Docs 菜单
Docs 主页
/
MongoDB Atlas
/ /

如何对数组中的对象运行 Atlas Search 查询

在此页面上

  • Overview
  • 在 Atlas Search Playground 中尝试
  • 在 Atlas 集群上试用

本教程介绍如何对数组 ( embeddedDocuments ) 内的文档字段或对象进行索引和运行 Atlas Search 查询。 本页面包含使用 样本集合 的样本 索引 运行 样本查询 的说明,该索引是我们在 Atlas Search Playground 中为您设置的,或者您可以在 Atlas 集群上加载、配置和运行的。

样本集合名为schools ,包含三个文档。 样本集合中的每个文档都包含学校的namemascot 、学校教师的firstlast姓名、每位教师所教的classes ,包括subject姓名和grade级别,以及学校学生的各种clubs

集合的索引定义显示以下内容:

  • teachersteachers.classes 路径的数组中的文档被索引为 embeddedDocuments,文档内的字段会被动态索引。

  • 位于 teachers 路径的数组中的文档也会被索引为文档类型,以支持突出显示,文档内部的字段也会被动态索引。

  • clubs 字段中的文档被索引为启用了动态映射文档类型,clubs.sports 字段中的文档数组被索引为启用了动态映射的 embeddedDocuments 类型。

该示例查询Atlas Search schools 集合中的嵌入式文档。 查询使用以下管道阶段:

  • $search 搜索集合。

  • $project以在集合中包含和排除字段,并在结果中添加名为score的字段。 对于启用突出显示的查询, $project阶段还添加了一个名为highlights的新字段,其中包含突出显示信息。

本教程演示了三种不同的查询。

该查询演示了针对嵌套文档数组内部字段的搜索。

它在 teachers 路径中搜索名字为 John 的教师,并为姓氏为 Smith 的教师指定首选项。它还启用对 last 名称字段的突出显示

该查询演示了针对嵌套在文档中的文档数组内的字段的搜索。

它搜索的是那些拥有体育社团的学校,而这些社团为学生提供了在 clubs.sports 路径上参加 dodgeballfrisbee 比赛的机会。

该查询演示了对文档数组内部字段的搜索,以及对嵌套在文档数组中的文档数组内部字段的搜索。

它会搜索在 teachers.classes 路径上有教师教授 12th 年级 science 课程的学校,优先选择有姓氏为 Smith 的教师教授该课程的学校。它还可以突出显示嵌套在文档数组 teachers 内的文档数组 classessubject 字段。

Atlas Search Playground上,我们设置了一个嵌入式文档集合,为集合中的字段预先配置了索引,并定义了可针对该集合运行的查询。 您还可以在 Atlas Search Playground 中修改集合、索引和查询。

要在 Atlas Search Playground 上尝试此查询,请执行以下操作:

1

在 Atlas Search Playground 中访问嵌套数组查询示例

2
3

要在 Atlas Search Playground 上尝试此查询,请执行以下操作:

1

在 Atlas Search Playground 中访问带有对象示例查询的嵌套数组

2
3

要在 Atlas Search Playground 上尝试此查询,请执行以下操作:

1

在 Atlas Search Playground 中访问数组示例查询中的嵌套数组

2
3

为了演示如何对嵌入式文档运行查询,本节将引导您完成以下步骤:

  1. 在 Atlas 集群中创建一个包含嵌入式文档的集合示例,将其命名为 schools

  2. 使用在以下路径配置的 embeddedDocuments 字段设置 Atlas Search 索引:

    • teachers 字段

    • teachers.classes 字段

    • clubs.sports 字段

  3. 运行 $search 查询,使用复合操作符以及 embeddedDocumenttext 操作符来搜索 schools 集合中的嵌入文档。

  4. 针对嵌入式文档字段运行$searchMeta查询以获取计数。

开始之前,确保 Atlas 集群满足先决条件中所述的要求。对于本教程,您无需上传示例数据,因为您将创建一个新集合并加载运行本教程中的查询所需的文档。

您必须首先在 Atlas 集群上的现有或新数据库中创建名为schools的集合。 创建集合后,您必须将示例数据上传到集合中。 要了解有关样本集合中文档的更多信息,请参阅关于样本集合。

本部分中各步骤将指导您创建新的数据库和集合,并将示例数据加载到集合中。

1
  1. 如果尚未显示,请从导航栏上的 Organizations 菜单中选择包含所需项目的组织。

  2. 如果尚未显示,请从导航栏的Projects菜单中选择所需的项目。

  3. 如果尚未显示,请单击侧边栏中的Clusters

    会显示集群页面。

2

单击集群的对应 Browse Collections 按钮。

显示数据浏览器

3
  1. 点击 Create Database 创建新的数据库。

  2. 输入数据库名称和集合名称。

    • Database Name 字段中指定 local_school_district

    • 对于 Collection Name 字段,指定 schools

4
  1. 如果未选中 schools,则将其选中。

  2. 单击每个示例文档的 Insert Document 以将其添加到集合中。

  3. 单击 JSON 视图 ({}) 替换默认文档。

  4. 逐一复制并粘贴以下示例文档,然后单击 Insert,将文档逐一添加到集合。

    {
    "_id": 0,
    "name": "Springfield High",
    "mascot": "Pumas",
    "teachers": [{
    "first": "Jane",
    "last": "Smith",
    "classes": [{
    "subject": "art of science",
    "grade": "12th"
    },
    {
    "subject": "applied science and practical science",
    "grade": "9th"
    },
    {
    "subject": "remedial math",
    "grade": "12th"
    },
    {
    "subject": "science",
    "grade": "10th"
    }]
    },
    {
    "first": "Bob",
    "last": "Green",
    "classes": [{
    "subject": "science of art",
    "grade": "11th"
    },
    {
    "subject": "art art art",
    "grade": "10th"
    }]
    }],
    "clubs": {
    "stem": [
    {
    "club_name": "chess",
    "description": "provides students opportunity to play the board game of chess informally and competitively in tournaments."
    },
    {
    "club_name": "kaboom chemistry",
    "description": "provides students opportunity to experiment with chemistry that fizzes and explodes."
    }
    ],
    "arts": [
    {
    "club_name": "anime",
    "description": "provides students an opportunity to discuss, show, and collaborate on anime and broaden their Japanese cultural understanding."
    },
    {
    "club_name": "visual arts",
    "description": "provides students an opportunity to train, experiment, and prepare for internships and jobs as photographers, illustrators, graphic designers, and more."
    }
    ]
    }
    }
    {
    "_id": 1,
    "name": "Evergreen High",
    "mascot": "Jaguars",
    "teachers": [{
    "first": "Jane",
    "last": "Earwhacker",
    "classes": [{
    "subject": "art",
    "grade": "9th"
    },
    {
    "subject": "science",
    "grade": "12th"
    }]
    },
    {
    "first": "John",
    "last": "Smith",
    "classes": [{
    "subject": "math",
    "grade": "12th"
    },
    {
    "subject": "art",
    "grade": "10th"
    }]
    }],
    "clubs": {
    "sports": [
    {
    "club_name": "archery",
    "description": "provides students an opportunity to practice and hone the skill of using a bow to shoot arrows in a fun and safe environment."
    },
    {
    "club_name": "ultimate frisbee",
    "description": "provides students an opportunity to play frisbee and learn the basics of holding the disc and complete passes."
    }
    ],
    "stem": [
    {
    "club_name": "zapped",
    "description": "provides students an opportunity to make exciting gadgets and explore electricity."
    },
    {
    "club_name": "loose in the chem lab",
    "description": "provides students an opportunity to put the scientific method to the test and get elbow deep in chemistry."
    }
    ]
    }
    }
    {
    "_id": 2,
    "name": "Lincoln High",
    "mascot": "Sharks",
    "teachers": [{
    "first": "Jane",
    "last": "Smith",
    "classes": [{
    "subject": "science",
    "grade": "9th"
    },
    {
    "subject": "math",
    "grade": "12th"
    }]
    },
    {
    "first": "John",
    "last": "Redman",
    "classes": [{
    "subject": "art",
    "grade": "12th"
    }]
    }],
    "clubs": {
    "arts": [
    {
    "club_name": "ceramics",
    "description": "provides students an opportunity to acquire knowledge of form, volume, and space relationships by constructing hand-built and wheel-thrown forms of clay."
    },
    {
    "club_name": "digital art",
    "description": "provides students an opportunity to learn about design for entertainment, 3D animation, technical art, or 3D modeling."
    }
    ],
    "sports": [
    {
    "club_name": "dodgeball",
    "description": "provides students an opportunity to play dodgeball by throwing balls to eliminate the members of the opposing team while avoiding being hit themselves."
    },
    {
    "club_name": "martial arts",
    "description": "provides students an opportunity to learn self-defense or combat that utilize physical skill and coordination without weapons."
    }
    ]
    }
    }

