("assert");
    3
    4const agg = [
    5 {
    6 '$search': {
    7 'index': 'compound-query-custom-score-tutorial',
    8 'compound': {
    9 'must': [
    10 {
    11 'range': {
    12 'path': 'year',
    13 'gte': 2013,
    14 'lte': 2015
    15 }
    16 }
    17 ],
    18 'should': [
    19 {
    20 'text': {
    21 'query': 'snow',
    22 'path': 'title',
    23 'score': {
    24 'function': {
    25 'add': [
    26 {
    27 'path': {
    28 'value': 'imdb.rating',
    29 'undefined': 2
    30 }
    31 }, {
    32 'score': 'relevance'
    33 }
    34 ]
    35 }
    36 }
    37 }
    38 }
    39 ]
    40 }
    41 }
    42 }, {
    43 '$limit': 10
    44 }, {
    45 '$project': {
    46 '_id': 0,
    47 'title': 1,
    48 'year': 1,
    49 'score': {
    50 '$meta': 'searchScore'
    51 },
    52 'highlights': {
    53 '$meta': 'searchHighlights'
    54 }
    55 }
    56 }
    57];
    58
    59MongoClient.connect(
    60 "<connection-string>",
    61 { useNewUrlParser: true, useUnifiedTopology: true },
    62 async function (connectErr, client) {
    63 assert.equal(null, connectErr);
    64 const coll = client.db("sample_mflix").collection("movies");
    65 let cursor = await coll.aggregate(agg);
    66 await cursor.forEach((doc) => console.log(doc));
    67 client.close();
    68 }
    69);
  3. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  4. 运行以下命令来查询您的集合:

    node compound-function-query.js
    '{"title":"The Snow White Murder Case","year":2014,"score":10.454826354980469,"highlights":[{"score":1.3525336980819702,"path":"title","texts":[{"value":"The ","type":"text"},{"value":"Snow","type":"hit"},{"value":" White Murder Case","type":"text"}]}]}'
    '{"title":"Snow on the Blades","year":2014,"score":10.3317232131958,"highlights":[{"score":1.3766303062438965,"path":"title","texts":[{"value":"Snow","type":"hit"},{"value":" on the Blades","type":"text"}]}]}'
    '{"title":"Dead Snow 2: Red vs. Dead","year":2014,"score":10.032526969909668,"highlights":[{"score":1.3924485445022583,"path":"title","texts":[{"value":"Dead ","type":"text"},{"value":"Snow","type":"hit"},{"value":" 2: Red vs. ","type":"text"}]}]}'
    '{"title":"Snow in Paradise","year":2014,"score":8.386146545410156,"highlights":[{"score":1.382846713066101,"path":"title","texts":[{"value":"Snow","type":"hit"},{"value":" in Paradise","type":"text"}]}]}'
    '{"year":2013,"title":"The Secret Life of Walter Mitty","score":1,"highlights":[]}'
    '{"title":"Jurassic World","year":2015,"score":1,"highlights":[]}'
    '{"title":"Action Jackson","year":2014,"score":1,"highlights":[]}'
    '{"year":2013,"title":"In Secret","score":1,"highlights":[]}'
    '{"title":"The Stanford Prison Experiment","year":2015,"score":1,"highlights":[]}'
    '{"year":2014,"title":"The Giver","score":1,"highlights":[]}'

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 function 选项更改了查询词 snow 的分数。

1
  1. 创建一个名为 compound-constant-query.py 的文件。

  2. 将代码示例复制并粘贴到 compound-constant.py 文件中。

    以下代码示例:

    • 导入 pymongo 、MongoDB 的 Python 驱动程序和 dns 模块,这是使用 DNS 种子列表连接字符串将 pymongo 连接到 Atlas 所必需的。

    • 创建一个 MongoClient 类实例,以建立与 Atlas 集群的连接。

    • 使用以下复合子句查询集合:

      • filter 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 constant 选项更改 scoreconstant 选项将搜索词的所有得分结果替换为 5

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • 使用以下管道阶段:

      • $limit 阶段将输出限制为 10 个结果。

      • $project 阶段:

        • 排除 titleyear 之外的所有字段

        • 添加两个名为 scorehighlights 的字段

    • 遍历游标以打印与查询匹配的文档。

    1import pymongo
    2
    3# connect to your Atlas cluster
    4client = pymongo.MongoClient('<connection-string>')
    5
    6# define pipeline
    7pipeline = [
    8 {'$search': {
    9 'index': 'compound-query-custom-score-tutorial',
    10 'compound': {
    11 'filter': [{'range': {'path': 'year', 'gte': 2013, 'lte': 2015}}],
    12 'should': [{'text': {'query': 'snow', 'path': 'title', 'score': {'constant': {'value': 5}}}}]},
    13 'highlight': {'path': 'title'}}},
    14 {'$limit': 10},
    15 {'$project': {'_id': 0, 'title': 1, 'year': 1,
    16 'score': {'$meta': 'searchScore'}, "highlights": {"$meta": "searchHighlights"}}}
    17]
    18
    19# run pipeline
    20result = client['sample_mflix']['movies'].aggregate(pipeline)
    21
    22# print results
    23for i in result:
    24 print(i)
  3. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  4. 运行以下命令来查询您的集合:

    python compound-constant-query.py
    {'highlights': [{'path': 'title', 'score': 1.382846713066101, 'texts': [{'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' in Paradise'}]}], 'year': 2014, 'score': 5.0, 'title': 'Snow in Paradise'}
    {'highlights': [{'path': 'title', 'score': 1.3924485445022583, 'texts': [{'type': 'text', 'value': 'Dead '}, {'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' 2: Red vs. '}]}], 'year': 2014, 'score': 5.0, 'title': 'Dead Snow 2: Red vs. Dead'}
    {'highlights': [{'path': 'title', 'score': 1.3525336980819702, 'texts': [{'type': 'text', 'value': 'The '}, {'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' White Murder Case'}]}], 'year': 2014, 'score': 5.0, 'title': 'The Snow White Murder Case'}
    {'highlights': [{'path': 'title', 'score': 1.3766303062438965, 'texts': [{'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' on the Blades'}]}], 'year': 2014, 'score': 5.0, 'title': 'Snow on the Blades'}
    {'highlights': [], 'title': 'The Secret Life of Walter Mitty', 'score': 0.0, 'year': 2013}
    {'highlights': [], 'year': 2015, 'score': 0.0, 'title': 'Jurassic World'}
    {'highlights': [], 'year': 2014, 'score': 0.0, 'title': 'Action Jackson'}
    {'highlights': [], 'title': 'In Secret', 'score': 0.0, 'year': 2013}
    {'highlights': [], 'year': 2015, 'score': 0.0, 'title': 'The Stanford Prison Experiment'}
    {'highlights': [], 'title': 'The Giver', 'score': 0.0, 'year': 2014}

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 constant 选项更改了查询词 snow 的分数。

2
  1. 创建一个名为 compound-boost-query.py 的文件。

  2. 将代码示例复制并粘贴到 compound-boost-query.py 文件中。

    以下代码示例:

    • 导入 pymongo 、MongoDB 的 Python 驱动程序和 dns 模块,这是使用 DNS 种子列表连接字符串将 pymongo 连接到 Atlas 所必需的。

    • 创建一个 MongoClient 类实例,以建立与 Atlas 集群的连接。

    • 遍历游标以打印与查询匹配的文档。

    查询使用了下列管道阶段:

    • $search 查询集合阶段。查询:

      • 使用以下 compound 操作符子句:

        • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

        • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 boost 选项更改 scoreboost 选项将搜索词结果中的基本分数乘以 2

        • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • $limit 阶段将输出限制为 10 个结果。

    • $project 阶段:

      • 排除 titleyear 之外的所有字段

      • 添加两个名为 scorehighlights 的字段

    1import pymongo
    2
    3# connect to your Atlas cluster
    4client = pymongo.MongoClient('<connection-string>')
    5
    6# define pipeline
    7pipeline = [
    8 {'$search': {
    9 'index': 'compound-query-custom-score-tutorial',
    10 'compound': {
    11 'must': [{'range': {'path': 'year', 'gte': 2013, 'lte': 2015}}],
    12 'should': [{'text': {'query': 'snow', 'path': 'title', 'score': {'boost': {'value': 2}}}}]},
    13 'highlight': {'path': 'title'}}},
    14 {'$limit': 10},
    15 {'$project': {'_id': 0, 'title': 1, 'year': 1, 'score': {'$meta': 'searchScore'}, "highlights": {"$meta": "searchHighlights"}}}
    16]
    17
    18# run pipeline
    19result = client['sample_mflix']['movies'].aggregate(pipeline)
    20
    21# print results
    22for i in result:
    23 print(i)

    查询使用了下列管道阶段:

    • $search 阶段用于查询集合。查询使用以下 compound 操作符子句和 boost 选项,使某些字段的优先级高于其他字段:

      • must文本操作符的子句优先考虑 comedy 类型,然后是 title 字段中的术语 snowboost 选项将权重应用于字段。

      • should 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      注意

      boost选项会对字段应用不同的权重,以确定字段的优先级。

    • $limit 阶段将输出限制为 10 个结果。

    • $project 阶段到:

      • 排除 titleyeargenres 以外的所有字段

      • 添加字段 score

    import pymongo
    import dns
    client = pymongo.MongoClient('<connection-string>')
    result = client['sample_mflix']['movies'].aggregate([
    {
    '$search': {
    'index': 'compound-query-custom-score-tutorial',
    'compound': {
    'must': [
    {
    'text': {
    'path': 'genres',
    'query': 'comedy',
    'score': {
    'boost': {
    'value': 9
    }
    }
    }
    }, {
    'text': {
    'path': 'title',
    'query': 'snow',
    'score': {
    'boost': {
    'value': 5
    }
    }
    }
    }
    ],
    'should': [
    {
    'range': {
    'path': 'year',
    'gte': 2013,
    'lte': 2015,
    'score': {
    'boost': {
    'value': 3
    }
    }
    }
    }
    ]
    }
    }
    }, {
    '$limit': 10
    }, {
    '$project': {
    '_id': 0,
    'title': 1,
    'year': 1,
    'genres': 1,
    'score': {
    '$meta': 'searchScore'
    }
    }
    }
    ])
    for i in result:
    print(i)
  3. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  4. 运行以下命令来查询您的集合:

    python compound-boost-query.py
    {'highlights': [{'path': 'title', 'score': 1.382846713066101, 'texts': [{'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' in Paradise'}]}], 'year': 2014, 'score': 6.7722930908203125, 'title': 'Snow in Paradise'}
    {'highlights': [{'path': 'title', 'score': 1.3766303062438965, 'texts': [{'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' on the Blades'}]}], 'year': 2014, 'score': 6.063445568084717, 'title': 'Snow on the Blades'}
    {'highlights': [{'path': 'title', 'score': 1.3525336980819702, 'texts': [{'type': 'text', 'value': 'The '}, {'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' White Murder Case'}]}], 'year': 2014, 'score': 5.509652137756348, 'title': 'The Snow White Murder Case'}
    {'highlights': [{'path': 'title', 'score': 1.3924485445022583, 'texts': [{'type': 'text', 'value': 'Dead '}, {'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' 2: Red vs. '}]}], 'year': 2014, 'score': 5.065053939819336, 'title': 'Dead Snow 2: Red vs. Dead'}
    {'highlights': [], 'title': 'The Secret Life of Walter Mitty', 'score': 1.0, 'year': 2013}
    {'highlights': [], 'year': 2015, 'score': 1.0, 'title': 'Jurassic World'}
    {'highlights': [], 'year': 2014, 'score': 1.0, 'title': 'Action Jackson'}
    {'highlights': [], 'title': 'In Secret', 'score': 1.0, 'year': 2013}
    {'highlights': [], 'year': 2015, 'score': 1.0, 'title': 'The Stanford Prison Experiment'}
    {'highlights': [], 'title': 'The Giver', 'score': 1.0, 'year': 2014}

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 boost 选项更改了查询词 snow 的分数。

    python compound-boost-query.py
    {
    'genres': ['Comedy', 'Horror'],
    'title': 'Dead Snow',
    'year': 2009,
    'score': 21.872983932495117
    }
    {
    'year': 2000,
    'genres': ['Adventure', 'Comedy', 'Family'],
    'title': 'Snow Day',
    'score': 21.043487548828125
    }
    {
    'genres': ['Adventure', 'Comedy', 'Family'],
    'title': 'Snow Dogs',
    'year': 2002,
    'score': 21.043487548828125
    }
    {
    'year': 1999,
    'genres': ['Comedy', 'Romance'],
    'title': 'Let It Snow',
    'score': 19.523927688598633
    }
    {
    'genres': ['Action', 'Comedy', 'Horror'],
    'title': 'Dead Snow 2: Red vs. Dead',
    'year': 2014,
    'score': 17.426334381103516
    }
    {
    'genres': ['Comedy', 'Drama'],
    'title': 'Snow White and Russian Red',
    'year': 2009,
    'score': 16.367326736450195
    }
    {
    'genres': ['Comedy', 'Drama', 'Romance'],
    'title': 'The Tiger and the Snow',
    'year': 2005,
    'score': 15.537829399108887
    }
    {
    'genres': ['Adventure', 'Comedy', 'Family'],
    'title': 'Snow White and the Three Stooges',
    'year': 1961,
    'score': 14.4263334274292
    }
3
  1. 创建一个名为 compound-function-query.py 的文件。