在本部分中,您将为 local_school_district.schools 集合中嵌入式文档的字段创建 Atlas Search 索引。

要创建 Atlas Search 索引,您必须拥有 Project Data Access Admin 或更高的项目访问权限。

1
  1. 如果尚未显示,请从导航栏上的 Organizations 菜单中选择包含所需项目的组织。

  2. 如果尚未显示,请从导航栏的Projects菜单中选择所需的项目。

  3. 如果尚未显示,请单击侧边栏中的Clusters

    会显示集群页面。

2

您可以从侧边栏、 Data Explorer 或集群详细信息页面转到 Atlas Search 页面。

  1. 在侧边栏中,单击 Services 标题下的 Atlas Search

  2. Select data source 下拉菜单中选择您的集群并单击 Go to Atlas Search

    将显示 Atlas Search 页面。

  1. 单击集群的对应 Browse Collections 按钮。

  2. 展开数据库并选择集合。

  3. 单击该集合的 Search Indexes 标签页。

    将显示 Atlas Search 页面。

  1. 单击集群的名称。

  2. 单击 Atlas Search 标签页。

    将显示 Atlas Search 页面。

3
4
  • 要获得引导式体验,请选择 Visual Editor

  • 要编辑原始索引定义,选择 JSON Editor

5
  1. Index Name 字段中输入 embedded-documents-tutorial

    如果将索引命名为 default,则在使用 $search 管道阶段时无需指定 index 参数。如果您为索引指定了自定义名称,则必须在 index 参数中指定此名称。

  2. Database and Collection(数据库和集合)部分中找到 local_school_district 数据库,然后选择 schools 集合。

6

要了解有关索引定义的更多信息,请参阅关于 Atlas Search 索引。

  1. 单击 Next(连接)。

  2. 单击 Refine Your Index(连接)。

  3. 单击 Field Mappings 部分中的 Add Field,在 Add Field Mapping 窗口中逐一配置每个字段的设置后,单击 AddCustomized Configuration 标签页中添加以下字段。

    Field Name
    Data Type
    Enable Dynamic Mapping
    teachers
    EmbeddedDocuments
    On(开启)
    teachers.classes
    EmbeddedDocuments
    On(开启)
    teachers
    Document
    On(开启)
    teachers.classes
    Document
    On(开启)
    teachers.classes.grade
    StringFacet
    不适用
    clubs.sports
    EmbeddedDocuments
    On(开启)
  4. 点击 Add Field Mappings 打开 Add Field Mapping 窗口。

  5. 从下拉列表中选择以下内容。

  6. 点击 Add Field Mappings 打开 Add Field Mapping 窗口。

  7. 从下拉列表中选择以下内容。

  8. 如果尚未启用,请切换以启用 Enable Dynamic Mapping,然后单击 Add

  9. 单击 Save(连接)。

  10. 单击 Save Changes(连接)。

  1. 将默认索引定义替换为以下索引定义。

    1{
    2 "mappings": {
    3 "dynamic": true,
    4 "fields": {
    5 "clubs": {
    6 "dynamic": true,
    7 "fields": {
    8 "sports": {
    9 "dynamic": true,
    10 "type": "embeddedDocuments"
    11 }
    12 },
    13 "type": "document"
    14 },
    15 "teachers": [
    16 {
    17 "dynamic": true,
    18 "fields": {
    19 "classes": {
    20 "dynamic": true,
    21 "type": "embeddedDocuments"
    22 }
    23 },
    24 "type": "embeddedDocuments"
    25 },
    26 {
    27 "dynamic": true,
    28 "fields": {
    29 "classes": {
    30 "dynamic": true,
    31 "fields": {
    32 "grade": {
    33 "type": "stringFacet"
    34 }
    35 },
    36 "type": "document"
    37 }
    38 },
    39 "type": "document"
    40 }
    41 ]
    42 }
    43 }
    44}
  2. 单击 Next(连接)。

7

Atlas 会显示一个模态窗口,让您知道您的索引正在构建中。

8

构建索引大约需要一分钟时间。在构建时,Status 列显示 Build in Progress。构建完成后,Status 列显示 Active

您可以针对嵌入式文档字段运行查询。本教程在查询中使用复合运算符中的 embeddedDocument文本运算符。

在本部分,您将连接到 Atlas 集群并使用该运算符针对 schools 集合中的字段运行样本查询。


➤ 使用本页的“选择语言”下拉菜单设置本节示例的语言。


1
  1. 如果尚未显示,请从导航栏上的 Organizations 菜单中选择包含所需项目的组织。

  2. 如果尚未显示,请从导航栏的Projects菜单中选择所需的项目。

  3. 如果尚未显示,请单击侧边栏中的Clusters

    会显示集群页面。

2

您可以从侧边栏、 Data Explorer 或集群详细信息页面转到 Atlas Search 页面。

  1. 在侧边栏中,单击 Services 标题下的 Atlas Search

  2. Select data source 下拉菜单中选择您的集群并单击 Go to Atlas Search

    将显示 Atlas Search 页面。

  1. 单击集群的对应 Browse Collections 按钮。

  2. 展开数据库并选择集合。

  3. 单击该集合的 Search Indexes 标签页。

    将显示 Atlas Search 页面。

  1. 单击集群的名称。

  2. 单击 Atlas Search 标签页。

    将显示 Atlas Search 页面。

3

单击要查询的索引右侧的 Query 按钮。

4

单击 Edit Query 以查看 JSON 格式的默认查询语法示例。

5

将以下查询复制并粘贴到 Query Editor 中,然后点击 Query Editor 中的 Search 按钮。

注意

Search Tester不支持突出显示。 因此,请使用mongosh或 MongoDB 驱动程序来查看结果中的突出显示信息。

要了解有关此查询的更多信息,请参阅关于查询。

1[
2 {
3 "$search": {
4 "index": "embedded-documents-tutorial",
5 "embeddedDocument": {
6 "path": "teachers",
7 "operator": {
8 "compound": {
9 "must": [{
10 "text": {
11 "path": "teachers.first",
12 "query": "John"
13 }
14 }],
15 "should":[{
16 "text": {
17 "path": "teachers.last",
18 "query": "Smith"
19 }
20 }]
21 }
22 }
23 }
24 }
25 }
26]
SCORE: 0.7830756902694702 _id: "1"
name: "Evergreen High"
mascot: "Jaguars"
teachers: Array
0: Object
first: "Jane"
last: "Earwhacker"
classes: Array
...
1: Object
first: "John"
last: "Smith"
classes: Array
...
clubs: Object
...
SCORE: 0.468008816242218 _id: "2"
name: "Lincoln High"
mascot: "Sharks"
teachers: Array
0: Object
first: "Jane"
last: "Smith"
classes: Array
...
1: Object
first: "John"
last: "Redman"
classes: Array
...
clubs: Object
...

要了解有关此查询的更多信息,请参阅关于查询。

1[
2 {
3 "$search": {
4 "index": "embedded-documents-tutorial",
5 "embeddedDocument": {
6 "path": "clubs.sports",
7 "operator": {
8 "queryString": {
9 "defaultPath": "clubs.sports.club_name",
10 "query": "dodgeball OR frisbee"
11 }
12 }
13 }
14 }
15 }
16]
score: 0.633669912815094 _id: 2
name: "Lincoln High"
mascot: "Sharks"
teachers: Array
...
clubs: Object
sports: Array (2)
0: Object
club_name: "dodgeball"
description: "provides students an opportunity
to play dodgeball by throwing balls t…"
1: Object
club_name: "martial arts"
description: "provides students an opportunity to learn self-defense or combat that …"
stem: Array (2)
...
score: 0.481589138507843 _id: 1
name: "Evergreen High"
mascot: "Jaguars"
teachers: Array
...
clubs: Object
sports: Array (2)
0: Object
club_name: "archery"
description: "provides students an opportunity to practice and hone the skill of usi…"
1: Object
club_name: "ultimate frisbee"
description: "provides students an opportunity to play frisbee and learn the basics …"
stem: Array (2)
...

要了解有关此查询的更多信息,请参阅关于查询。

[
{
$search: {
index: "embedded-documents-tutorial",
"embeddedDocument": {
"path": "teachers",
"operator": {
"compound": {
"must": [{
"embeddedDocument": {
"path": "teachers.classes",
"operator": {
"compound": {
"must": [{
"text": {
"path": "teachers.classes.grade",
"query": "12th"
}
},
{
"text": {
"path": "teachers.classes.subject",
"query": "science"
}
}]
}
}
}
}],
"should": [{
"text": {
"path": "teachers.last",
"query": "smith"
}
}]
}
}
}
}
}
]
SCORE: 0.9415585994720459
name: "Springfield High"
mascot: "Pumas"
teachers: Array
0: Object
first: "Jane"
last: "Smith"
classes: Array
0: Object
subject: "art of science"
grade: "12th"
1: Object
subject: "applied science and practical science"
grade: "9th"
2: Object
subject: "remedial math"
grade: "12th"
3: Object
subject: "science"
grade: "10th"
1: Object
first: "Bob"
last: "Green"
classes: Array
0: Object
subject: "science of art"
grade: "11th"
1: Object
subject: "art art art"
grade: "10th"
clubs: Object
...
SCORE: 0.7779859304428101 _id: "1"
name: "Evergreen High"
mascot: "Jaguars"
teachers: Array
0: Object
first: "Jane"
last: "Earwhacker"
classes: Array
0: Object
subject: "art"
grade: "9th"
1: Object
subject: "science"
grade: "12th"
1: Object
first: "John"
last: "Smith"
classes: Array
0: Object
subject: "math"
grade: "12th"
1: Object
subject: "art"
grade: "10th"
clubs: Object
...
1

在终端窗口中打开mongosh并连接到集群。 有关连接的详细说明,请参阅通过mongosh连接。

2

mongosh 提示符下运行以下命令:

use local_school_district
switched to db local_school_district
3

要了解有关这些查询的更多信息,请参阅关于查询。

要了解有关此查询的更多信息,请参阅关于查询。

1db.schools.aggregate({
2 "$search": {
3 "index": "embedded-documents-tutorial",
4 "embeddedDocument": {
5 "path": "teachers",
6 "operator": {
7 "compound": {
8 "must": [{
9 "text": {
10 "path": "teachers.first",
11 "query": "John"
12 }
13 }],
14 "should":[{
15 "text": {
16 "path": "teachers.last",
17 "query": "Smith"
18 }
19 }]
20 }
21 }
22 },
23 "highlight": {
24 "path": "teachers.last"
25 }
26 }
27},
28{
29 "$project": {
30 "_id": 1,
31 "teachers": 1,
32 "score": { $meta: "searchScore" },
33 "highlights": { "$meta": "searchHighlights" }
34 }
35})
1[
2 {
3 _id: 1,
4 teachers: [
5 {
6 first: 'Jane',
7 last: 'Earwhacker',
8 classes: [
9 { subject: 'art', grade: '9th' },
10 { subject: 'science', grade: '12th' }
11 ]
12 },
13 {
14 first: 'John',
15 last: 'Smith',
16 classes: [
17 { subject: 'math', grade: '12th' },
18 { subject: 'art', grade: '10th' }
19 ]
20 }
21 ],
22 score: 0.7830756902694702,
23 highlights: [
24 {
25 score: 1.4921371936798096,
26 path: 'teachers.last',
27 texts: [ { value: 'Smith', type: 'hit' } ]
28 }
29 ]
30 },
31 {
32 _id: 2,
33 teachers: [
34 {
35 first: 'Jane',
36 last: 'Smith',
37 classes: [
38 { subject: 'science', grade: '9th' },
39 { subject: 'math', grade: '12th' }
40 ]
41 },
42 {
43 first: 'John',
44 last: 'Redman',
45 classes: [ { subject: 'art', grade: '12th' } ]
46 }
47 ],
48 score: 0.468008816242218,
49 highlights: [
50 {
51 score: 1.4702850580215454,
52 path: 'teachers.last',
53 texts: [ { value: 'Smith', type: 'hit' } ]
54 }
55 ]
56 }
57]

结果中的两个文档包含名字为 John 的教师。_id: 1 的文档排名较高,因为它包含一位名字为 John 且姓氏为 Smith 的教师。

要了解有关此查询的更多信息,请参阅关于查询。

1db.schools.aggregate(
2 {
3 "$search": {
4 "index": "embedded-documents-tutorial",
5 "embeddedDocument": {
6 "path": "clubs.sports",
7 "operator": {
8 "queryString": {
9 "defaultPath": "clubs.sports.club_name",
10 "query": "dodgeball OR frisbee"
11 }
12 }
13 }
14 }
15 },
16 {
17 "$project": {
18 "_id": 1,
19 "name": 1,
20 "clubs.sports": 1,
21 "score": { $meta: "searchScore" }
22 }
23 }
24)
1[
2 {
3 _id: 2,
4 name: 'Lincoln High',
5 clubs: {
6 sports: [
7 {
8 club_name: 'dodgeball',
9 description: 'provides students an opportunity to play dodgeball by throwing balls to eliminate the members of the opposing team while avoiding being hit themselves.'
10 },
11 {
12 club_name: 'martial arts',
13 description: 'provides students an opportunity to learn self-defense or combat that utilize physical skill and coordination without weapons.'
14 }
15 ]
16 },
17 score: 0.633669912815094
18 },
19 {
20 _id: 1,
21 name: 'Evergreen High',
22 clubs: {
23 sports: [
24 {
25 club_name: 'archery',
26 description: 'provides students an opportunity to practice and hone the skill of using a bow to shoot arrows in a fun and safe environment.'
27 },
28 {
29 club_name: 'ultimate frisbee',
30 description: 'provides students an opportunity to play frisbee and learn the basics of holding the disc and complete passes.'
31 }
32 ]
33 },
34 score: 0.481589138507843
35 }
36]

结果中的两个文件显示提供学生可以 dodgeballfrisbee 的俱乐部的学校。

要了解有关此查询的更多信息,请参阅关于查询。

1db.schools.aggregate({
2 "$search": {
3 "index": "embedded-documents-tutorial",
4 "embeddedDocument": {
5 "path": "teachers",
6 "operator": {
7 "compound": {
8 "must": [{
9 "embeddedDocument": {
10 "path": "teachers.classes",
11 "operator": {
12 "compound": {
13 "must": [{
14 "text": {
15 "path": "teachers.classes.grade",
16 "query": "12th"
17 }
18 },
19 {
20 "text": {
21 "path": "teachers.classes.subject",
22 "query": "science"
23 }
24 }]
25 }
26 }
27 }
28 }],
29 "should": [{
30 "text": {
31 "path": "teachers.last",
32 "query": "smith"
33 }
34 }]
35 }
36 }
37 },
38 "highlight": {
39 "path": "teachers.classes.subject"
40 }
41 }
42},
43{
44 "$project": {
45 "_id": 1,
46 "teachers": 1,
47 "score": { $meta: "searchScore" },
48 "highlights": { "$meta": "searchHighlights" }
49 }
50})
1[
2 {
3 _id: 0,
4 teachers: [
5 {
6 first: 'Jane',
7 last: 'Smith',
8 classes: [
9 { subject: 'art of science', grade: '12th' },
10 {
11 subject: 'applied science and practical science',
12 grade: '9th'
13 },
14 { subject: 'remedial math', grade: '12th' },
15 { subject: 'science', grade: '10th' }
16 ]
17 },
18 {
19 first: 'Bob',
20 last: 'Green',
21 classes: [
22 { subject: 'science of art', grade: '11th' },
23 { subject: 'art art art', grade: '10th' }
24 ]
25 }
26 ],
27 score: 0.9415585994720459,
28 highlights: [
29 {
30 score: 0.7354040145874023,
31 path: 'teachers.classes.subject',
32 texts: [
33 { value: 'art of ', type: 'text' },
34 { value: 'science', type: 'hit' }
35 ]
36 },
37 {
38 score: 0.7871346473693848,
39 path: 'teachers.classes.subject',
40 texts: [
41 { value: 'applied ', type: 'text' },
42 { value: 'science', type: 'hit' },
43 { value: ' and practical ', type: 'text' },
44 { value: 'science', type: 'hit' }
45 ]
46 },
47 {
48 score: 0.7581484317779541,
49 path: 'teachers.classes.subject',
50 texts: [ { value: 'science', type: 'hit' } ]
51 },
52 {
53 score: 0.7189631462097168,
54 path: 'teachers.classes.subject',
55 texts: [
56 { value: 'science', type: 'hit' },
57 { value: ' of art', type: 'text' }
58 ]
59 }
60 ]
61 },
62 {
63 _id: 1,
64 teachers: [
65 {
66 first: 'Jane',
67 last: 'Earwhacker',
68 classes: [
69 { subject: 'art', grade: '9th' },
70 { subject: 'science', grade: '12th' }
71 ]
72 },
73 {
74 first: 'John',
75 last: 'Smith',
76 classes: [
77 { subject: 'math', grade: '12th' },
78 { subject: 'art', grade: '10th' }
79 ]
80 }
81 ],
82 score: 0.7779859304428101,
83 highlights: [
84 {
85 score: 1.502043604850769,
86 path: 'teachers.classes.subject',
87 texts: [ { value: 'science', type: 'hit' } ]
88 }
89 ]
90 }
91]

结果中的两个文档包含教授 12th 年级 science 的教师。带有 _id: 0 的文档包含一位姓氏为 Smith 的教师,该教师教授 12th 年级的 science

1

打开 MongoDB Compass 并连接到您的集群。有关连接的详细说明,请参阅通过 Compass 连接。

2

Database 屏幕上,单击 local_school_district 数据库,然后单击 schools 集合。

3

要了解有关这些查询的更多信息,请参阅关于查询。

要了解有关此查询的更多信息,请参阅关于查询。

管道阶段
查询
$search
{
"index": "embedded-documents-tutorial",
"embeddedDocument": {
"path": "teachers",
"operator": {
"compound": {
"must": [{
"text": {
"path": "teachers.first",
"query": "John"
}
}],
"should":[{
"text": {
"path": "teachers.last",
"query": "Smith"
}
}]
}
}
},
"highlight": {
"path": "teachers.last"
}
}
$project
{
"_id": 1,
"teachers": 1,
"score": { $meta: "searchScore" },
"highlights": { "$meta": "searchHighlights" }
}