  2. 将代码示例复制并粘贴到 compound-function-query.py 文件中。

    以下代码示例:

    • 导入 pymongo 、MongoDB 的 Python 驱动程序和 dns 模块,这是使用 DNS 种子列表连接字符串将 pymongo 连接到 Atlas 所必需的。

    • 创建一个 MongoClient 类实例,以建立与 Atlas 集群的连接。

    • 使用以下复合子句查询集合:

      • must 带有范围操作符的子句,用于搜索 20132015 年之间的电影。

      • should 子句和 text 操作符,以在 title 字段中查询词语 snow,并使用 function 选项更改 scorefunction 选项使用算术表达式添加以下内容:

        • 搜索词查询的相关性评分

        • 名为 imdb.rating 的数字字段的值,或者对于没有 imdb.rating 字段的文档,数字 2 的值。

    • 指定突出显示选项,从 title 字段返回与查询匹配的代码段。这些代码段包含使用 type: 'hit' 指定的匹配文本以及使用 type: 'text' 指定的相邻文本。

    • 使用以下管道阶段:

      • $limit 阶段将输出限制为 10 个结果。

      • $project 阶段:

        • 排除 titleyear 之外的所有字段

        • 添加两个名为 scorehighlights 的字段

    • 遍历游标以打印与查询匹配的文档。

    1import pymongo
    2
    3# connect to your Atlas cluster
    4client = pymongo.MongoClient('<connection-string>')
    5
    6# define pipeline
    7pipeline = [
    8 {'$search': {
    9 'index': 'compound-query-custom-score-tutorial',
    10 'compound': {
    11 'must': [{'range': {'path': 'year', 'gte': 2013, 'lte': 2015}}],
    12 'should': [{'text': {'query': 'snow', 'path': 'title',
    13 'score': {'function': {
    14 'add': [{'path': {'value': 'imdb.rating','undefined': 2}}, {'score': 'relevance'}]}}}}]},
    15 'highlight': {'path': 'title'}}},
    16 {'$limit': 10},
    17 {'$project': {'_id': 0, 'title': 1, 'year': 1, 'score': {'$meta': 'searchScore'}, "highlights": {"$meta": "searchHighlights"}}}
    18]
    19
    20# run pipeline
    21result = client['sample_mflix']['movies'].aggregate(pipeline)
    22
    23# print results
    24for i in result:
    25 print(i)
  3. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

  4. 运行以下命令来查询您的集合:

    python compound-function-query.py
    {'highlights': [{'path': 'title', 'score': 1.3525336980819702, 'texts': [{'type': 'text', 'value': 'The '}, {'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' White Murder Case'}]}], 'year': 2014, 'score': 10.454826354980469, 'title': 'The Snow White Murder Case'}
    {'highlights': [{'path': 'title', 'score': 1.3766303062438965, 'texts': [{'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' on the Blades'}]}], 'year': 2014, 'score': 10.3317232131958, 'title': 'Snow on the Blades'}
    {'highlights': [{'path': 'title', 'score': 1.3924485445022583, 'texts': [{'type': 'text', 'value': 'Dead '}, {'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' 2: Red vs. '}]}], 'year': 2014, 'score': 10.032526969909668, 'title': 'Dead Snow 2: Red vs. Dead'}
    {'highlights': [{'path': 'title', 'score': 1.382846713066101, 'texts': [{'type': 'hit', 'value': 'Snow'}, {'type': 'text', 'value': ' in Paradise'}]}], 'year': 2014, 'score': 8.386146545410156, 'title': 'Snow in Paradise'}
    {'highlights': [], 'title': 'The Secret Life of Walter Mitty', 'score': 1.0, 'year': 2013}
    {'highlights': [], 'year': 2015, 'score': 1.0, 'title': 'Jurassic World'}
    {'highlights': [], 'year': 2014, 'score': 1.0, 'title': 'Action Jackson'}
    {'highlights': [], 'title': 'In Secret', 'score': 1.0, 'year': 2013}
    {'highlights': [], 'year': 2015, 'score': 1.0, 'title': 'The Stanford Prison Experiment'}
    {'highlights': [], 'title': 'The Giver', 'score': 1.0, 'year': 2014}

    结果中列出的前四个文档评分较高,因为查询中的 should 子句将标题中包含 snow 的文档指定为首选项。should 子句还使用 function 选项更改了查询词 snow 的分数。

在本部分中,您将连接到 Atlas 集群,并针对 sample_mflix 数据库中的 movies 集合中的 titleplotgenres 字段运行示例查询。该示例查询使用嵌套的复合操作符子句执行以下搜索:

  • 搜索所有包含“ghost”一词的电影,但将喜剧电影的分数降低 50%。

  • 搜索包含单词“ghost”的所有电影,但将具有指定 ObjectId 的电影的分数降低 50%。

1
  1. 单击集群名称可查看集群详细信息。

  2. 单击 Atlas Search 标签页。

  3. 单击要查询的索引右侧的 Query 按钮。

2

单击 Edit Query 以查看 JSON 格式的默认查询语法示例。

3
  1. 将以下查询复制并粘贴到 Query Editor

    该查询使用 $search compound 操作符should 子句嵌套 compound 操作符查询,以执行以下操作:

    • 搜索情节或标题(must子句)中包含一词 ghost 且不属于 comedy 类型(mustNot 子句)的电影。

    • 搜索情节或标题中包含 ghost 一词的电影(must 子句),但对于标题或情节中包含 ghost 一词的 comedy 类型的电影,将分数(boost)降低 50%(0.5)。

    1[
    2 {
    3 "$search": {
    4 "index": "compound-query-custom-score-tutorial",
    5 "compound": {
    6 "should":[ {
    7 "compound":{
    8 "must":[
    9 {
    10 "text": {
    11 "query": "ghost",
    12 "path": ["plot","title"]
    13 }
    14 }
    15 ],
    16 "mustNot":[
    17 {
    18 "text": {
    19 "query": "Comedy",
    20 "path": ["genres"]
    21 }
    22 }
    23 ]
    24 }
    25 },
    26 {
    27 "compound":{
    28 "must":[
    29 {
    30 "text": {
    31 "query": "ghost",
    32 "path": ["plot","title"]
    33 }
    34 }
    35 ],
    36 "filter":[
    37 {
    38 "text": {
    39 "query": "Comedy",
    40 "path": ["genres"]
    41 }
    42 }
    43 ],
    44 "score":{ "boost": { "value": 0.5} }
    45 }
    46 }
    47 ]
    48 }
    49 }
    50 }
    51]

    该查询使用 $search compound 操作符should 子句嵌套 compound 操作符查询,以执行以下操作:

    • 搜索在情节或标题(must 子句)中包含术语 ghost 但未指定 ObjectId(mustNot 子句)的电影。

    • 搜索情节或标题(must 子句)中包含一词 ghost 的电影,但对于具有指定 ObjectIds(filter 子句)的电影,将分数(boost)减少 50%(0.5)。

    1[
    2 {
    3 "$search": {
    4 "index": "compound-query-custom-score-tutorial",
    5 "compound": {
    6 "should":[
    7 {
    8 "compound":{
    9 "must":[
    10 {
    11 "text": {
    12 "query": "ghost",
    13 "path": ["plot","title"]
    14 }
    15 }
    16 ],
    17 "mustNot":[
    18 {
    19 "in": {
    20 "value": [ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2')],
    21 "path": "_id"
    22 }
    23 }
    24 ]
    25 }
    26 },
    27 {
    28 "compound":{
    29 "must":[
    30 {
    31 "text": {
    32 "query": "ghost",
    33 "path": ["plot","title"]
    34 }
    35 }
    36 ],
    37 "filter":[
    38 {
    39 "in": {
    40 "value": [ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2')],
    41 "path": "_id"
    42 }
    43 }
    44 ],
    45 "score":{ "boost": { "value": 0.5} }
    46 }
    47 }
    48 ]
    49 }
    50 }
    51 }
    52]
  2. 单击 Query Editor 中的 Search 按钮。

    1SCORE: 5.909613132476807
    2_id: “573a139af29313caabcefcce”
    3plot: "Adaption of the famous Oscar Wilde tale about a young American girl th…"
    4genres: Array (3)
    5runtime: 92
    6
    7SCORE: 5.367666244506836
    8_id: “573a13d8f29313caabda5dc1”
    9plot: "The Little Ghost lives in the castle over looking a small town and awa…"
    10genres: Array (2)
    11runtime: 92
    12
    13SCORE: 4.676314353942871
    14_id: “573a13c0f29313caabd6139d”
    15plot: "Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal …"
    16genres: Array (2)
    17runtime: 107
    18
    19SCORE: 3.9638845920562744
    20_id: “573a1398f29313caabcebf6f”
    21plot: "After an accident leaves a young man dead, his spirit stays behind to …"
    22genres: Array (3)
    23runtime: 127
    24
    25SCORE: 3.9638845920562744
    26_id: “573a13cdf29313caabd83c08”
    27plot: "A man tries to solve his lover's murder by communicating with her spir…"
    28genres: Array (3)
    29runtime: 115
    30
    31SCORE: 3.9638845920562744
    32_id: “573a13cef29313caabd873a2”
    33plot: "A man tries to solve his lover's murder by communicating with her spir…"
    34genres: Array (3)
    35runtime: 115
    36
    37SCORE: 3.526711940765381
    38_id: “573a13c3f29313caabd6a149”
    39plot: "What kind of scenes in a horror film scares you the most? When a ghost…"
    40genres: Array (2)
    41runtime: 95
    42
    43SCORE: 3.3177831172943115
    44_id: “573a1397f29313caabce7ea1”
    45plot: "Four successful elderly gentlemen, members of the Chowder Society, sha…"
    46genres: Array (3)
    47runtime: 110
    48
    49SCORE: 3.3177831172943115
    50_id: “573a13a4f29313caabd117df”
    51fullplot: "When the motorcyclist Johnny Blaze finds that his father Barton Blaze …"
    52imdb: Object
    53year: 2007
    54
    55SCORE: 3.3177831172943115
    56_id: “573a13a6f29313caabd185dc”
    57fullplot: "After discovering a passenger ship missing since 1962 floating adrift …"
    58imdb: Object
    59year: 2002

    结果中的电影文档在 plottitle 字段中包含查询词 ghost,并且不属于 Comedy 类型。Atlas Search 没有返回 plottitle 字段中包含术语 ghostComedy 类型的文档,因为这些文档没有排在前 10 的文档中,因为查询将这些文档的分数降低了 50%。

    1SCORE: 5.909613132476807
    2_id: “573a139af29313caabcefcce”
    3plot: "Adaption of the famous Oscar Wilde tale about a young American girl th…"
    4genres: Array (3)
    5runtime: 92
    6
    7SCORE: 5.367666244506836
    8_id: “573a13d8f29313caabda5dc1”
    9plot: "The Little Ghost lives in the castle over looking a small town and awa…"
    10genres: Array (2)
    11runtime: 92
    12
    13SCORE: 4.676314353942871
    14_id: “573a13c0f29313caabd6139d”
    15plot: "Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal …"
    16genres: Array (2)
    17runtime: 107
    18
    19SCORE: 3.9638845920562744
    20_id: “573a1398f29313caabcebf6f”
    21plot: "After an accident leaves a young man dead, his spirit stays behind to …"
    22genres: Array (3)
    23runtime: 127
    24
    25SCORE: 3.526711940765381
    26_id: “573a13c3f29313caabd6a149”
    27plot: "What kind of scenes in a horror film scares you the most? When a ghost…"
    28genres:Array (2)
    29runtime: 95
    30
    31SCORE: 3.5241782665252686
    32_id: “573a1398f29313caabce912c”
    33plot: "Three unemployed parapsychology professors set up shop as a unique gho…"
    34genres: Array (2)
    35runtime: 105
    36
    37SCORE: 3.5241782665252686
    38_id: “573a139cf29313caabcf5a48”
    39plot: "Casper, a ghost, teams up with Wendy, a witch, against an evil warlock…"
    40genres: Array (3)
    41runtime: 90
    42
    43SCORE: 3.4605300426483154
    44_id: “573a13bdf29313caabd58274”
    45plot: "Banku, his mother, Anjali Sharma and father move in to their new house…"
    46genres: Array (3)
    47runtime: 150
    48
    49SCORE: 3.3177831172943115
    50_id: “573a1397f29313caabce7ea1”
    51plot: "Four successful elderly gentlemen, members of the Chowder Society, sha…"
    52genres: Array (3)
    53runtime: 110
    54
    55SCORE: 3.3177831172943115
    56_id: “573a1398f29313caabcebf79”
    57plot: "Elliot Hopper is a widower with three children, he is currently workin…"
    58genres: Array (3)
    59runtime: 83

    结果中的电影文档在plottitle字段中包含查询术语ghost ,但在_id字段中没有指定的 ObjectId。 Atlas Search没有返回具有指定 ObjectsId 的文档,即使它们在title字段中包含查询术语ghost ,因为查询将这些文档的分数降低了50 %,因此,这些文档没有排在前10份文档中。

1

在终端窗口中打开mongosh并连接到集群。 有关连接的详细说明,请参阅通过mongosh连接。

2
use sample_mflix
switched to db sample_mflix
3

此查询使用以下管道阶段:

  • 搜索情节或标题(must子句)中包含一词 ghost 且不属于 comedy 类型(mustNot 子句)的电影。

  • 搜索情节或标题(must 子句)中包含一词 ghost 且属于 comedy 类型(filter 子句)的电影,但将 score 减少 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 _idtitleplotgenres 字段。

  • 添加一个名为 score 的字段,用于显示结果中的分数。

1db.movies.aggregate([
2 {
3 "$search": {
4 "index": "compound-query-custom-score-tutorial",
5 "compound": {
6 "should": [
7 {
8 "compound":{
9 "must": [
10 {
11 "text": {
12 "query": "ghost",
13 "path": ["plot","title"]
14 }
15 }
16 ],
17 "mustNot": [
18 {
19 "text": {
20 "query": "Comedy",
21 "path": ["genres"]
22 }
23 }
24 ]
25 }
26 },
27 {
28 "compound":{
29 "must":[
30 {
31 "text": {
32 "query": "ghost",
33 "path": ["plot","title"]
34 }
35 }
36 ],
37 "filter": [
38 {
39 "text": {
40 "query": "Comedy",
41 "path": ["genres"]
42 }
43 }
44 ],
45 "score": { "boost": { "value": 0.5} }
46 }
47 }
48 ]
49 }
50 }
51 },
52 {
53 "$limit": 10
54 },
55 {
56 "$project": {
57 "_id": 1,
58 "title": 1,
59 "plot": 1,
60 "genres": 1,
61 "score": { "$meta": "searchScore" }
62 }
63 }
64])
1[
2 {
3 _id: ObjectId('573a139af29313caabcefcce'),
4 plot: 'Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.',
5 genres: [ 'Family', 'Drama', 'Fantasy' ],
6 title: 'The Canterville Ghost',
7 score: 5.909613132476807
8 },
9 {
10 _id: ObjectId('573a13d8f29313caabda5dc1'),
11 plot: 'The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!',
12 genres: [ 'Family', 'Fantasy' ],
13 title: 'The Little Ghost',
14 score: 5.367666244506836
15 },
16 {
17 _id: ObjectId('573a13c0f29313caabd6139d'),
18 plot: 'Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.',
19 genres: [ 'Horror', 'Thriller' ],
20 title: 'Death of a Ghost Hunter',
21 score: 4.676314353942871
22 },
23 {
24 _id: ObjectId('573a1398f29313caabcebf6f'),
25 plot: 'After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.',
26 genres: [ 'Drama', 'Fantasy', 'Romance' ],
27 title: 'Ghost',
28 score: 3.9638845920562744
29 },
30 {
31 _id: ObjectId('573a13cdf29313caabd83c08'),
32 plot: "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.",
33 genres: [ 'Drama', 'Fantasy', 'Mystery' ],
34 title: 'Ghost',
35 score: 3.9638845920562744
36 },
37 {
38 _id: ObjectId('573a13cef29313caabd873a2'),
39 plot: "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.",
40 genres: [ 'Drama', 'Fantasy', 'Mystery' ],
41 title: 'Ghost',
42 score: 3.9638845920562744
43 },
44 {
45 _id: ObjectId('573a13c3f29313caabd6a149'),
46 plot: 'What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...',
47 genres: [ 'Horror', 'Thriller' ],
48 title: 'Coming Soon',
49 score: 3.526711940765381
50 },
51 {
52 _id: ObjectId('573a1397f29313caabce7ea1'),
53 plot: "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...",
54 genres: [ 'Drama', 'Horror', 'Thriller' ],
55 title: 'Ghost Story',
56 score: 3.3177831172943115
57 },
58 {
59 _id: ObjectId('573a13a4f29313caabd117df'),
60 plot: 'Stunt motorcyclist Johnny Blaze gives up his soul to become a hellblazing vigilante, to fight against power hungry Blackheart, the son of the devil himself.',
61 genres: [ 'Action', 'Fantasy', 'Thriller' ],
62 title: 'Ghost Rider',
63 score: 3.3177831172943115
64 },
65 {
66 _id: ObjectId('573a13a6f29313caabd185dc'),
67 plot: 'A salvage crew that discovers a long-lost 1962 passenger ship floating lifeless in a remote region of the Bering Sea soon notices, as they prepare to tow it back to land, that "strange things" happen...',
68 genres: [ 'Horror', 'Mystery' ],
69 title: 'Ghost Ship',
70 score: 3.3177831172943115
71 }
72]

结果中的电影文档在 plottitle 字段中包含查询词 ghost,并且不属于 Comedy 类型。Atlas Search 没有返回 plottitle 字段中包含术语 ghostComedy 类型的文档,因为这些文档没有排在前 10 的文档中,因为查询将这些文档的分数降低了 50%。

此查询使用以下管道阶段:

  • 搜索在情节或标题(must 子句)中包含术语 ghost 但未指定 ObjectId(mustNot 子句)的电影。

  • 搜索在情节或标题中包含 ghost 一词(must 子句)且具有指定 ObjectIds(filter 子句)的电影,但将 score 降低 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 titleplot_id 字段。

  • 添加一个名为 score 的字段,以显示结果中文档的分数。

1db.movies.aggregate([
2 {
3 "$search": {
4 "compound": {
5 "index": "compound-query-custom-score-tutorial",
6 "should": [
7 {
8 "compound": {
9 "must": [
10 {
11 "text": {
12 "query": "ghost",
13 "path": ["plot","title"]
14 }
15 }
16 ],
17 "mustNot": [
18 {
19 "in": {
20 "value": [ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2')],
21 "path": "_id"
22 }
23 }
24 ]
25 }
26 },
27 {
28 "compound": {
29 "must": [
30 {
31 "text": {
32 "query": "ghost",
33 "path": ["plot","title"]
34 }
35 }
36 ],
37 "filter": [
38 {
39 "in": {
40 "value": [ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2')],
41 "path": "_id"
42 }
43 }
44 ],
45 "score": { "boost": { "value": 0.5} }
46 }
47 }
48 ]
49 }
50 }
51 },
52 {
53 "$limit": 10
54 },
55 {
56 "$project": {
57 "_id": 1,
58 "title": 1,
59 "plot": 1,
60 "score": { "$meta": "searchScore" }
61 }
62 }
63])
1[
2 {
3 _id: ObjectId('573a139af29313caabcefcce'),
4 plot: 'Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.',
5 genres: [ 'Family', 'Drama', 'Fantasy' ],
6 title: 'The Canterville Ghost',
7 score: 5.909613132476807
8 },
9 {
10 _id: ObjectId('573a13d8f29313caabda5dc1'),
11 plot: 'The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!',
12 genres: [ 'Family', 'Fantasy' ],
13 title: 'The Little Ghost',
14 score: 5.367666244506836
15 },
16 {
17 _id: ObjectId('573a13c0f29313caabd6139d'),
18 plot: 'Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.',
19 genres: [ 'Horror', 'Thriller' ],
20 title: 'Death of a Ghost Hunter',
21 score: 4.676314353942871
22 },
23 {
24 _id: ObjectId('573a1398f29313caabcebf6f'),
25 plot: 'After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.',
26 genres: [ 'Drama', 'Fantasy', 'Romance' ],
27 title: 'Ghost',
28 score: 3.9638845920562744
29 },
30 {
31 _id: ObjectId('573a13c3f29313caabd6a149'),
32 plot: 'What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...',
33 genres: [ 'Horror', 'Thriller' ],
34 title: 'Coming Soon',
35 score: 3.526711940765381
36 },
37 {
38 _id: ObjectId('573a1398f29313caabce912c'),
39 plot: 'Three unemployed parapsychology professors set up shop as a unique ghost removal service.',
40 genres: [ 'Comedy', 'Fantasy' ],
41 title: 'Ghostbusters',
42 score: 3.5241782665252686
43 },
44 {
45 _id: ObjectId('573a139cf29313caabcf5a48'),
46 plot: 'Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.',
47 genres: [ 'Adventure', 'Comedy', 'Family' ],
48 title: 'Casper Meets Wendy',
49 score: 3.5241782665252686
50 },
51 {
52 _id: ObjectId('573a13bdf29313caabd58274'),
53 plot: 'Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...',
54 genres: [ 'Comedy', 'Drama', 'Fantasy' ],
55 title: 'Bhoothnath',
56 score: 3.4605300426483154
57 },
58 {
59 _id: ObjectId('573a1397f29313caabce7ea1'),
60 plot: "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...",
61 genres: [ 'Drama', 'Horror', 'Thriller' ],
62 title: 'Ghost Story',
63 score: 3.3177831172943115
64 },
65 {
66 _id: ObjectId('573a1398f29313caabcebf79'),
67 plot: 'Elliot Hopper is a widower with three children, he is currently working on a deal. It seems like his wife illness was very costly and this deal could put them out of the red. However he ...',
68 genres: [ 'Comedy', 'Family', 'Fantasy' ],
69 title: 'Ghost Dad',
70 score: 3.3177831172943115
71 }
72]

结果中的电影文档在plottitle字段中包含查询术语ghost ,但在_id字段中没有指定的 ObjectId。 Atlas Search没有返回具有指定 ObjectsId 的文档,即使它们在title字段中包含查询术语ghost ,因为查询将这些文档的分数降低了50 %,因此,这些文档没有排在前10份文档中。

1

打开 MongoDB Compass 并连接到您的集群。有关连接的详细说明,请参阅通过 Compass 连接。

2

Database 屏幕上,依次单击 sample_mflix 数据库和 movies 集合。

3

此查询使用以下管道阶段:

  • 搜索情节或标题(must子句)中包含一词 ghost 且不属于 comedy 类型(mustNot 子句)的电影。

  • 搜索情节或标题(must 子句)中包含一词 ghost 且属于 comedy 类型(filter 子句)的电影,但将 score 减少 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 _idtitleplotgenres 字段。

  • 添加一个名为 score 的字段,用于显示结果中的分数。

此查询使用以下管道阶段:

  • 搜索在情节或标题(must 子句)中包含术语 ghost 但未指定 ObjectId(mustNot 子句)的电影。

  • 搜索在情节或标题中包含 ghost 一词(must 子句)且具有指定 ObjectIds(filter 子句)的电影,但将 score 降低 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 titleplot_id 字段。

  • 添加一个名为 score 的字段,以显示结果中文档的分数。

若要运行此查询,请在 MongoDB Compass 中执行以下步骤:

  1. 单击 Aggregations 标签页。

  2. 单击 Select...,然后从下拉菜单中选择阶段并为该阶段添加查询,以配置以下每个管道阶段。

    提示

    单击 Add Stage 以添加其他阶段。

    管道阶段
    查询

    $search

    {
    "index": "compound-query-custom-score-tutorial",
    "compound": {
    "should": [
    {
    "compound":{
    "must": [
    {
    "text": {
    "query": "ghost",
    "path": ["plot","title"]
    }
    }
    ],
    "mustNot": [
    {
    "text": {
    "query": "Comedy",
    "path": ["genres"]
    }
    }
    ]
    }
    },
    {
    "compound":{
    "must":[
    {
    "text": {
    "query": "ghost",
    "path": ["plot","title"]
    }
    }
    ],
    "filter": [
    {
    "text": {
    "query": "Comedy",
    "path": ["genres"]
    }
    }
    ],
    "score": { "boost": { "value": 0.5} }
    }
    }
    ]
    }
    }

    $limit

    10

    $project

    {
    "_id": 1,
    "title": 1,
    "plot": 1,
    "genres": 1,
    "score": { "$meta": "searchScore" }
    }

    如果已启用 Auto Preview,则 MongoDB Compass 将在 $project 管道阶段旁边显示以下文档:

    1_id: ObjectId('573a139af29313caabcefcce'),
    2plot: 'Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.',
    3genres: [ 'Family', 'Drama', 'Fantasy' ],
    4title: 'The Canterville Ghost',
    5score: 5.909613132476807
    6
    7_id: ObjectId('573a13d8f29313caabda5dc1'),
    8plot: 'The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!',
    9genres: [ 'Family', 'Fantasy' ],
    10title: 'The Little Ghost',
    11score: 5.367666244506836
    12
    13_id: ObjectId('573a13c0f29313caabd6139d'),
    14plot: 'Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.',
    15genres: [ 'Horror', 'Thriller' ],
    16title: 'Death of a Ghost Hunter',
    17score: 4.676314353942871
    18
    19_id: ObjectId('573a1398f29313caabcebf6f'),
    20plot: 'After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.',
    21genres: [ 'Drama', 'Fantasy', 'Romance' ],
    22title: 'Ghost',
    23score: 3.9638845920562744
    24
    25_id: ObjectId('573a13cdf29313caabd83c08'),
    26plot: "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.",
    27genres: [ 'Drama', 'Fantasy', 'Mystery' ],
    28title: 'Ghost',
    29score: 3.9638845920562744
    30
    31_id: ObjectId('573a13cef29313caabd873a2'),
    32plot: "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.",
    33genres: [ 'Drama', 'Fantasy', 'Mystery' ],
    34title: 'Ghost',
    35score: 3.9638845920562744
    36
    37_id: ObjectId('573a13c3f29313caabd6a149'),
    38plot: 'What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...',
    39genres: [ 'Horror', 'Thriller' ],
    40title: 'Coming Soon',
    41score: 3.526711940765381
    42
    43_id: ObjectId('573a1397f29313caabce7ea1'),
    44plot: "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...",
    45genres: [ 'Drama', 'Horror', 'Thriller' ],
    46title: 'Ghost Story',
    47score: 3.3177831172943115
    48
    49_id: ObjectId('573a13a4f29313caabd117df'),
    50plot: 'Stunt motorcyclist Johnny Blaze gives up his soul to become a hellblazing vigilante, to fight against power hungry Blackheart, the son of the devil himself.',
    51genres: [ 'Action', 'Fantasy', 'Thriller' ],
    52title: 'Ghost Rider',
    53score: 3.3177831172943115
    54
    55_id: ObjectId('573a13a6f29313caabd185dc'),
    56plot: 'A salvage crew that discovers a long-lost 1962 passenger ship floating lifeless in a remote region of the Bering Sea soon notices, as they prepare to tow it back to land, that "strange things" happen...',
    57genres: [ 'Horror', 'Mystery' ],
    58title: 'Ghost Ship',
    59score: 3.3177831172943115

    结果中的电影文档在 plottitle 字段中包含查询词 ghost,并且不属于 Comedy 类型。Atlas Search 没有返回 plottitle 字段中包含术语 ghostComedy 类型的文档,因为这些文档没有排在前 10 的文档中,因为查询将这些文档的分数降低了 50%。

    管道阶段
    查询

    $search

    {
    "index": "compound-query-custom-score-tutorial",
    "compound": {
    "should": [
    {
    "compound":{
    "must": [
    {
    "text": {
    "query": "ghost",
    "path": ["plot","title"]
    }
    }
    ],
    "mustNot": [
    {
    "in": {
    "value": [ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2')],
    "path": "_id"
    }
    }
    ]
    }
    },
    {
    "compound":{
    "must":[
    {
    "text": {
    "query": "ghost",
    "path": ["plot","title"]
    }
    }
    ],
    "filter": [
    {
    "in": {
    "value": [ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2')],
    "path": "_id"
    }
    }
    ],
    "score": { "boost": { "value": 0.5} }
    }
    }
    ]
    }
    }

    $limit

    10

    $project

    {
    "_id": 1,
    "title": 1,
    "plot": 1,
    "score": { "$meta": "searchScore" }
    }

    如果已启用 Auto Preview,则 MongoDB Compass 将在 $project 管道阶段旁边显示以下文档:

    1_id: ObjectId('573a139af29313caabcefcce'),
    2plot: 'Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.',
    3title: 'The Canterville Ghost',
    4score: 5.909613132476807
    5
    6_id: ObjectId('573a13d8f29313caabda5dc1'),
    7plot: 'The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!',
    8title: 'The Little Ghost',
    9score: 5.367666244506836
    10
    11_id: ObjectId('573a13c0f29313caabd6139d'),
    12plot: 'Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.',
    13title: 'Death of a Ghost Hunter',
    14score: 4.676314353942871
    15
    16_id: ObjectId('573a1398f29313caabcebf6f'),
    17plot: 'After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.',
    18title: 'Ghost',
    19score: 3.9638845920562744
    20
    21_id: ObjectId('573a13c3f29313caabd6a149'),
    22plot: 'What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...',
    23title: 'Coming Soon',
    24score: 3.526711940765381
    25
    26_id: ObjectId('573a1398f29313caabce912c'),
    27plot: 'Three unemployed parapsychology professors set up shop as a unique ghost removal service.',
    28title: 'Ghostbusters',
    29score: 3.5241782665252686
    30
    31_id: ObjectId('573a139cf29313caabcf5a48'),
    32plot: 'Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.',
    33title: 'Casper Meets Wendy',
    34score: 3.5241782665252686
    35
    36_id: ObjectId('573a13bdf29313caabd58274'),
    37plot: 'Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...',
    38title: 'Bhoothnath',
    39score: 3.4605300426483154
    40
    41_id: ObjectId('573a1397f29313caabce7ea1'),
    42plot: "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...",
    43title: 'Ghost Story',
    44score: 3.3177831172943115
    45
    46_id: ObjectId('573a1398f29313caabcebf79'),
    47plot: 'Elliot Hopper is a widower with three children, he is currently working on a deal. It seems like his wife illness was very costly and this deal could put them out of the red. However he ...',
    48title: 'Ghost Dad',
    49score: 3.3177831172943115

    结果中的电影文档在plottitle字段中包含查询术语ghost ,但在_id字段中没有指定的 ObjectId。 Atlas Search没有返回具有指定 ObjectsId 的文档,即使它们在title字段中包含查询术语ghost ,因为查询将这些文档的分数降低了50 %,因此,这些文档没有排在前10份文档中。

1
  1. 创建一个名为 compound-bury-results 的新目录,并使用 dotnet new 命令初始化项目。

    mkdir compound-bury-results
    cd compound-bury-results
    dotnet new console
  2. 将 .NET/C# 驱动程序作为依赖项添加到项目中。

    dotnet add package MongoDB.Driver
2

此查询使用以下管道阶段:

  • 搜索情节或标题(must子句)中包含一词 ghost 且不属于 comedy 类型(mustNot 子句)的电影。

  • 搜索情节或标题(must 子句)中包含一词 ghost 且属于 comedy 类型(filter 子句)的电影,但将 score 减少 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 _idtitleplotgenres 字段。

  • 添加一个名为 score 的字段,用于显示结果中的分数。

1using MongoDB.Bson;
2using MongoDB.Bson.Serialization.Attributes;
3using MongoDB.Bson.Serialization.Conventions;
4using MongoDB.Driver;
5using MongoDB.Driver.Search;
6
7public class BuryGenreCompoundExample
8{
9 private const string MongoConnectionString = "<connection-string>";
10
11 public static void Main(string[] args)
12 {
13 // allow automapping of the camelCase database fields to our MovieDocument
14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
16
17 // connect to your Atlas cluster
18 var mongoClient = new MongoClient(MongoConnectionString);
19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix");
20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies");
21
22 // define and run pipeline
23 var results = moviesCollection.Aggregate()
24 .Search(Builders<MovieDocument>.Search.Compound()
25 .Should(Builders<MovieDocument>.Search.Compound()
26 .Must(Builders<MovieDocument>.Search.Text(
27 Builders<MovieDocument>.SearchPath.Multi(movie => movie.Title, movie => movie.Plot), "ghost"))
28 .MustNot(Builders<MovieDocument>.Search.Text(movie => movie.Genres, "Comedy"))
29 )
30 .Should(Builders<MovieDocument>.Search.Compound()
31 .Must(Builders<MovieDocument>.Search.Text(
32 Builders<MovieDocument>.SearchPath.Multi(movie => movie.Title, movie => movie.Plot), "ghost"))
33 .Filter(Builders<MovieDocument>.Search.Text(movie => movie.Genres, "Comedy", score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(0.5)))
34 ),
35 indexName: "compound-query-custom-score-tutorial")
36 .Project<MovieDocument>(Builders<MovieDocument>.Projection
37 .Include(movie => movie.Plot)
38 .Include(movie => movie.Title)
39 .Include(movie => movie.Id)
40 .Include(movie => movie.Genres)
41 .MetaSearchScore("score"))
42 .Limit(10)
43 .ToList();
44
45 // print results
46 foreach (var movie in results)
47 {
48 Console.WriteLine(movie.ToJson());
49 }
50 }
51}
52
53[BsonIgnoreExtraElements]
54public class MovieDocument
55{
56 [BsonIgnoreIfDefault]
57 public ObjectId Id { get; set; }
58 public string Plot { get; set; }
59 public string Title { get; set; }
60 public string[] Genres { get; set; }
61 public double Score { get; set; }
62}

此查询使用以下管道阶段:

  • 搜索在情节或标题(must 子句)中包含术语 ghost 但未指定 ObjectId(mustNot 子句)的电影。

  • 搜索在情节或标题中包含 ghost 一词(must 子句)且具有指定 ObjectIds(filter 子句)的电影,但将 score 降低 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 titleplot_id 字段。

  • 添加一个名为 score 的字段,以显示结果中文档的分数。

1using MongoDB.Bson;
2using MongoDB.Bson.Serialization.Attributes;
3using MongoDB.Bson.Serialization.Conventions;
4using MongoDB.Driver;
5using MongoDB.Driver.Search;
6
7public class BuryDocumentCompoundExample
8{
9 private const string MongoConnectionString = "<connection-string>";
10
11 public static void Main(string[] args)
12 {
13 // allow automapping of the camelCase database fields to our MovieDocument
14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
16
17 // connect to your Atlas cluster
18 var mongoClient = new MongoClient(MongoConnectionString);
19 var mflixDatabase = mongoClient.GetDatabase("sample_mflix");
20 var moviesCollection = mflixDatabase.GetCollection<MovieDocument>("movies");
21
22 string id1 = "573a13cef29313caabd873a2";
23 string id2 = "573a13cdf29313caabd83c08";
24
25 // define and run pipeline
26 var results = moviesCollection.Aggregate()
27 .Search(Builders<MovieDocument>.Search.Compound()
28 .Should(Builders<MovieDocument>.Search.Compound()
29 .Must(Builders<MovieDocument>.Search.Text(
30 Builders<MovieDocument>.SearchPath.Multi(movie => movie.Title, movie => movie.Plot), "ghost"))
31 .MustNot(Builders<MovieDocument>.Search.In(movie => movie.Id, new[] {ObjectId.Parse(id1), ObjectId.Parse(id2)}))
32 )
33 .Should(Builders<MovieDocument>.Search.Compound()
34 .Must(Builders<MovieDocument>.Search.Text(
35 Builders<MovieDocument>.SearchPath.Multi(movie => movie.Title, movie => movie.Plot), "ghost"))
36 .Filter(Builders<MovieDocument>.Search.In(movie => movie.Id, new[] {ObjectId.Parse(id1), ObjectId.Parse(id2)}, score: new SearchScoreDefinitionBuilder<MovieDocument>().Boost(0.5)))
37 ),
38 indexName: "compound-query-custom-score-tutorial")
39 .Project<MovieDocument>(Builders<MovieDocument>.Projection
40 .Include(movie => movie.Plot)
41 .Include(movie => movie.Title)
42 .Include(movie => movie.Id)
43 .MetaSearchScore("score"))
44 .Limit(10)
45 .ToList();
46
47 // print results
48 foreach (var movie in results)
49 {
50 Console.WriteLine(movie.ToJson());
51 }
52 }
53}
54
55[BsonIgnoreExtraElements]
56public class MovieDocument
57{
58 [BsonIgnoreIfDefault]
59 public ObjectId Id { get; set; }
60 public string Plot { get; set; }
61 public string Title { get; set; }
62 public double Score { get; set; }
63}
3

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

4
dotnet run compound-bury-results.csproj
{ "_id" : ObjectId("573a139af29313caabcefcce"), "plot" : "Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.", "title" : "The Canterville Ghost", "genres" : ["Family", "Drama", "Fantasy"], "score" : 5.9096131324768066 }
{ "_id" : ObjectId("573a13d8f29313caabda5dc1"), "plot" : "The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!", "title" : "The Little Ghost", "genres" : ["Family", "Fantasy"], "score" : 5.3676662445068359 }
{ "_id" : ObjectId("573a13c0f29313caabd6139d"), "plot" : "Renowned \"ghost hunter\", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.", "title" : "Death of a Ghost Hunter", "genres" : ["Horror", "Thriller"], "score" : 4.6763143539428711 }
{ "_id" : ObjectId("573a1398f29313caabcebf6f"), "plot" : "After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.", "title" : "Ghost", "genres" : ["Drama", "Fantasy", "Romance"], "score" : 3.9638845920562744 }
{ "_id" : ObjectId("573a13cdf29313caabd83c08"), "plot" : "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", "title" : "Ghost", "genres" : ["Drama", "Fantasy", "Mystery"], "score" : 3.9638845920562744 }
{ "_id" : ObjectId("573a13cef29313caabd873a2"), "plot" : "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", "title" : "Ghost", "genres" : ["Drama", "Fantasy", "Mystery"], "score" : 3.9638845920562744 }
{ "_id" : ObjectId("573a13c3f29313caabd6a149"), "plot" : "What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...", "title" : "Coming Soon", "genres" : ["Horror", "Thriller"], "score" : 3.5267119407653809 }
{ "_id" : ObjectId("573a1398f29313caabce912c"), "plot" : "Three unemployed parapsychology professors set up shop as a unique ghost removal service.", "title" : "Ghostbusters", "genres" : ["Comedy", "Fantasy"], "score" : 3.5241782665252686 }
{ "_id" : ObjectId("573a139cf29313caabcf5a48"), "plot" : "Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.", "title" : "Casper Meets Wendy", "genres" : ["Adventure", "Comedy", "Family"], "score" : 3.5241782665252686 }
{ "_id" : ObjectId("573a13bdf29313caabd58274"), "plot" : "Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...", "title" : "Bhoothnath", "genres" : ["Comedy", "Drama", "Fantasy"], "score" : 3.4605300426483154 }