如果启用了 Auto Preview,MongoDB Compass 将在 $project 管道阶段旁边显示以下文档:

1[
2 {
3 _id: 1,
4 teachers: [
5 {
6 first: 'Jane',
7 last: 'Earwhacker',
8 classes: [
9 { subject: 'art', grade: '9th' },
10 { subject: 'science', grade: '12th' }
11 ]
12 },
13 {
14 first: 'John',
15 last: 'Smith',
16 classes: [
17 { subject: 'math', grade: '12th' },
18 { subject: 'art', grade: '10th' }
19 ]
20 }
21 ],
22 score: 0.7830756902694702,
23 highlights: [
24 {
25 score: 1.4921371936798096,
26 path: 'teachers.last',
27 texts: [ { value: 'Smith', type: 'hit' } ]
28 }
29 ]
30 },
31 {
32 _id: 2,
33 teachers: [
34 {
35 first: 'Jane',
36 last: 'Smith',
37 classes: [
38 { subject: 'science', grade: '9th' },
39 { subject: 'math', grade: '12th' }
40 ]
41 },
42 {
43 first: 'John',
44 last: 'Redman',
45 classes: [ { subject: 'art', grade: '12th' } ]
46 }
47 ],
48 score: 0.468008816242218,
49 highlights: [
50 {
51 score: 1.4702850580215454,
52 path: 'teachers.last',
53 texts: [ { value: 'Smith', type: 'hit' } ]
54 }
55 ]
56 }
57]

结果中的两个文档包含名字为 John 的教师。_id: 1 的文档排名较高,因为它包含一位名字为 John 且姓氏为 Smith 的教师。

要了解有关此查询的更多信息,请参阅关于查询。

管道阶段
查询
$search
{
"index": "embedded-documents-tutorial",
embeddedDocument: {
path: "clubs.sports",
operator: {
queryString: {
defaultPath: "clubs.sports.club_name",
query: "dodgeball OR frisbee",
}
}
}
}
$project
{
"_id": 1,
"name": 1,
"clubs.sports": 1,
"score": { $meta: "searchScore" }
}

如果启用了 Auto Preview,MongoDB Compass 将在 $project 管道阶段旁边显示以下文档:

1[
2 {
3 _id: 2,
4 name: 'Lincoln High',
5 clubs: {
6 sports: [
7 {
8 club_name: 'dodgeball',
9 description: 'provides students an opportunity to play dodgeball by throwing balls to eliminate the members of the opposing team while avoiding being hit themselves.'
10 },
11 {
12 club_name: 'martial arts',
13 description: 'provides students an opportunity to learn self-defense or combat that utilize physical skill and coordination without weapons.'
14 }
15 ]
16 },
17 score: 0.633669912815094
18 },
19 {
20 _id: 1,
21 name: 'Evergreen High',
22 clubs: {
23 sports: [
24 {
25 club_name: 'archery',
26 description: 'provides students an opportunity to practice and hone the skill of using a bow to shoot arrows in a fun and safe environment.'
27 },
28 {
29 club_name: 'ultimate frisbee',
30 description: 'provides students an opportunity to play frisbee and learn the basics of holding the disc and complete passes.'
31 }
32 ]
33 },
34 score: 0.481589138507843
35 }
36]

结果中的两个文件显示提供学生可以 dodgeballfrisbee 的俱乐部的学校。

要了解有关此查询的更多信息,请参阅关于查询。

管道阶段
查询
$search
{
"index": "embedded-documents-tutorial",
"embeddedDocument": {
"path": "teachers",
"operator": {
"compound": {
"must": [{
"embeddedDocument": {
"path": "teachers.classes",
"operator": {
"compound": {
"must": [{
"text": {
"path": "teachers.classes.grade",
"query": "12th"
}
},
{
"text": {
"path": "teachers.classes.subject",
"query": "science"
}
}]
}
}
}
}],
"should": [{
"text": {
"path": "teachers.last",
"query": "smith"
}
}]
}
}
},
"highlight": {
"path": "teachers.classes.subject"
}
}
$project
{
"_id": 1,
"teachers": 1,
"score": { $meta: "searchScore" },
"highlights": { "$meta": "searchHighlights" }
}

如果启用了 Auto Preview,MongoDB Compass 将在 $project 管道阶段旁边显示以下文档:

1[
2 {
3 _id: 0,
4 teachers: [
5 {
6 first: 'Jane',
7 last: 'Smith',
8 classes: [
9 { subject: 'art of science', grade: '12th' },
10 {
11 subject: 'applied science and practical science',
12 grade: '9th'
13 },
14 { subject: 'remedial math', grade: '12th' },
15 { subject: 'science', grade: '10th' }
16 ]
17 },
18 {
19 first: 'Bob',
20 last: 'Green',
21 classes: [
22 { subject: 'science of art', grade: '11th' },
23 { subject: 'art art art', grade: '10th' }
24 ]
25 }
26 ],
27 score: 0.9415585994720459,
28 highlights: [
29 {
30 score: 0.7354040145874023,
31 path: 'teachers.classes.subject',
32 texts: [
33 { value: 'art of ', type: 'text' },
34 { value: 'science', type: 'hit' }
35 ]
36 },
37 {
38 score: 0.7871346473693848,
39 path: 'teachers.classes.subject',
40 texts: [
41 { value: 'applied ', type: 'text' },
42 { value: 'science', type: 'hit' },
43 { value: ' and practical ', type: 'text' },
44 { value: 'science', type: 'hit' }
45 ]
46 },
47 {
48 score: 0.7581484317779541,
49 path: 'teachers.classes.subject',
50 texts: [ { value: 'science', type: 'hit' } ]
51 },
52 {
53 score: 0.7189631462097168,
54 path: 'teachers.classes.subject',
55 texts: [
56 { value: 'science', type: 'hit' },
57 { value: ' of art', type: 'text' }
58 ]
59 }
60 ]
61 },
62 {
63 _id: 1,
64 teachers: [
65 {
66 first: 'Jane',
67 last: 'Earwhacker',
68 classes: [
69 { subject: 'art', grade: '9th' },
70 { subject: 'science', grade: '12th' }
71 ]
72 },
73 {
74 first: 'John',
75 last: 'Smith',
76 classes: [
77 { subject: 'math', grade: '12th' },
78 { subject: 'art', grade: '10th' }
79 ]
80 }
81 ],
82 score: 0.7779859304428101,
83 highlights: [
84 {
85 score: 1.502043604850769,
86 path: 'teachers.classes.subject',
87 texts: [ { value: 'science', type: 'hit' } ]
88 }
89 ]
90 }
91]

结果中的两个文档包含教授 12th 年级 science 的教师。带有 _id: 0 的文档包含一位姓氏为 Smith 的教师,该教师教授 12th 年级的 science

1
  1. 创建一个名为 embedded-documents-query 的新目录,并使用 dotnet new 命令初始化项目。

    mkdir embedded-documents-query
    cd embedded-documents-query
    dotnet new console
  2. 将 .NET/C# 驱动程序作为依赖项添加到项目中。

    dotnet add package MongoDB.Driver
2

要了解有关这些查询的更多信息,请参阅关于查询。

要了解有关此查询的更多信息,请参阅关于查询。

1using MongoDB.Bson;
2using MongoDB.Bson.Serialization.Attributes;
3using MongoDB.Bson.Serialization.Conventions;
4using MongoDB.Driver;
5using MongoDB.Driver.Search;
6
7public class NestedArrayExample
8{
9 private const string MongoConnectionString = "<connection-string>";
10
11 public static void Main(string[] args)
12 {
13 // allow automapping of the camelCase database fields to our SchoolDocument
14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
16
17 // connect to your Atlas cluster
18 var mongoClient = new MongoClient(MongoConnectionString);
19 var districtSchoolsDatabase = mongoClient.GetDatabase("local_school_district");
20 var schoolsCollection = districtSchoolsDatabase.GetCollection<SchoolDocument>("schools");
21
22 // define variables for query
23 var compoundQuery = Builders<TeacherDocument>.Search.Compound()
24 .Must(Builders<TeacherDocument>.Search.Text(teacher => teacher.First, "John"))
25 .Should(Builders<TeacherDocument>.Search.Text(teacher => teacher.Last, "Smith"));
26 var opts = new SearchHighlightOptions<SchoolDocument>(school => school.Teachers.Select(teacher => teacher.Last));;
27
28 // define and run pipeline
29 var results = schoolsCollection.Aggregate()
30 .Search(Builders<SchoolDocument>.Search.EmbeddedDocument(
31 school => school.Teachers, compoundQuery), opts,
32 indexName: "embedded-documents-tutorial"
33 )
34 .Project<SchoolDocument>(Builders<SchoolDocument>.Projection
35 .Include(school => school.Name)
36 .Include(school => school.Mascot)
37 .Include(school => school.Teachers)
38 .MetaSearchScore(school => school.Score)
39 .MetaSearchHighlights("highlights"))
40 .ToList();
41
42 // print results
43 foreach (var school in results)
44 {
45 Console.WriteLine(school.ToJson());
46 }
47 }
48}
49
50[BsonIgnoreExtraElements]
51public class SchoolDocument
52{
53 public int Id { get; set; }
54 public string Name { get; set; }
55 public string Mascot { get; set; }
56 public TeacherDocument[] Teachers { get; set; }
57 [BsonElement("highlights")]
58 public List<SearchHighlight> Highlights { get; set; }
59 public double Score { get; set; }
60}
61
62[BsonIgnoreExtraElements]
63public class TeacherDocument
64{
65 public string First { get; set; }
66 public string Last { get; set; }
67 public ClassDocument[] Classes { get; set; }
68}
69
70[BsonIgnoreExtraElements]
71public class ClassDocument
72{
73 public string Subject { get; set; }
74 public string Grade { get; set; }
75}

要了解有关此查询的更多信息,请参阅关于查询。

1using MongoDB.Bson;
2using MongoDB.Bson.Serialization.Attributes;
3using MongoDB.Bson.Serialization.Conventions;
4using MongoDB.Driver;
5using MongoDB.Driver.Search;
6using System;
7using System.Collections.Generic;
8using System.Reflection.Emit;
9
10public class NestedArrayWithinObjectExample
11{
12 private const string MongoConnectionString = "<connection-string>";
13
14 public static void Main(string[] args)
15 {
16 // allow automapping of the camelCase database fields to our SchoolDocument
17 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
18 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
19
20 // connect to your Atlas cluster
21 var mongoClient = new MongoClient(MongoConnectionString);
22 var districtSchoolsDatabase = mongoClient.GetDatabase("local_school_district");
23 var schoolsCollection = districtSchoolsDatabase.GetCollection<SchoolDocument>("schools");
24
25 // define variables for query
26 var queryStringQuery = Builders<ExtraCurricularDocument>.Search.QueryString(
27 sport => sport.ClubName, "dodgeball OR frisbee"
28 );
29
30 // define and run pipeline
31 var results = schoolsCollection.Aggregate()
32 .Search(Builders<SchoolDocument>.Search.EmbeddedDocument(
33 school => school.Clubs.Sports, queryStringQuery),
34 indexName: "embedded-documents-tutorial"
35 )
36 .Project<SchoolDocument>(Builders<SchoolDocument>.Projection
37 .Include(school => school.Clubs)
38 .Include(school => school.Name)
39 .Include(school => school.Id)
40 .MetaSearchScore(school => school.Score))
41 .ToList();
42
43 // print results
44 foreach (var school in results)
45 {
46 Console.WriteLine(school.ToJson());
47 }
48 }
49}
50
51[BsonIgnoreExtraElements]
52public class SchoolDocument
53{
54 public int Id { get; set; }
55 public string Name { get; set; }
56 public ClubDocument Clubs { get; set; }
57 public double Score { get; set; }
58}
59
60[BsonIgnoreExtraElements]
61public class ClubDocument
62{
63 public ExtraCurricularDocument[] Sports { get; set; }
64}
65
66[BsonIgnoreExtraElements]
67public class ExtraCurricularDocument
68{
69 [BsonElement("club_name")]
70 public string ClubName { get; set; }
71 public string Description { get; set; }
72}

要了解有关此查询的更多信息,请参阅关于查询。

1using MongoDB.Bson;
2using MongoDB.Bson.Serialization.Attributes;
3using MongoDB.Bson.Serialization.Conventions;
4using MongoDB.Driver;
5using MongoDB.Driver.Search;
6
7public class NestedArrayWithinArrayExample
8{
9 private const string MongoConnectionString = "<connection-string>";
10
11 public static void Main(string[] args)
12 {
13 // allow automapping of the camelCase database fields to our SchoolDocument
14 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
15 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
16
17 // connect to your Atlas cluster
18 var mongoClient = new MongoClient(MongoConnectionString);
19 var districtSchoolsDatabase = mongoClient.GetDatabase("local_school_district");
20 var schoolsCollection = districtSchoolsDatabase.GetCollection<SchoolDocument>("schools");
21
22 // define variables for query
23 var mustQuery = Builders<ClassDocument>.Search.Compound()
24 .Must(Builders<ClassDocument>.Search.Text(classes => classes.Grade, "12th"), Builders<ClassDocument>.Search.Text(classes => classes.Subject, "science"));
25 var compoundQuery = Builders<TeacherDocument>.Search.Compound()
26 .Must(Builders<TeacherDocument>.Search.EmbeddedDocument(teacher => teacher.Classes, mustQuery))
27 .Should(Builders<TeacherDocument>.Search.Text(teacher => teacher.Last, "smith"));
28 var opts = new SearchHighlightOptions<SchoolDocument>("teachers.classes.subject");
29
30 // define and run pipeline
31 var results = schoolsCollection.Aggregate()
32 .Search(Builders<SchoolDocument>.Search.EmbeddedDocument(
33 school => school.Teachers, compoundQuery), opts,
34 indexName: "embedded-documents-tutorial"
35 )
36 .Project<SchoolDocument>(Builders<SchoolDocument>.Projection
37 .Include(school => school.Teachers)
38 .MetaSearchScore(school => school.Score)
39 .MetaSearchHighlights("highlights"))
40 .ToList();
41
42 // print results
43 foreach (var school in results)
44 {
45 Console.WriteLine(school.ToJson());
46 }
47 }
48}
49
50[BsonIgnoreExtraElements]
51public class SchoolDocument
52{
53 public int Id { get; set; }
54 public TeacherDocument[] Teachers { get; set; }
55 [BsonElement("highlights")]
56 public List<SearchHighlight> Highlights { get; set; }
57 public double Score { get; set; }
58}
59
60[BsonIgnoreExtraElements]
61public class TeacherDocument
62{
63 public string First { get; set; }
64 public string Last { get; set; }
65 public ClassDocument[] Classes { get; set; }
66}
67
68[BsonIgnoreExtraElements]
69public class ClassDocument
70{
71 public string Subject { get; set; }
72 public string Grade { get; set; }
73}
3

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

4
dotnet run embedded-documents-query.csproj
{
"_id" : 1,
"name" : "Evergreen High",
"mascot" : "Jaguars",
"teachers" : [{
"first" : "Jane",
"last" : "Earwhacker",
"classes" : [{ "
subject" : "art",
"grade" : "9th"
}, {
"subject" : "science",
"grade" : "12th"
}]
}, {
"first" : "John",
"last" : "Smith",
"classes" : [{
"subject" : "math",
"grade" : "12th"
}, {
"subject" : "art",
"grade" : "10th"
}]
}],
"highlights" : [{
"path" : "teachers.last",
"score" : 1.4921371936798096,
"texts" : [{ "type" : "Hit", "value" : "Smith" }]
}],
"score" : 0.78307569026947021
}
{
"_id" : 2,
"name" : "Lincoln High",
"mascot" : "Sharks",
"teachers" : [{
"first" : "Jane",
"last" : "Smith",
"classes" : [{
"subject" : "science",
"grade" : "9th"
}, {
"subject" : "math",
"grade" : "12th"
}]
}, {
"first" : "John",
"last" : "Redman",
"classes" : [{
"subject" : "art",
"grade" : "12th"
}]
}],
"highlights" : [{
"path" : "teachers.last",
"score" : 1.4702850580215454,
"texts" : [{ "type" : "Hit", "value" : "Smith" }]
}],
"score" : 0.46800881624221802
}
dotnet run embedded-documents-query.csproj
{
"_id" : 2,
"name" : "Lincoln High",
"clubs" : {
"sports" : [{
"club_name" : "dodgeball",
"description" : "provides students an opportunity to play dodgeball by throwing balls to eliminate the members of the opposing team while avoiding being hit themselves."
}, {
"club_name" : "martial arts",
"description" : "provides students an opportunity to learn self-defense or combat that utilize physical skill and coordination without weapons."
}]
},
"score" : 0.63366991281509399
}
{
"_id" : 1,
"name" : "Evergreen High",
"clubs" : {
"sports" : [{
"club_name" : "archery",
"description" : "provides students an opportunity to practice and hone the skill of using a bow to shoot arrows in a fun and safe environment."
}, {
"club_name" : "ultimate frisbee",
"description" : "provides students an opportunity to play frisbee and learn the basics of holding the disc and complete passes."
}]
},
"score" : 0.48158913850784302
}
dotnet run embedded-documents-query.csproj
{
"_id" : 0,
"teachers" : [{
"first" : "Jane",
"last" : "Smith",
"classes" : [{
"subject" : "art of science",
"grade" : "12th"
}, {
"subject" : "applied science and practical
science",
"grade" : "9th"
}, {
"subject" : "remedial math",
"grade" : "12th"
}, {
"subject" : "science",
"grade" : "10th"
}]
}, {
"first" : "Bob",
"last" : "Green",
"classes" : [{
"subject" : "science of art",
"grade" : "11th"
}, {
"subject" : "art art art",
"grade" : "10th"
}]
}],
"highlights" : [{
"path" : "teachers.classes.subject",
"score" : 0.73540401458740234,
"texts" : [
{ "type" : "Text", "value" : "art of " },
{ "type" : "Hit", "value" : "science" }
]
}, {
"path" : "teachers.classes.subject",
"score" : 0.78713464736938477,
"texts" : [
{ "type" : "Text", "value" : "applied " },
{ "type" : "Hit", "value" : "science" },
{ "type" : "Text", "value" : " and practical " },
{ "type" : "Hit", "value" : "science" }]
}, {
"path" : "teachers.classes.subject",
"score" : 0.7581484317779541,
"texts" : [{ "type" : "Hit", "value" : "science" }]
}, {
"path" : "teachers.classes.subject",
"score" : 0.7189631462097168,
"texts" : [
{ "type" : "Hit", "value" : "science" },
{ "type" : "Text", "value" : " of art" }
]
}],
"score" : 0.9415585994720459
}
{
"_id" : 1,
"teachers" : [{
"first" : "Jane",
"last" : "Earwhacker",
"classes" : [{
"subject" : "art",
"grade" : "9th"
}, {
"subject" : "science",
"grade" : "12th"
}]
}, {
"first" : "John",
"last" : "Smith",
"classes" : [{
"subject" : "math",
"grade" : "12th"
}, {
"subject" : "art",
"grade" : "10th"
}]
}],
"highlights" : [{
"path" : "teachers.classes.subject",
"score" : 1.502043604850769,
"texts" : [{ "type" : "Hit", "value" : "science" }]
}],
"score" : 0.77798593044281006
}
1
2