结果中的电影文档在 plottitle 字段中包含查询词 ghost,并且不属于 Comedy 类型。Atlas Search 没有返回 plottitle 字段中包含术语 ghostComedy 类型的文档,因为这些文档没有排在前 10 的文档中,因为查询将这些文档的分数降低了 50%。

dotnet run compound-bury-results.csproj
{ "_id" : ObjectId("573a139af29313caabcefcce"), "plot" : "Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.", "title" : "The Canterville Ghost", "score" : 5.9096131324768066 }
{ "_id" : ObjectId("573a13d8f29313caabda5dc1"), "plot" : "The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!", "title" : "The Little Ghost", "score" : 5.3676662445068359 }
{ "_id" : ObjectId("573a13c0f29313caabd6139d"), "plot" : "Renowned \"ghost hunter\", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.", "title" : "Death of a Ghost Hunter", "score" : 4.6763143539428711 }
{ "_id" : ObjectId("573a1398f29313caabcebf6f"), "plot" : "After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.", "title" : "Ghost", "score" : 3.9638845920562744 }
{ "_id" : ObjectId("573a13cdf29313caabd83c08"), "plot" : "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", "title" : "Ghost", "score" : 3.9638845920562744 }
{ "_id" : ObjectId("573a13cef29313caabd873a2"), "plot" : "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", "title" : "Ghost", "score" : 3.9638845920562744 }
{ "_id" : ObjectId("573a13c3f29313caabd6a149"), "plot" : "What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...", "title" : "Coming Soon", "score" : 3.5267119407653809 }
{ "_id" : ObjectId("573a1398f29313caabce912c"), "plot" : "Three unemployed parapsychology professors set up shop as a unique ghost removal service.", "title" : "Ghostbusters", "score" : 3.5241782665252686 }
{ "_id" : ObjectId("573a139cf29313caabcf5a48"), "plot" : "Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.", "title" : "Casper Meets Wendy", "score" : 3.5241782665252686 }
{ "_id" : ObjectId("573a13bdf29313caabd58274"), "plot" : "Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...", "title" : "Bhoothnath", "score" : 3.4605300426483154 }

结果中的电影文档在plottitle字段中包含查询术语ghost ,但在_id字段中没有指定的 ObjectId。 Atlas Search没有返回具有指定 ObjectsId 的文档,即使它们在title字段中包含查询术语ghost ,因为查询将这些文档的分数降低了50 %,因此,这些文档没有排在前10份文档中。

1
2

此查询使用以下管道阶段:

  • 搜索情节或标题(must子句)中包含一词 ghost 且不属于 comedy 类型(mustNot 子句)的电影。

  • 搜索情节或标题(must 子句)中包含一词 ghost 且属于 comedy 类型(filter 子句)的电影,但将 score 减少 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 _idtitleplotgenres 字段。

  • 添加一个名为 score 的字段,用于显示结果中的分数。

1package main
2
3import (
4 "context"
5 "fmt"
6 "time"
7
8 "go.mongodb.org/mongo-driver/bson"
9 "go.mongodb.org/mongo-driver/mongo"
10 "go.mongodb.org/mongo-driver/mongo/options"
11)
12
13// define structure of movies collection
14type MovieCollection struct {
15 title string `bson:"Title,omitempty"`
16 plot string `bson:"Plot,omitempty"`
17}
18
19func main() {
20 var err error
21 // connect to the Atlas cluster
22 ctx := context.Background()
23 client, err := mongo.Connect(ctx, options.Client().ApplyURI("<connection-string>"))
24 if err != nil {
25 panic(err)
26 }
27 defer client.Disconnect(ctx)
28 // set namespace
29 collection := client.Database("sample_mflix").Collection("movies")
30 // define pipeline
31 searchStage := bson.D{{"$search", bson.D{
32 {"index", "compound-query-custom-score-tutorial"},
33 {"compound", bson.D{
34 {"should", bson.A{
35 bson.D{{"compound", bson.D{
36 {"must", bson.A{
37 bson.D{{"text", bson.D{
38 {"query", "ghost"},
39 {"path", bson.A{ "plot", "title" }},
40 }}},
41 }},
42 {"mustNot", bson.A{
43 bson.D{{"text", bson.D{
44 {"query", "Comedy"},
45 {"path", bson.A{ "genres" }},
46 }}},
47 }},
48 }}},
49 bson.D{{"compound", bson.D{
50 {"must", bson.A{
51 bson.D{{"text", bson.D{
52 {"query", "ghost"},
53 {"path", bson.A{ "plot", "title" }},
54 }}},
55 }},
56 {"filter", bson.A{
57 bson.D{{"text", bson.D{
58 {"query", "Comedy"},
59 {"path", bson.A{ "genres" }},
60 }}},
61 }},
62 {"score", bson.D{{"boost", bson.D{{"value", 0.5}}}}},
63 }}},
64 }},
65 }},
66 }}}
67 limitStage := bson.D{{"$limit", 10}}
68 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"plot", 1}, {"_id", 0}, {"genres", 1}, {"score", bson.D{{"$meta", "searchScore"}}}}}}
69 // specify the amount of time the operation can run on the server
70 opts := options.Aggregate().SetMaxTime(5 * time.Second)
71 // run pipeline
72 cursor, err := collection.Aggregate(ctx, mongo.Pipeline{searchStage, limitStage, projectStage}, opts)
73 if err != nil {
74 panic(err)
75 }
76 // print results
77 var results []bson.D
78 if err = cursor.All(context.TODO(), &results); err != nil {
79 panic(err)
80 }
81 for _, result := range results {
82 fmt.Println(result)
83 }
84}

此查询使用以下管道阶段:

  • 搜索在情节或标题(must 子句)中包含术语 ghost 但未指定 ObjectId(mustNot 子句)的电影。

  • 搜索在情节或标题中包含 ghost 一词(must 子句)且具有指定 ObjectIds(filter 子句)的电影,但将 score 降低 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 titleplot_id 字段。

  • 添加一个名为 score 的字段,以显示结果中文档的分数。

1package main
2
3import (
4 "context"
5 "fmt"
6 "time"
7 "log"
8
9 "go.mongodb.org/mongo-driver/bson"
10 "go.mongodb.org/mongo-driver/mongo"
11 "go.mongodb.org/mongo-driver/mongo/options"
12 "go.mongodb.org/mongo-driver/bson/primitive"
13)
14
15// define structure of movies collection
16type MovieCollection struct {
17 title string `bson:"Title,omitempty"`
18 plot string `bson:"Plot,omitempty"`
19}
20
21func main() {
22 var err error
23 // connect to the Atlas cluster
24 ctx := context.Background()
25 client, err := mongo.Connect(ctx, options.Client().ApplyURI("<connection-string>"))
26 if err != nil {
27 panic(err)
28 }
29 defer client.Disconnect(ctx)
30 // set namespace
31 collection := client.Database("sample_mflix").Collection("movies")
32 // define variable
33 var objectIDFromHex = func(hex string) primitive.ObjectID {
34 objectID, err := primitive.ObjectIDFromHex(hex)
35 if err != nil {
36 log.Fatal(err)
37 }
38 return objectID
39 }
40 // define pipeline
41 searchStage := bson.D{{"$search", bson.D{
42 {"index", "compound-query-custom-score-tutorial"},
43 {"compound", bson.D{
44 {"should", bson.A{
45 bson.D{{"compound", bson.D{
46 {"must", bson.A{
47 bson.D{{"text", bson.D{
48 {"query", "ghost"},
49 {"path", bson.A{ "plot", "title" }},
50 }}},
51 }},
52 {"mustNot", bson.A{
53 bson.D{{"in", bson.D{
54 {"value", bson.A{objectIDFromHex("573a13cdf29313caabd83c08"), objectIDFromHex("573a13cef29313caabd873a2") }},
55 {"path", "_id"},
56 }}},
57 }},
58 }}},
59 bson.D{{"compound", bson.D{
60 {"must", bson.A{
61 bson.D{{"text", bson.D{
62 {"query", "ghost"},
63 {"path", bson.A{ "plot", "title" }},
64 }}},
65 }},
66 {"filter", bson.A{
67 bson.D{{"in", bson.D{
68 {"value", bson.A{ objectIDFromHex("573a13cdf29313caabd83c08"), objectIDFromHex("573a13cef29313caabd873a2")}},
69 {"path", "_id"},
70 }}},
71 }},
72 {"score", bson.D{{"boost", bson.D{{"value", 0.5}}}}},
73 }}},
74 }},
75 }},
76 }}}
77
78 limitStage := bson.D{{"$limit", 10}}
79 projectStage := bson.D{{"$project", bson.D{{"title", 1}, {"plot", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}}}}
80 // specify the amount of time the operation can run on the server
81 opts := options.Aggregate().SetMaxTime(5 * time.Second)
82 // run pipeline
83 cursor, err := collection.Aggregate(ctx, mongo.Pipeline{searchStage, limitStage, projectStage}, opts)
84 if err != nil {
85 panic(err)
86 }
87 // print results
88 var results []bson.D
89 if err = cursor.All(context.TODO(), &results); err != nil {
90 panic(err)
91 }
92 for _, result := range results {
93 fmt.Println(result)
94 }
95}
3

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

4
go run compound-bury-results.go
[{plot Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.} {genres [Family Drama Fantasy]} {title The Canterville Ghost} {score 5.909613132476807}]
[{plot The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!} {genres [Family Fantasy]} {title The Little Ghost} {score 5.367666244506836}]
[{plot Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.} {genres [Horror Thriller]} {title Death of a Ghost Hunter} {score 4.676314353942871}]
[{plot After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.} {genres [Drama Fantasy Romance]} {title Ghost} {score 3.9638845920562744}]
[{plot A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.} {genres [Drama Fantasy Mystery]} {title Ghost} {score 3.9638845920562744}]
[{plot A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.} {genres [Drama Fantasy Mystery]} {title Ghost} {score 3.9638845920562744}]
[{plot What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...} {genres [Horror Thriller]} {title Coming Soon} {score 3.526711940765381}]
[{plot Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...} {genres [Drama Horror Thriller]} {title Ghost Story} {score 3.3177831172943115}]
[{plot Stunt motorcyclist Johnny Blaze gives up his soul to become a hellblazing vigilante, to fight against power hungry Blackheart, the son of the devil himself.} {genres [Action Fantasy Thriller]} {title Ghost Rider} {score 3.3177831172943115}]
[{plot A salvage crew that discovers a long-lost 1962 passenger ship floating lifeless in a remote region of the Bering Sea soon notices, as they prepare to tow it back to land, that "strange things" happen...} {genres [Horror Mystery]} {title Ghost Ship} {score 3.3177831172943115}]

结果中的电影文档在 plottitle 字段中包含查询词 ghost,并且不属于 Comedy 类型。Atlas Search 没有返回 plottitle 字段中包含术语 ghostComedy 类型的文档,因为这些文档没有排在前 10 的文档中,因为查询将这些文档的分数降低了 50%。

go run compound-bury-results.go
[{plot Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.} {title The Canterville Ghost} {score 5.909613132476807}]
[{plot The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!} {title The Little Ghost} {score 5.367666244506836}]
[{plot Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.} {title Death of a Ghost Hunter} {score 4.676314353942871}]
[{plot After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.} {title Ghost} {score 3.9638845920562744}]
[{plot What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...} {title Coming Soon} {score 3.526711940765381}]
[{plot Three unemployed parapsychology professors set up shop as a unique ghost removal service.} {title Ghostbusters} {score 3.5241782665252686}]
[{plot Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.} {title Casper Meets Wendy} {score 3.5241782665252686}]
[{plot Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...} {title Bhoothnath} {score 3.4605300426483154}]
[{plot Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...} {title Ghost Story} {score 3.3177831172943115}]
[{plot Elliot Hopper is a widower with three children, he is currently working on a deal. It seems like his wife illness was very costly and this deal could put them out of the red. However he ...} {title Ghost Dad} {score 3.3177831172943115}]