要了解有关这些查询的更多信息,请参阅关于查询。

要了解有关此查询的更多信息,请参阅关于查询。

1package main
2
3import (
4 "context"
5 "fmt"
6
7 "go.mongodb.org/mongo-driver/bson"
8 "go.mongodb.org/mongo-driver/mongo"
9 "go.mongodb.org/mongo-driver/mongo/options"
10)
11
12func main() {
13 // connect to your Atlas cluster
14 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>"))
15 if err != nil {
16 panic(err)
17 }
18 defer client.Disconnect(context.TODO())
19
20 // set namespace
21 collection := client.Database("local_school_district").Collection("schools")
22
23 // define pipeline stages
24 searchStage := bson.D{{"$search", bson.M{
25 "index": "embedded-documents-tutorial",
26 "embeddedDocument": bson.M{
27 "path": "teachers", "operator": bson.M{
28 "compound": bson.M{
29 "must": bson.A{
30 bson.M{
31 "text": bson.D{
32 {"path", "teachers.first"},
33 {"query", "John"},
34 },
35 },
36 },
37 "should": bson.A{
38 bson.M{
39 "text": bson.D{
40 {"path", "teachers.last"},
41 {"query", "Smith"},
42 },
43 },
44 },
45 },
46 },
47 },
48 "highlight": bson.D{{"path", "teachers.last"}},
49 }}}
50
51 projectStage := bson.D{{"$project", bson.D{{"teachers", 1}, {"score", bson.D{{"$meta", "searchScore"}}}, {"highlights", bson.D{{"$meta", "searchHighlights"}}}}}}
52
53 // run pipeline
54 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, projectStage})
55 if err != nil {
56 panic(err)
57 }
58
59 // print results
60 var results []bson.D
61 if err = cursor.All(context.TODO(), &results); err != nil {
62 panic(err)
63 }
64 for _, result := range results {
65 fmt.Println(result)
66 }
67}

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

要了解有关此查询的更多信息,请参阅关于查询。

1package main
2
3import (
4 "context"
5 "fmt"
6
7 "go.mongodb.org/mongo-driver/bson"
8 "go.mongodb.org/mongo-driver/mongo"
9 "go.mongodb.org/mongo-driver/mongo/options"
10)
11
12func main() {
13 // connect to your Atlas cluster
14 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>"))
15 if err != nil {
16 panic(err)
17 }
18 defer client.Disconnect(context.TODO())
19
20 // set namespace
21 collection := client.Database("local_school_district").Collection("schools")
22
23 // define pipeline stages
24 searchStage := bson.D{{"$search", bson.M{
25 "index": "embedded-documents-tutorial",
26 "embeddedDocument": bson.D{
27 {"path", "clubs.sports"},
28 {"operator",
29 bson.D{
30 {"queryString",
31 bson.D{
32 {"defaultPath", "clubs.sports.club_name"},
33 {"query", "dodgeball OR frisbee"},
34 },
35 },
36 },
37 },
38 },
39 }}}
40
41 projectStage := bson.D{{"$project", bson.D{{"name", 1}, {"clubs.sports", 1}, {"score", bson.D{{"$meta", "searchScore"}}}}}}
42
43 // run pipeline
44 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, projectStage})
45 if err != nil {
46 panic(err)
47 }
48
49 // print results
50 var results []bson.D
51 if err = cursor.All(context.TODO(), &results); err != nil {
52 panic(err)
53 }
54 for _, result := range results {
55 fmt.Println(result)
56 }
57}

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

要了解有关此查询的更多信息,请参阅关于查询。

1package main
2
3import (
4 "context"
5 "fmt"
6
7 "go.mongodb.org/mongo-driver/bson"
8 "go.mongodb.org/mongo-driver/mongo"
9 "go.mongodb.org/mongo-driver/mongo/options"
10)
11
12func main() {
13 // connect to your Atlas cluster
14 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>"))
15 if err != nil {
16 panic(err)
17 }
18 defer client.Disconnect(context.TODO())
19
20 // set namespace
21 collection := client.Database("local_school_district").Collection("schools")
22
23 // define pipeline stages
24 searchStage := bson.D{{"$search", bson.M{
25 "index": "embedded-documents-tutorial",
26 "embeddedDocument": bson.M{
27 "path": "teachers",
28 "operator": bson.M{
29 "compound": bson.M{
30 "must": bson.A{
31 bson.M{
32 "embeddedDocument": bson.M{
33 "path": "teachers.classes",
34 "operator": bson.M{
35 "compound": bson.M{
36 "must": bson.A{
37 bson.M{
38 "text": bson.D{
39 {"path", "teachers.classes.grade"},
40 {"query", "12th"},
41 },
42 },
43 bson.M{
44 "text": bson.D{
45 {"path", "teachers.classes.subject"},
46 {"query", "science"},
47 },
48 },
49 },
50 },
51 },
52 },
53 },
54 },
55 "should": bson.A{
56 bson.M{
57 "text": bson.D{
58 {"path", "teachers.last"},
59 {"query", "Smith"},
60 },
61 },
62 },
63 },
64 },
65 },
66 "highlight": bson.D{{"path", "teachers.classes.subject"}},
67 }}}
68
69 projectStage := bson.D{{"$project", bson.D{{"teachers", 1}, {"score", bson.D{{"$meta", "searchScore"}}}, {"highlights", bson.D{{"$meta", "searchHighlights"}}}}}}
70
71 // run pipeline
72 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, projectStage})
73 if err != nil {
74 panic(err)
75 }
76
77 // print results
78 var results []bson.D
79 if err = cursor.All(context.TODO(), &results); err != nil {
80 panic(err)
81 }
82 for _, result := range results {
83 fmt.Println(result)
84 }
85}

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

3
go run basic-embedded-documents-search.go
1[
2 {_id 1}
3 {teachers [[
4 {first Jane}
5 {last Earwhacker}
6 {classes [[{subject art} {grade 9th}] [{subject science} {grade 12th}]]}
7 ] [
8 {first John}
9 {last Smith}
10 {classes [[{subject math} {grade 12th}] [{subject art} {grade 10th}]]}
11 ]]}
12 {score 0.7830756902694702}
13 {highlights [[
14 {score 1.4921371936798096}
15 {path teachers.last}
16 {texts [[{value Smith} {type hit}]]}
17 ]]}
18]
19[
20 {_id 2}
21 {teachers [[
22 {first Jane}
23 {last Smith}
24 {classes [[{subject science} {grade 9th}] [{subject math} {grade 12th}]]}
25 ] [
26 {first John}
27 {last Redman}
28 {classes [[{subject art} {grade 12th}]]}
29 ]]}
30 {score 0.468008816242218}
31 {highlights [[
32 {score 1.4702850580215454}
33 {path teachers.last}
34 {texts [[{value Smith} {type hit}]]}
35 ]]}
36]

结果中的两个文档包含名字为 John 的教师。_id: 1 的文档排名较高,因为它包含一位名字为 John 且姓氏为 Smith 的教师。

go run complex-embedded-documents-search.go
1[
2 {_id 2}
3 {name Lincoln High}
4 {clubs [
5 {sports [
6 [
7 {club_name dodgeball}
8 {description provides students an opportunity to play dodgeball by throwing balls to eliminate the members of the opposing team while avoiding being hit themselves.}
9 ] [
10 {club_name martial arts}
11 {description provides students an opportunity to learn self-defense or combat that utilize physical skill and coordination without weapons.}
12 ]
13 ]}
14 ]}
15 {score 0.633669912815094}
16]
17[
18 {_id 1}
19 {name Evergreen High}
20 {clubs [
21 {sports [
22 [
23 {club_name archery}
24 {description provides students an opportunity to practice and hone the skill of using a bow to shoot arrows in a fun and safe environment.}
25 ] [
26 {club_name ultimate frisbee}
27 {description provides students an opportunity to play frisbee and learn the basics of holding the disc and complete passes.}
28 ]
29 ]}
30 ]}
31 {score 0.481589138507843}
32]

结果中的两个文件显示提供学生可以 dodgeballfrisbee 的俱乐部的学校。

go run nested-embedded-documents-search.go
1[
2 {_id 0}
3 {teachers [[
4 {first Jane}
5 {last Smith}
6 {classes [[{subject art of science} {grade 12th}] [{subject applied science and practical science} {grade 9th}] [{subject remedial math} {grade 12th}] [{subject science} {grade 10th}]]}
7 ] [
8 {first Bob}
9 {last Green}
10 {classes [[{subject science of art} {grade 11th}] [{subject art art art} {grade 10th}]]}
11 ]]}
12 {score 0.9415585994720459}
13 {highlights [[
14 {score 0.7354040145874023}
15 {path teachers.classes.subject}
16 {texts [[{value art of } {type text}] [{value science} {type hit}]]}
17 ] [
18 {score 0.7871346473693848}
19 {path teachers.classes.subject}
20 {texts [[{value applied } {type text}] [{value science} {type hit}] [{value and practical } {type text}] [{value science} {type hit}]]}
21 ] [
22 {score 0.7581484317779541}
23 {path teachers.classes.subject}
24 {texts [[{value science} {type hit}]]}
25 ] [
26 {score 0.7189631462097168}
27 {path teachers.classes.subject}
28 {texts [[{value science} {type hit}] [{value of art} {type text}]]}
29 ]]}
30]
31[
32 {_id 1}
33 {teachers [[
34 {first Jane}
35 {last Earwhacker}
36 {classes [[{subject art} {grade 9th}] [{subject science} {grade 12th}]]}
37 ] [
38 {first John}
39 {last Smith}
40 {classes [[{subject math} {grade 12th}] [{subject art} {grade 10th}]]}
41 ]]}
42 {score 0.7779859304428101}
43 {highlights [[
44 {score 1.502043604850769}
45 {path teachers.classes.subject}
46 {texts [[{value science} {type hit}]]}
47 ]]}
48]

结果中的两个文档包含教授 12th 年级 science 的教师。带有 _id: 0 的文档包含一位姓氏为 Smith 的教师,该教师教授 12th 年级的 science

1
junit
4.11 或更高版本
mongodb-driver-sync
4.3.0 或更高版本
slf4j-log4j12
1.7.30 或更高版本
2
3

要了解有关这些查询的更多信息,请参阅关于查询。

要了解有关此查询的更多信息,请参阅关于查询。

1import java.util.Arrays;
2import java.util.List;
3
4import static com.mongodb.client.model.Aggregates.limit;
5import static com.mongodb.client.model.Aggregates.project;
6import static com.mongodb.client.model.Projections.*;
7import com.mongodb.client.MongoClient;
8import com.mongodb.client.MongoClients;
9import com.mongodb.client.MongoCollection;
10import com.mongodb.client.MongoDatabase;
11import org.bson.Document;
12
13public class BasicEmbeddedDocumentsSearch {
14 public static void main( String[] args ) {
15 // define clauses
16 List<Document> mustClause =
17 List.of(
18 new Document(
19 "text",
20 new Document("path", "teachers.first")
21 .append("query", "John")));
22 List<Document> shouldClause =
23 List.of(
24 new Document(
25 "text",
26 new Document("path", "teachers.last")
27 .append("query", "Smith")));
28
29 // define query
30 Document agg =
31 new Document("$search", new Document("index", "embedded-documents-tutorial")
32 .append("embeddedDocument",
33 new Document("path", "teachers")
34 .append("operator",
35 new Document("compound",
36 new Document("must", mustClause)
37 .append("should", shouldClause))))
38 .append("highlight", new Document("path", "teachers.last")));
39
40 // specify connection
41 String uri = "<connection-string>";
42
43 // establish connection and set namespace
44 try (MongoClient mongoClient = MongoClients.create(uri)) {
45 MongoDatabase database = mongoClient.getDatabase("local_school_district");
46 MongoCollection<Document> collection = database.getCollection("schools");
47
48 // run query and print results
49 collection.aggregate(Arrays.asList(agg,
50 limit(5),
51 project(Document.parse("{score: {$meta: 'searchScore'}, _id: 0, teachers: 1, highlights: {$meta: 'searchHighlights'}}"))))
52 .forEach(doc -> System.out.println(doc.toJson()));
53 }
54 }
55}

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

要了解有关此查询的更多信息,请参阅关于查询。

1import java.util.Arrays;
2import static com.mongodb.client.model.Aggregates.limit;
3import static com.mongodb.client.model.Aggregates.project;
4import static com.mongodb.client.model.Projections.computed;
5import static com.mongodb.client.model.Projections.fields;
6import static com.mongodb.client.model.Projections.include;
7import com.mongodb.client.MongoClient;
8import com.mongodb.client.MongoClients;
9import com.mongodb.client.MongoCollection;
10import com.mongodb.client.MongoDatabase;
11import org.bson.Document;
12
13public class ComplexEmbeddedDocumentQuery {
14 public static void main(String[] args) {
15 // connect to your Atlas cluster
16 String uri = "<connection-string>";
17
18 try (MongoClient mongoClient = MongoClients.create(uri)) {
19 // set namespace
20 MongoDatabase database = mongoClient.getDatabase("my_test");
21 MongoCollection<Document> collection = database.getCollection("schools");
22
23 // define pipeline
24 Document agg = new Document("$search",
25 new Document("embeddedDocument",
26 new Document("path", "clubs.sports")
27 .append("operator",
28 new Document("queryString",
29 new Document("defaultPath", "clubs.sports.club_name")
30 .append("query", "dodgeball OR frisbee")))));
31
32 // run pipeline and print results
33 collection.aggregate(Arrays.asList(agg,
34 limit(5),
35 project(fields(
36 include("name", "clubs.sports"),
37 computed("score", new Document("$meta", "searchScore"))))))
38 .forEach(doc -> System.out.println(doc.toJson()));
39 }
40 }
41}

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

要了解有关此查询的更多信息,请参阅关于查询。

1import java.util.Arrays;
2import java.util.List;
3
4import static com.mongodb.client.model.Aggregates.limit;
5import static com.mongodb.client.model.Aggregates.project;
6import com.mongodb.client.MongoClient;
7import com.mongodb.client.MongoClients;
8import com.mongodb.client.MongoCollection;
9import com.mongodb.client.MongoDatabase;
10import org.bson.Document;
11
12public class NestedEmbeddedDocumentsSearch {
13 public static void main( String[] args ) {
14 // define clauses
15 List<Document> nestedMustClause =
16 List.of(
17 new Document(
18 "text",
19 new Document("path", "teachers.classes.grade")
20 .append("query", "12th")),
21 new Document("text",
22 new Document("path", "teachers.classes.subject")
23 .append("query", "science")));
24 List<Document> mustClause =
25 List.of(
26 new Document(
27 "embeddedDocument",
28 new Document("path", "teachers.classes")
29 .append("operator", new Document("compound",
30 new Document("must", nestedMustClause)))));
31 List<Document> shouldClause =
32 List.of(
33 new Document(
34 "text",
35 new Document("path", "teachers.last")
36 .append("query", "Smith")));
37
38 // define query
39 Document agg =
40 new Document(
41 "$search",
42 new Document("index", "embedded-documents-tutorial")
43 .append("embeddedDocument",
44 new Document("path", "teachers")
45 .append("operator",
46 new Document("compound",
47 new Document("must", mustClause)
48 .append("should", shouldClause))))
49 .append("highlight", new Document("path", "teachers.classes.subject")));
50
51 // specify connection
52 String uri = "<connection-string>";
53
54 // establish connection and set namespace
55 try (MongoClient mongoClient = MongoClients.create(uri)) {
56 MongoDatabase database = mongoClient.getDatabase("local_school_district");
57 MongoCollection<Document> collection = database.getCollection("schools");
58
59 // run query and print results
60 collection.aggregate(Arrays.asList(agg,
61 limit(5),
62 project(Document.parse("{score: {$meta: 'searchScore'}, _id: 0, teachers: 1, highlights: {$meta: 'searchHighlights'}}"))))
63 .forEach(doc -> System.out.println(doc.toJson()));
64 }
65 }
66}

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

4
javac BasicEmbeddedDocumentsSearch.java
java BasicEmbeddedDocumentsSearch
1{
2 "teachers": [{
3 "first": "Jane",
4 "last": "Earwhacker",
5 "classes": [{
6 {"subject": "art", "grade": "9th"},
7 {"subject": "science", "grade": "12th"}
8 ]
9 }, {
10 "first": "John",
11 "last": "Smith",
12 "classes": [
13 {"subject": "math", "grade": "12th"},
14 {"subject": "art", "grade": "10th"}
15 ]
16 }],
17 "score": 0.7830756902694702,
18 "highlights": [{
19 "score": 1.4921371936798096,
20 "path": "teachers.last",
21 "texts": [{"value": "Smith", "type": "hit"}]
22 }]
23}
24{
25 "teachers": [{
26 "first": "Jane",
27 "last": "Smith",
28 "classes": [
29 {"subject": "science", "grade": "9th"},
30 {"subject": "math", "grade": "12th"}
31 ]
32 }, {
33 "first": "John",
34 "last": "Redman",
35 "classes": [
36 {"subject": "art", "grade": "12th"}
37 ]
38 }],
39 "score": 0.468008816242218,
40 "highlights": [{
41 "score": 1.4702850580215454,
42 "path": "teachers.last",
43 "texts": [{"value": "Smith", "type": "hit"}]
44 }]
45}