结果中的电影文档在plottitle字段中包含查询术语ghost ,但在_id字段中没有指定的 ObjectId。 Atlas Search没有返回具有指定 ObjectsId 的文档,即使它们在title字段中包含查询术语ghost ,因为查询将这些文档的分数降低了50 %,因此,这些文档没有排在前10份文档中。

1

junit

4.11 或更高版本

mongodb-driver-sync

4.3.0 或更高版本

slf4j-log4j12

1.7.30 或更高版本

2
3

此查询使用以下管道阶段:

  • 搜索情节或标题(must子句)中包含一词 ghost 且不属于 comedy 类型(mustNot 子句)的电影。

  • 搜索情节或标题(must 子句)中包含一词 ghost 且属于 comedy 类型(filter 子句)的电影,但将 score 减少 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 _idtitleplotgenres 字段。

  • 添加一个名为 score 的字段,用于显示结果中的分数。

1import java.util.Arrays;
2import static com.mongodb.client.model.Aggregates.limit;
3import static com.mongodb.client.model.Aggregates.project;
4import static com.mongodb.client.model.Projections.*;
5import com.mongodb.client.MongoClient;
6import com.mongodb.client.MongoClients;
7import com.mongodb.client.MongoCollection;
8import com.mongodb.client.MongoDatabase;
9
10import org.bson.Document;
11
12public class CompoundBuryQuery {
13 public static void main( String[] args ) {
14 // define query
15 Document agg =
16 new Document("$search",
17 new Document("index", "compound-query-custom-score-tutorial")
18 .append("compound",
19 new Document("should", Arrays.asList(new Document("compound",
20 new Document("must", Arrays.asList(new Document("text",
21 new Document("query", "ghost")
22 .append("path", Arrays.asList("plot", "title")))))
23 .append("mustNot", Arrays.asList(new Document("text",
24 new Document("query", "Comedy")
25 .append("path", Arrays.asList("genres")))))
26 ),
27 new Document("compound",
28 new Document("must", Arrays.asList(new Document("text",
29 new Document("query", "ghost")
30 .append("path", Arrays.asList("plot", "title")))))
31 .append("filter", Arrays.asList(new Document("text",
32 new Document("query", "Comedy")
33 .append("path", Arrays.asList("genres")))))
34 .append("score", new Document("boost",
35 new Document("value", 0.5d))))))
36 )
37 );
38 // specify connection
39 String uri = "<connection-string>";
40 // establish connection and set namespace
41 try (MongoClient mongoClient = MongoClients.create(uri)) {
42 MongoDatabase database = mongoClient.getDatabase("sample_mflix");
43 MongoCollection<Document> collection = database.getCollection("movies");
44 // run query and print results
45 collection.aggregate(Arrays.asList(agg,
46 limit(10),
47 project(fields(
48 include("title", "plot", "genres", "_id"),
49 computed("score", new Document("$meta", "searchScore"))))))
50 .forEach(doc -> System.out.println(doc.toJson()));
51 }
52 }
53}

此查询使用以下管道阶段:

  • 搜索在情节或标题(must 子句)中包含术语 ghost 但未指定 ObjectId(mustNot 子句)的电影。

  • 搜索在情节或标题中包含 ghost 一词(must 子句)且具有指定 ObjectIds(filter 子句)的电影,但将 score 降低 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 titleplot_id 字段。

  • 添加一个名为 score 的字段,以显示结果中文档的分数。

1import java.util.Arrays;
2import static com.mongodb.client.model.Aggregates.limit;
3import static com.mongodb.client.model.Aggregates.project;
4import static com.mongodb.client.model.Projections.*;
5import com.mongodb.client.MongoClient;
6import com.mongodb.client.MongoClients;
7import com.mongodb.client.MongoCollection;
8import com.mongodb.client.MongoDatabase;
9import org.bson.types.ObjectId;
10
11import org.bson.Document;
12
13public class CompoundBuryQuery {
14 public static void main( String[] args ) {
15 // define query
16 Document agg =
17 new Document("$search",
18 new Document("index", "compound-query-custom-score-tutorial")
19 .append("compound",
20 new Document("should", Arrays.asList(
21 new Document("compound",
22 new Document("must", Arrays.asList(new Document("text",
23 new Document("query", "ghost")
24 .append("path", Arrays.asList("plot", "title")))))
25 .append("mustNot", Arrays.asList(new Document("in",
26 new Document("value", Arrays.asList(new ObjectId("573a13cdf29313caabd83c08"),
27 new ObjectId("573a13cef29313caabd873a2")))
28 .append("path", "_id"))))),
29 new Document("compound",
30 new Document("must", Arrays.asList(new Document("text",
31 new Document("query", "ghost")
32 .append("path", Arrays.asList("plot", "title")))))
33 .append("filter", Arrays.asList(new Document("in",
34 new Document("value", Arrays.asList(new ObjectId("573a13cdf29313caabd83c08"),
35 new ObjectId("573a13cef29313caabd873a2")))
36 .append("path", "_id"))))
37 .append("score", new Document("boost",
38 new Document("value", 0.5d)))))
39 )
40 )
41 );
42 // specify connection
43 String uri = "<connection-string>";
44 // establish connection and set namespace
45 try (MongoClient mongoClient = MongoClients.create(uri)) {
46 MongoDatabase database = mongoClient.getDatabase("sample_mflix");
47 MongoCollection<Document> collection = database.getCollection("movies");
48 // run query and print results
49 collection.aggregate(Arrays.asList(agg,
50 limit(10),
51 project(fields(
52 include("title", "plot", "_id"),
53 computed("score", new Document("$meta", "searchScore"))))))
54 .forEach(doc -> System.out.println(doc.toJson()));
55 }
56 }
57}
4

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

5
javac CompoundBuryQuery.java
{"_id": {"$oid": "573a139af29313caabcefcce"}, "plot": "Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.", "genres": ["Family", "Drama", "Fantasy"], "title": "The Canterville Ghost", "score": 5.909613132476807}
{"_id": {"$oid": "573a13d8f29313caabda5dc1"}, "plot": "The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!", "genres": ["Family", "Fantasy"], "title": "The Little Ghost", "score": 5.367666244506836}
{"_id": {"$oid": "573a13c0f29313caabd6139d"}, "plot": "Renowned \"ghost hunter\", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.", "genres": ["Horror", "Thriller"], "title": "Death of a Ghost Hunter", "score": 4.676314353942871}
{"_id": {"$oid": "573a1398f29313caabcebf6f"}, "plot": "After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.", "genres": ["Drama", "Fantasy", "Romance"], "title": "Ghost", "score": 3.9638845920562744}
{"_id": {"$oid": "573a13cdf29313caabd83c08"}, "plot": "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", "genres": ["Drama", "Fantasy", "Mystery"], "title": "Ghost", "score": 3.9638845920562744}
{"_id": {"$oid": "573a13cef29313caabd873a2"}, "plot": "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", "genres": ["Drama", "Fantasy", "Mystery"], "title": "Ghost", "score": 3.9638845920562744}
{"_id": {"$oid": "573a13c3f29313caabd6a149"}, "plot": "What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...", "genres": ["Horror", "Thriller"], "title": "Coming Soon", "score": 3.526711940765381}
{"_id": {"$oid": "573a1397f29313caabce7ea1"}, "plot": "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...", "genres": ["Drama", "Horror", "Thriller"], "title": "Ghost Story", "score": 3.3177831172943115}
{"_id": {"$oid": "573a13a4f29313caabd117df"}, "plot": "Stunt motorcyclist Johnny Blaze gives up his soul to become a hellblazing vigilante, to fight against power hungry Blackheart, the son of the devil himself.", "genres": ["Action", "Fantasy", "Thriller"], "title": "Ghost Rider", "score": 3.3177831172943115}
{"_id": {"$oid": "573a13a6f29313caabd185dc"}, "plot": "A salvage crew that discovers a long-lost 1962 passenger ship floating lifeless in a remote region of the Bering Sea soon notices, as they prepare to tow it back to land, that \"strange things\" happen...", "genres": ["Horror", "Mystery"], "title": "Ghost Ship", "score": 3.3177831172943115}

结果中的电影文档在 plottitle 字段中包含查询词 ghost,并且不属于 Comedy 类型。Atlas Search 没有返回 plottitle 字段中包含术语 ghostComedy 类型的文档,因为这些文档没有排在前 10 的文档中,因为查询将这些文档的分数降低了 50%。

javac CompoundBuryQuery.java
{"_id": {"$oid": "573a139af29313caabcefcce"}, "plot": "Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.", "title": "The Canterville Ghost", "score": 5.909613132476807}
{"_id": {"$oid": "573a13d8f29313caabda5dc1"}, "plot": "The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!", "title": "The Little Ghost", "score": 5.367666244506836}
{"_id": {"$oid": "573a13c0f29313caabd6139d"}, "plot": "Renowned \"ghost hunter\", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.", "title": "Death of a Ghost Hunter", "score": 4.676314353942871}
{"_id": {"$oid": "573a1398f29313caabcebf6f"}, "plot": "After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.", "title": "Ghost", "score": 3.9638845920562744}
{"_id": {"$oid": "573a13c3f29313caabd6a149"}, "plot": "What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...", "title": "Coming Soon", "score": 3.526711940765381}
{"_id": {"$oid": "573a1398f29313caabce912c"}, "plot": "Three unemployed parapsychology professors set up shop as a unique ghost removal service.", "title": "Ghostbusters", "score": 3.5241782665252686}
{"_id": {"$oid": "573a139cf29313caabcf5a48"}, "plot": "Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.", "title": "Casper Meets Wendy", "score": 3.5241782665252686}
{"_id": {"$oid": "573a13bdf29313caabd58274"}, "plot": "Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...", "title": "Bhoothnath", "score": 3.4605300426483154}
{"_id": {"$oid": "573a1397f29313caabce7ea1"}, "plot": "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...", "title": "Ghost Story", "score": 3.3177831172943115}
{"_id": {"$oid": "573a1398f29313caabcebf79"}, "plot": "Elliot Hopper is a widower with three children, he is currently working on a deal. It seems like his wife illness was very costly and this deal could put them out of the red. However he ...", "title": "Ghost Dad", "score": 3.3177831172943115}

结果中的电影文档在plottitle字段中包含查询术语ghost ,但在_id字段中没有指定的 ObjectId。 Atlas Search没有返回具有指定 ObjectsId 的文档,即使它们在title字段中包含查询术语ghost ,因为查询将这些文档的分数降低了50 %,因此,这些文档没有排在前10份文档中。

1

mongodb-driver-kotlin-coroutine

4.10.0 或更高版本

2
3

此查询使用以下管道阶段:

  • 搜索情节或标题(must子句)中包含一词 ghost 且不属于 comedy 类型(mustNot 子句)的电影。

  • 搜索情节或标题(must 子句)中包含一词 ghost 且属于 comedy 类型(filter 子句)的电影,但将 score 减少 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 _idtitleplotgenres 字段。

  • 添加一个名为 score 的字段,用于显示结果中的分数。

1import com.mongodb.client.model.Aggregates.limit
2import com.mongodb.client.model.Aggregates.project
3import com.mongodb.client.model.Projections.*
4import com.mongodb.kotlin.client.coroutine.MongoClient
5import kotlinx.coroutines.runBlocking
6import org.bson.Document
7
8fun main() {
9 // establish connection and set namespace
10 val uri = "<connection-string>"
11 val mongoClient = MongoClient.create(uri)
12 val database = mongoClient.getDatabase("sample_mflix")
13 val collection = database.getCollection<Document>("movies")
14
15 runBlocking {
16 // define clauses
17 val mustClause = listOf(
18 Document("text",
19 Document("query", "ghost")
20 .append("path", listOf("plot","title"))
21 )
22 )
23
24 val mustNotClauseAndFilterClause = listOf(
25 Document("text",
26 Document("query", "Comedy")
27 .append("path", listOf("genres"))
28 )
29 )
30
31 val compound1 = Document("must", mustClause)
32 .append("mustNot", mustNotClauseAndFilterClause)
33
34 val compound2 = Document("must", mustClause)
35 .append("filter", mustNotClauseAndFilterClause)
36 .append("score",
37 Document("boost",
38 Document("value", 0.5)
39 )
40 )
41
42 val agg = Document("\$search",
43 Document("index", "compound-query-custom-score-tutorial")
44 .append("compound", Document("should", listOf(
45 Document("compound", compound1),
46 Document("compound", compound2)
47 )))
48 )
49
50 val resultsFlow = collection.aggregate<Document>(
51 listOf(
52 agg,
53 limit(10),
54 project(fields(
55 include("title", "plot", "genres"),
56 computed("score", Document("\$meta", "searchScore"))
57 ))
58 )
59 )
60 resultsFlow.collect { println(it) }
61 }
62 mongoClient.close()
63}

此查询使用以下管道阶段:

  • 搜索在情节或标题(must 子句)中包含术语 ghost 但未指定 ObjectId(mustNot 子句)的电影。

  • 搜索在情节或标题中包含 ghost 一词(must 子句)且具有指定 ObjectIds(filter 子句)的电影,但将 score 降低 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 titleplot_id 字段。

  • 添加一个名为 score 的字段,以显示结果中文档的分数。

1import com.mongodb.client.model.Aggregates.limit
2import com.mongodb.client.model.Aggregates.project
3import com.mongodb.client.model.Projections.*
4import com.mongodb.kotlin.client.coroutine.MongoClient
5import kotlinx.coroutines.runBlocking
6import org.bson.Document
7import org.bson.types.ObjectId
8
9fun main() {
10 // establish connection and set namespace
11 val uri = "<connection-string>"
12 val mongoClient = MongoClient.create(uri)
13 val database = mongoClient.getDatabase("sample_mflix")
14 val collection = database.getCollection<Document>("movies")
15
16 runBlocking {
17 // define clauses
18 val mustClause = listOf(
19 Document("text",
20 Document("query", "ghost")
21 .append("path", listOf("plot","title"))
22 )
23 )
24
25 val mustNotClauseAndFilterClause = listOf(
26 Document("in",
27 Document("value", listOf(ObjectId("573a13cdf29313caabd83c08"), ObjectId("573a13cef29313caabd873a2")))
28 .append("path", "_id")
29 )
30 )
31
32 val compound1 = Document("must", mustClause)
33 .append("mustNot", mustNotClauseAndFilterClause)
34
35 val compound2 = Document("must", mustClause)
36 .append("filter", mustNotClauseAndFilterClause)
37 .append("score",
38 Document("boost",
39 Document("value", 0.5)
40 )
41 )
42
43 val agg = Document("\$search",
44 Document("index", "compound-query-custom-score-tutorial")
45 .append("compound", Document("should", listOf(
46 Document("compound", compound1),
47 Document("compound", compound2)
48 )))
49 )
50
51 val resultsFlow = collection.aggregate<Document>(
52 listOf(
53 agg,
54 limit(10),
55 project(fields(
56 include("title", "plot", "_id"),
57 computed("score", Document("\$meta", "searchScore"))
58 ))
59 )
60 )
61 resultsFlow.collect { println(it) }
62 }
63 mongoClient.close()
64}
4

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

5

当你在 IDE 中运行 CompoundBuryQuery.kt 程序时,它会打印以下文档:

dotnet run compound-bury-results.csproj
Document{{_id=573a139af29313caabcefcce, plot=Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness., genres=[Family, Drama, Fantasy], title=The Canterville Ghost, score=5.909613132476807}}
Document{{_id=573a13d8f29313caabda5dc1, plot=The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!, genres=[Family, Fantasy], title=The Little Ghost, score=5.367666244506836}}
Document{{_id=573a13c0f29313caabd6139d, plot=Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror., genres=[Horror, Thriller], title=Death of a Ghost Hunter, score=4.676314353942871}}
Document{{_id=573a1398f29313caabcebf6f, plot=After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic., genres=[Drama, Fantasy, Romance], title=Ghost, score=3.9638845920562744}}
Document{{_id=573a13cdf29313caabd83c08, plot=A man tries to solve his lover's murder by communicating with her spirit through the help of a medium., genres=[Drama, Fantasy, Mystery], title=Ghost, score=3.9638845920562744}}
Document{{_id=573a13cef29313caabd873a2, plot=A man tries to solve his lover's murder by communicating with her spirit through the help of a medium., genres=[Drama, Fantasy, Mystery], title=Ghost, score=3.9638845920562744}}
Document{{_id=573a13c3f29313caabd6a149, plot=What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ..., genres=[Horror, Thriller], title=Coming Soon, score=3.526711940765381}}
Document{{_id=573a1397f29313caabce7ea1, plot=Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ..., genres=[Drama, Horror, Thriller], title=Ghost Story, score=3.3177831172943115}}
Document{{_id=573a13a4f29313caabd117df, plot=Stunt motorcyclist Johnny Blaze gives up his soul to become a hellblazing vigilante, to fight against power hungry Blackheart, the son of the devil himself., genres=[Action, Fantasy, Thriller], title=Ghost Rider, score=3.3177831172943115}}
Document{{_id=573a13a6f29313caabd185dc, plot=A salvage crew that discovers a long-lost 1962 passenger ship floating lifeless in a remote region of the Bering Sea soon notices, as they prepare to tow it back to land, that "strange things" happen..., genres=[Horror, Mystery], title=Ghost Ship, score=3.3177831172943115}}

结果中的电影文档在 plottitle 字段中包含查询词 ghost,并且不属于 Comedy 类型。Atlas Search 没有返回 plottitle 字段中包含术语 ghostComedy 类型的文档,因为这些文档没有排在前 10 的文档中,因为查询将这些文档的分数降低了 50%。

dotnet run compound-bury-results.csproj
Document{{_id=573a139af29313caabcefcce, plot=Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness., title=The Canterville Ghost, score=5.909613132476807}}
Document{{_id=573a13d8f29313caabda5dc1, plot=The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!, title=The Little Ghost, score=5.367666244506836}}
Document{{_id=573a13c0f29313caabd6139d, plot=Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror., title=Death of a Ghost Hunter, score=4.676314353942871}}
Document{{_id=573a1398f29313caabcebf6f, plot=After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic., title=Ghost, score=3.9638845920562744}}
Document{{_id=573a13c3f29313caabd6a149, plot=What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ..., title=Coming Soon, score=3.526711940765381}}
Document{{_id=573a1398f29313caabce912c, plot=Three unemployed parapsychology professors set up shop as a unique ghost removal service., title=Ghostbusters, score=3.5241782665252686}}
Document{{_id=573a139cf29313caabcf5a48, plot=Casper, a ghost, teams up with Wendy, a witch, against an evil warlock., title=Casper Meets Wendy, score=3.5241782665252686}}
Document{{_id=573a13bdf29313caabd58274, plot=Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy..., title=Bhoothnath, score=3.4605300426483154}}
Document{{_id=573a1397f29313caabce7ea1, plot=Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ..., title=Ghost Story, score=3.3177831172943115}}
Document{{_id=573a1398f29313caabcebf79, plot=Elliot Hopper is a widower with three children, he is currently working on a deal. It seems like his wife illness was very costly and this deal could put them out of the red. However he ..., title=Ghost Dad, score=3.3177831172943115}}

结果中的电影文档在plottitle字段中包含查询术语ghost ,但在_id字段中没有指定的 ObjectId。 Atlas Search没有返回具有指定 ObjectsId 的文档,即使它们在title字段中包含查询术语ghost ,因为查询将这些文档的分数降低了50 %,因此,这些文档没有排在前10份文档中。

1
2

此查询使用以下管道阶段:

  • 搜索情节或标题(must子句)中包含一词 ghost 且不属于 comedy 类型(mustNot 子句)的电影。

  • 搜索情节或标题(must 子句)中包含一词 ghost 且属于 comedy 类型(filter 子句)的电影,但将 score 减少 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 _idtitleplotgenres 字段。

  • 添加一个名为 score 的字段,用于显示结果中的分数。

1const { MongoClient } = require("mongodb");
2
3// connect to your Atlas cluster
4const uri = "<connection-string>";
5const client = new MongoClient(uri);
6
7async function run() {
8 try {
9 await client.connect();
10
11 // set namespace
12 const database = client.db("sample_mflix");
13 const coll = database.collection("movies");
14
15 // define pipeline
16 const agg = [
17 {
18 "$search": {
19 "index": "compound-query-custom-score-tutorial",
20 "compound": {
21 "should": [
22 {
23 "compound": {
24 "must": [
25 {
26 "text": {
27 "query": "ghost",
28 "path": [
29 "plot", "title"
30 ]
31 }
32 }
33 ],
34 "mustNot": [
35 {
36 "text": {
37 "query": "Comedy",
38 "path": [
39 "genres"
40 ]
41 }
42 }
43 ]
44 }
45 }, {
46 "compound": {
47 "must": [
48 {
49 "text": {
50 "query": "ghost",
51 "path": [
52 "plot", "title"
53 ]
54 }
55 }
56 ],
57 "filter": [
58 {
59 "text": {
60 "query": "Comedy",
61 "path": [
62 "genres"
63 ]
64 }
65 }
66 ],
67 "score": { "boost": { "value": 0.5 } }
68 }
69 }
70 ]
71 }
72 }
73 }, {
74 "$limit": 10
75 }, {
76 "$project": {
77 "_id": 1,
78 "title": 1,
79 "plot": 1,
80 "genres": 1,
81 "score": { "$meta": "searchScore" }
82 }
83 }
84 ];
85
86 // run pipeline
87 const result = coll.aggregate(agg);
88
89 // print results
90 await result.forEach((doc) => console.dir(JSON.stringify(doc)));
91 } finally {
92 await client.close();
93 }
94}
95run().catch(console.dir);

此查询使用以下管道阶段:

  • 搜索在情节或标题(must 子句)中包含术语 ghost 但未指定 ObjectId(mustNot 子句)的电影。

  • 搜索在情节或标题中包含 ghost 一词(must 子句)且具有指定 ObjectIds(filter 子句)的电影,但将 score 降低 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 titleplot_id 字段。

  • 添加一个名为 score 的字段,以显示结果中文档的分数。

1const { MongoClient } = require("mongodb");
2const { ObjectId } = require("mongodb");
3
4// connect to your Atlas cluster
5const uri = "<connection-string>";
6const client = new MongoClient(uri);
7
8async function run() {
9 try {
10 await client.connect();
11
12 // set namespace
13 const database = client.db("sample_mflix");
14 const coll = database.collection("movies");
15
16 // define pipeline
17 const agg = [
18 {
19 '$search': {
20 'index': 'compound-query-custom-score-tutorial',
21 'compound': {
22 'should': [
23 {
24 'compound': {
25 'must': [
26 {
27 'text': {
28 'query': 'ghost',
29 'path': [ 'plot', 'title' ]
30 }
31 }
32 ],
33 'mustNot': [
34 {
35 'in': {
36 'value': [ new ObjectId('573a13cdf29313caabd83c08'), new ObjectId('573a13cef29313caabd873a2') ],
37 'path': '_id'
38 }
39 }
40 ]
41 }
42 }, {
43 'compound': {
44 'must': [
45 {
46 'text': {
47 'query': 'ghost',
48 'path': [ 'plot', 'title' ]
49 }
50 }
51 ],
52 'filter': [
53 {
54 'in': {
55 'value': [ new ObjectId('573a13cdf29313caabd83c08'), new ObjectId('573a13cef29313caabd873a2') ],
56 'path': '_id'
57 }
58 }
59 ],
60 'score': {
61 'boost': { 'value': 0.5 }
62 }
63 }
64 }
65 ]
66 }
67 }
68 }, {
69 '$limit': 10
70 }, {
71 '$project': {
72 '_id': 1,
73 'title': 1,
74 'plot': 1,
75 'score': { '$meta': 'searchScore' }
76 }
77 }
78 ];
79
80 // run pipeline
81 const result = coll.aggregate(agg);
82
83 // print results
84 await result.forEach((doc) => console.dir(JSON.stringify(doc)));
85 } finally {
86 await client.close();
87 }
88}
89run().catch(console.dir);
3

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

4

运行以下命令来查询您的集合:

node compound-bury-results.js
{"_id":"573a139af29313caabcefcce","plot":"Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.","genres":["Family","Drama","Fantasy"],"title":"The Canterville Ghost","score":5.909613132476807}
{"_id":"573a13d8f29313caabda5dc1","plot":"The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!","genres":["Family","Fantasy"],"title":"The Little Ghost","score":5.367666244506836}
{"_id":"573a13c0f29313caabd6139d","plot":"Renowned \\"ghost hunter\\", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.","genres":["Horror","Thriller"],"title":"Death of a Ghost Hunter","score":4.676314353942871}
{"_id":"573a1398f29313caabcebf6f","plot":"After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.","genres":["Drama","Fantasy","Romance"],"title":"Ghost","score":3.9638845920562744}
{"_id":"573a13cdf29313caabd83c08","plot":"A man tries to solve his lovers murder by communicating with her spirit through the help of a medium.","genres":["Drama","Fantasy","Mystery"],"title":"Ghost","score":3.9638845920562744}
{"_id":"573a13cef29313caabd873a2","plot":"A man tries to solve his lovers murder by communicating with her spirit through the help of a medium.","genres":["Drama","Fantasy","Mystery"],"title":"Ghost","score":3.9638845920562744}
{"_id":"573a13c3f29313caabd6a149","plot":"What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...","genres":["Horror","Thriller"],"title":"Coming Soon","score":3.526711940765381}
{"_id":"573a1397f29313caabce7ea1","plot":"Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderleys twin sons dies in a bizarre accident, the group ...","genres":["Drama","Horror","Thriller"],"title":"Ghost Story","score":3.3177831172943115}
{"_id":"573a13a4f29313caabd117df","plot":"Stunt motorcyclist Johnny Blaze gives up his soul to become a hellblazing vigilante, to fight against power hungry Blackheart, the son of the devil himself.","genres":["Action","Fantasy","Thriller"],"title":"Ghost Rider","score":3.3177831172943115}
{"_id":"573a13a6f29313caabd185dc","plot":"A salvage crew that discovers a long-lost 1962 passenger ship floating lifeless in a remote region of the Bering Sea soon notices, as they prepare to tow it back to land, that \\"strange things\\" happen...","genres":["Horror","Mystery"],"title":"Ghost Ship","score":3.3177831172943115}

结果中的电影文档在 plottitle 字段中包含查询词 ghost,并且不属于 Comedy 类型。Atlas Search 没有返回 plottitle 字段中包含术语 ghostComedy 类型的文档,因为这些文档没有排在前 10 的文档中,因为查询将这些文档的分数降低了 50%。

node compound-bury-results.js
{"_id":"573a139af29313caabcefcce","plot":"Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.","title":"The Canterville Ghost","score":5.909613132476807}
{"_id":"573a13d8f29313caabda5dc1","plot":"The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!","title":"The Little Ghost","score":5.367666244506836}
{"_id":"573a13c0f29313caabd6139d","plot":"Renowned \\"ghost hunter\\", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.","title":"Death of a Ghost Hunter","score":4.676314353942871}
{"_id":"573a1398f29313caabcebf6f","plot":"After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.","title":"Ghost","score":3.9638845920562744}
{"_id":"573a13c3f29313caabd6a149","plot":"What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...","title":"Coming Soon","score":3.526711940765381}
{"_id":"573a1398f29313caabce912c","plot":"Three unemployed parapsychology professors set up shop as a unique ghost removal service.","title":"Ghostbusters","score":3.5241782665252686}
{"_id":"573a139cf29313caabcf5a48","plot":"Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.","title":"Casper Meets Wendy","score":3.5241782665252686}
{"_id":"573a13bdf29313caabd58274","plot":"Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...","title":"Bhoothnath","score":3.4605300426483154}
{"_id":"573a1397f29313caabce7ea1","plot":"Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderleys twin sons dies in a bizarre accident, the group ...","title":"Ghost Story","score":3.3177831172943115}
{"_id":"573a1398f29313caabcebf79","plot":"Elliot Hopper is a widower with three children, he is currently working on a deal. It seems like his wife illness was very costly and this deal could put them out of the red. However he ...","title":"Ghost Dad","score":3.3177831172943115}

结果中的电影文档在plottitle字段中包含查询术语ghost ,但在_id字段中没有指定的 ObjectId。 Atlas Search没有返回具有指定 ObjectsId 的文档,即使它们在title字段中包含查询术语ghost ,因为查询将这些文档的分数降低了50 %,因此,这些文档没有排在前10份文档中。

1
2

此查询使用以下管道阶段:

  • 搜索情节或标题(must子句)中包含一词 ghost 且不属于 comedy 类型(mustNot 子句)的电影。

  • 搜索情节或标题(must 子句)中包含一词 ghost 且属于 comedy 类型(filter 子句)的电影,但将 score 减少 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 _idtitleplotgenres 字段。

  • 添加一个名为 score 的字段,用于显示结果中的分数。

1import pymongo
2import dns
3
4client = pymongo.MongoClient('<connection-string>')
5result = client['sample_mflix']['movies'].aggregate([
6 {
7 '$search': {
8 'index': 'compound-query-custom-score-tutorial',
9 'compound': {
10 'should': [
11 {
12 'compound': {
13 'must': [
14 {
15 'text': {
16 'query': 'ghost',
17 'path': [ 'plot', 'title' ]
18 }
19 }
20 ],
21 'mustNot': [
22 {
23 'text': {
24 'query': 'Comedy',
25 'path': [ 'genres' ]
26 }
27 }
28 ]
29 }
30 }, {
31 'compound': {
32 'must': [
33 {
34 'text': {
35 'query': 'ghost',
36 'path': [ 'plot', 'title' ]
37 }
38 }
39 ],
40 'filter': [
41 {
42 'text': {
43 'query': 'Comedy',
44 'path': [ 'genres' ]
45 }
46 }
47 ],
48 'score': { 'boost': { 'value': 0.5 } }
49 }
50 }
51 ]
52 }
53 }
54 }, {
55 '$limit': 10
56 }, {
57 '$project': {
58 '_id': 1,
59 'title': 1,
60 'plot': 1,
61 'genres': 1,
62 'score': { '$meta': 'searchScore' }
63 }
64 }
65])
66
67for i in result:
68 print(i)

此查询使用以下管道阶段:

  • 搜索在情节或标题(must 子句)中包含术语 ghost 但未指定 ObjectId(mustNot 子句)的电影。

  • 搜索在情节或标题中包含 ghost 一词(must 子句)且具有指定 ObjectIds(filter 子句)的电影,但将 score 降低 50%(boost)。

将结果数量限制为 10 个文档。

  • 在结果中仅包括文档的 titleplot_id 字段。

  • 添加一个名为 score 的字段,以显示结果中文档的分数。

1import pymongo
2import dns
3from bson import ObjectId
4
5client = pymongo.MongoClient('<connection-string>')
6result = client['sample_mflix']['movies'].aggregate([
7 {
8 '$search': {
9 'index': 'compound-query-custom-score-tutorial',
10 'compound': {
11 'should': [
12 {
13 'compound': {
14 'must': [
15 {
16 'text': {
17 'query': 'ghost',
18 'path': [ 'plot', 'title' ]
19 }
20 }
21 ],
22 'mustNot': [
23 {
24 'in': {
25 'value': [ ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2') ],
26 'path': '_id'
27 }
28 }
29 ]
30 }
31 }, {
32 'compound': {
33 'must': [
34 {
35 'text': {
36 'query': 'ghost',
37 'path': [ 'plot', 'title' ]
38 }
39 }
40 ],
41 'filter': [
42 {
43 'in': {
44 'value': [ ObjectId('573a13cdf29313caabd83c08'), ObjectId('573a13cef29313caabd873a2') ],
45 'path': '_id'
46 }
47 }
48 ],
49 'score': { 'boost': { 'value': 0.5 } }
50 }
51 }
52 ]
53 }
54 }
55 }, {
56 '$limit': 10
57 }, {
58 '$project': {
59 '_id': 1,
60 'title': 1,
61 'plot': 1,
62 'score': { '$meta': 'searchScore' }
63 }
64 }
65])
66
67for i in result:
68 print(i)
3

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

4
python compound-bury-results.csproj
{'_id': ObjectId('573a139af29313caabcefcce'), 'plot': 'Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.', 'genres': ['Family', 'Drama', 'Fantasy'], 'title': 'The Canterville Ghost', 'score': 5.909613132476807}
{'_id': ObjectId('573a13d8f29313caabda5dc1'), 'plot': 'The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!', 'genres': ['Family', 'Fantasy'], 'title': 'The Little Ghost', 'score': 5.367666244506836}
{'_id': ObjectId('573a13c0f29313caabd6139d'), 'plot': 'Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.', 'genres': ['Horror', 'Thriller'], 'title': 'Death of a Ghost Hunter', 'score': 4.676314353942871}
{'_id': ObjectId('573a1398f29313caabcebf6f'), 'plot': 'After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.', 'genres': ['Drama', 'Fantasy', 'Romance'], 'title': 'Ghost', 'score': 3.9638845920562744}
{'_id': ObjectId('573a13cdf29313caabd83c08'), 'plot': "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", 'genres': ['Drama', 'Fantasy', 'Mystery'], 'title': 'Ghost', 'score': 3.9638845920562744}
{'_id': ObjectId('573a13cef29313caabd873a2'), 'plot': "A man tries to solve his lover's murder by communicating with her spirit through the help of a medium.", 'genres': ['Drama', 'Fantasy', 'Mystery'], 'title': 'Ghost', 'score': 3.9638845920562744}
{'_id': ObjectId('573a13c3f29313caabd6a149'), 'plot': 'What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...', 'genres': ['Horror', 'Thriller'], 'title': 'Coming Soon', 'score': 3.526711940765381}
{'_id': ObjectId('573a1397f29313caabce7ea1'), 'plot': "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...", 'genres': ['Drama', 'Horror', 'Thriller'], 'title': 'Ghost Story', 'score': 3.3177831172943115}
{'_id': ObjectId('573a13a4f29313caabd117df'), 'plot': 'Stunt motorcyclist Johnny Blaze gives up his soul to become a hellblazing vigilante, to fight against power hungry Blackheart, the son of the devil himself.', 'genres': ['Action', 'Fantasy', 'Thriller'], 'title': 'Ghost Rider', 'score': 3.3177831172943115}
{'_id': ObjectId('573a13a6f29313caabd185dc'), 'plot': 'A salvage crew that discovers a long-lost 1962 passenger ship floating lifeless in a remote region of the Bering Sea soon notices, as they prepare to tow it back to land, that "strange things" happen...', 'genres': ['Horror', 'Mystery'], 'title': 'Ghost Ship', 'score': 3.3177831172943115}

结果中的电影文档在 plottitle 字段中包含查询词 ghost,并且不属于 Comedy 类型。Atlas Search 没有返回 plottitle 字段中包含术语 ghostComedy 类型的文档,因为这些文档没有排在前 10 的文档中,因为查询将这些文档的分数降低了 50%。

python compound-bury-results.csproj
{'_id': ObjectId('573a139af29313caabcefcce'), 'plot': 'Adaption of the famous Oscar Wilde tale about a young American girl that helps a British ghost find rest and forgiveness.', 'title': 'The Canterville Ghost', 'score': 5.909613132476807}
{'_id': ObjectId('573a13d8f29313caabda5dc1'), 'plot': 'The Little Ghost lives in the castle over looking a small town and awakens for precisely one hour after the clock strikes midnight. Follow him on this adventure to see his first sunrise ever!', 'title': 'The Little Ghost', 'score': 5.367666244506836}
{'_id': ObjectId('573a13c0f29313caabd6139d'), 'plot': 'Renowned "ghost hunter", Carter Simms is paid to conduct a paranormal investigation of a supposedly haunted house. Along with a cameraman, a reporter, and a spiritual advocate, she embarks on a three night journey into terror.', 'title': 'Death of a Ghost Hunter', 'score': 4.676314353942871}
{'_id': ObjectId('573a1398f29313caabcebf6f'), 'plot': 'After an accident leaves a young man dead, his spirit stays behind to warn his lover of impending danger, with the help of a reluctant psychic.', 'title': 'Ghost', 'score': 3.9638845920562744}
{'_id': ObjectId('573a13c3f29313caabd6a149'), 'plot': 'What kind of scenes in a horror film scares you the most? When a ghost appears totally unexpectedly? When the main character does not see the ghost sneaking up behind him? When at the very ...', 'title': 'Coming Soon', 'score': 3.526711940765381}
{'_id': ObjectId('573a1398f29313caabce912c'), 'plot': 'Three unemployed parapsychology professors set up shop as a unique ghost removal service.', 'title': 'Ghostbusters', 'score': 3.5241782665252686}
{'_id': ObjectId('573a139cf29313caabcf5a48'), 'plot': 'Casper, a ghost, teams up with Wendy, a witch, against an evil warlock.', 'title': 'Casper Meets Wendy', 'score': 3.5241782665252686}
{'_id': ObjectId('573a13bdf29313caabd58274'), 'plot': 'Banku, his mother, Anjali Sharma and father move in to their new house -- the Nath villa, unaware of the fact that the house is inhabited by a ghost. It is learnt the ghost is not too happy...', 'title': 'Bhoothnath', 'score': 3.4605300426483154}
{'_id': ObjectId('573a1397f29313caabce7ea1'), 'plot': "Four successful elderly gentlemen, members of the Chowder Society, share a gruesome, 50-year old secret. When one of Edward Wanderley's twin sons dies in a bizarre accident, the group ...", 'title': 'Ghost Story', 'score': 3.3177831172943115}
{'_id': ObjectId('573a1398f29313caabcebf79'), 'plot': 'Elliot Hopper is a widower with three children, he is currently working on a deal. It seems like his wife illness was very costly and this deal could put them out of the red. However he ...', 'title': 'Ghost Dad', 'score': 3.3177831172943115}

结果中的电影文档在plottitle字段中包含查询术语ghost ,但在_id字段中没有指定的 ObjectId。 Atlas Search没有返回具有指定 ObjectsId 的文档,即使它们在title字段中包含查询术语ghost ,因为查询将这些文档的分数降低了50 %,因此,这些文档没有排在前10份文档中。

要了解有关使用 Atlas Search 进行复合查询的更多信息,请参阅 MongoDB University 上的 MongoDB 入门课程第 9 单元。这个 1.5 小时的单元包括 Atlas Search 的概述以及有关创建 Atlas Search 索引、使用复合操作符运行 $search 查询以及使用分面对结果进行分组的课程。

后退

如何运行 Atlas Search 复合地理 JSON 查询