结果中的两个文档包含名字为 John 的教师。_id: 1 的文档排名较高,因为它包含一位名字为 John 且姓氏为 Smith 的教师。

javac ComplexEmbeddedDocumentQuery.java
java ComplexEmbeddedDocumentQuery
1{
2 "_id": 2,
3 "name": "Lincoln High",
4 "clubs": {
5 "sports": [
6 {"club_name": "dodgeball", "description": "provides students an opportunity to play dodgeball by throwing balls to eliminate the members of the opposing team while avoiding being hit themselves."},
7 {"club_name": "martial arts", "description": "provides students an opportunity to learn self-defense or combat that utilize physical skill and coordination without weapons."}
8 ]
9 },
10 "score": 0.633669912815094
11}
12{
13 "_id": 1,
14 "name": "Evergreen High",
15 "clubs": {
16 "sports": [
17 {"club_name": "archery", "description": "provides students an opportunity to practice and hone the skill of using a bow to shoot arrows in a fun and safe environment."},
18 {"club_name": "ultimate frisbee", "description": "provides students an opportunity to play frisbee and learn the basics of holding the disc and complete passes."}
19 ]
20 },
21 "score": 0.481589138507843
22}

结果中的两个文件显示提供学生可以 dodgeballfrisbee 的俱乐部的学校。

javac NestedEmbeddedDocumentsSearch.java
java NestedEmbeddedDocumentsSearch
1{
2 "teachers": [{
3 "first": "Jane",
4 "last": "Smith",
5 "classes": [
6 {"subject": "art of science", "grade": "12th"},
7 {"subject": "applied science and practical science", "grade": "9th"},
8 {"subject": "remedial math", "grade": "12th"},
9 {"subject": "science", "grade": "10th"}
10 ]
11 }, {
12 "first": "Bob",
13 "last": "Green",
14 "classes": [
15 {"subject": "science of art", "grade": "11th"},
16 {"subject": "art art art", "grade": "10th"}
17 ]
18 }],
19 "score": 0.9415585994720459,
20 "highlights": [{
21 "score": 0.7354040145874023,
22 "path": "teachers.classes.subject",
23 "texts": [
24 {"value": "art of ", "type": "text"},
25 {"value": "science", "type": "hit"}
26 ]
27 }, {
28 "score": 0.7871346473693848,
29 "path": "teachers.classes.subject",
30 "texts": [
31 {"value": "applied ", "type": "text"},
32 {"value": "science", "type": "hit"},
33 {"value": " and practical ", "type": "text"},
34 {"value": "science", "type": "hit"}
35 ]
36 }, {
37 "score": 0.7581484317779541,
38 "path": "teachers.classes.subject",
39 "texts": [
40 {"value": "science", "type": "hit"}
41 ]
42 }, {
43 "score": 0.7189631462097168,
44 "path": "teachers.classes.subject",
45 "texts": [
46 {"value": "science", "type": "hit"},
47 {"value": " of art", "type": "text"}
48 ]
49 }]
50}
51{
52 "teachers": [{
53 "first": "Jane",
54 "last": "Earwhacker",
55 "classes": [
56 {"subject": "art", "grade": "9th"},
57 {"subject": "science", "grade": "12th"}
58 ]
59 }, {
60 "first": "John",
61 "last": "Smith",
62 "classes": [
63 {"subject": "math", "grade": "12th"},
64 {"subject": "art", "grade": "10th"}
65 ]
66 }],
67 "score": 0.7779859304428101,
68 "highlights": [{
69 "score": 1.502043604850769,
70 "path": "teachers.classes.subject",
71 "texts": [{"value": "science", "type": "hit"}]
72 }]
73}

结果中的两个文档包含教授 12th 年级 science 的教师。带有 _id: 0 的文档包含一位姓氏为 Smith 的教师,该教师教授 12th 年级的 science

1
mongodb-driver-kotlin-coroutine
4.10.0 或更高版本
2
3

要了解有关这些查询的更多信息,请参阅关于查询。

要了解有关此查询的更多信息,请参阅关于查询。

1import com.mongodb.client.model.Aggregates.limit
2import com.mongodb.client.model.Aggregates.project
3import com.mongodb.client.model.Projections.*
4import com.mongodb.kotlin.client.coroutine.MongoClient
5import kotlinx.coroutines.runBlocking
6import org.bson.Document
7
8fun main() {
9 // establish connection and set namespace
10 val uri = "<connection-string>"
11 val mongoClient = MongoClient.create(uri)
12 val database = mongoClient.getDatabase("local_school_district")
13 val collection = database.getCollection<Document>("schools")
14
15 runBlocking {
16 // define clauses
17 val mustClauses = listOf(
18 Document(
19 "text",
20 Document("path", "teachers.first").append("query", "John")
21 )
22 )
23
24 val shouldClauses = listOf(
25 Document(
26 "text",
27 Document("path", "teachers.last")
28 .append("query", "Smith")
29 )
30 )
31
32 // define query
33 val agg = Document(
34 "\$search", Document("index", "embedded-documents-tutorial")
35 .append(
36 "embeddedDocument",
37 Document("path", "teachers")
38 .append(
39 "operator",
40 Document(
41 "compound",
42 Document("must", mustClauses)
43 .append("should", shouldClauses)
44 )
45 )
46 )
47 .append("highlight", Document("path", "teachers.last"))
48 )
49
50 // run query and print results
51 val resultsFlow = collection.aggregate<Document>(
52 listOf(
53 agg,
54 limit(5),
55 project(fields(
56 excludeId(),
57 include("teachers"),
58 computed("score", Document("\$meta", "searchScore")),
59 computed("highlights", Document("\$meta", "searchHighlights"))
60 ))
61 )
62 )
63 resultsFlow.collect { println(it) }
64 }
65 mongoClient.close()
66}

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

要了解有关此查询的更多信息,请参阅关于查询。

1import com.mongodb.client.model.Aggregates.limit
2import com.mongodb.client.model.Aggregates.project
3import com.mongodb.client.model.Projections.*
4import com.mongodb.kotlin.client.coroutine.MongoClient
5import kotlinx.coroutines.runBlocking
6import org.bson.Document
7
8fun main() {
9 // connect to your Atlas cluster
10 val uri = "<connection-string>"
11 val mongoClient = MongoClient.create(uri)
12
13 // set namespace
14 val database = mongoClient.getDatabase("local_school_district")
15 val collection = database.getCollection<Document>("schools")
16
17 runBlocking {
18 // define pipeline
19 val agg = Document(
20 "\$search",
21 Document("index", "embedded-documents-tutorial")
22 .append("embeddedDocument", Document("path", "clubs.sports")
23 .append(
24 "operator",
25 Document(
26 "queryString",
27 Document("defaultPath", "clubs.sports.club_name")
28 .append("query", "dodgeball OR frisbee")
29 )
30 )
31 )
32 )
33
34 // run pipeline and print results
35 val resultsFlow = collection.aggregate<Document>(
36 listOf(
37 agg,
38 limit(5),
39 project(
40 fields(
41 include("name", "clubs.sports"),
42 computed("score", Document("\$meta", "searchScore"))
43 )
44 )
45 )
46 )
47 resultsFlow.collect { println(it) }
48 }
49 mongoClient.close()
50}

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

要了解有关此查询的更多信息,请参阅关于查询。

1import com.mongodb.client.model.Aggregates.limit
2import com.mongodb.client.model.Aggregates.project
3import com.mongodb.client.model.Projections.*
4import com.mongodb.kotlin.client.coroutine.MongoClient
5import kotlinx.coroutines.runBlocking
6import org.bson.Document
7
8fun main() {
9 // establish connection and set namespace
10 val uri = "<connection-string>"
11 val mongoClient = MongoClient.create(uri)
12 val database = mongoClient.getDatabase("local_school_district")
13 val collection = database.getCollection<Document>("schools")
14
15 runBlocking {
16 // define clauses
17 val nestedMustClauses = listOf(
18 Document("text", Document("path", "teachers.classes.grade")
19 .append("query", "12th")),
20 Document("text", Document("path", "teachers.classes.subject")
21 .append("query", "science"))
22 )
23
24 val mustClauses = listOf(
25 Document(
26 "embeddedDocument",
27 Document("path", "teachers.classes")
28 .append(
29 "operator", Document(
30 "compound",
31 Document("must", nestedMustClauses)
32 )
33 )
34 )
35 )
36
37 val shouldClauses = listOf(
38 Document(
39 "text",
40 Document("path", "teachers.last")
41 .append("query", "Smith")
42 )
43 )
44
45 // define query
46 val agg = Document(
47 "\$search",
48 Document("index", "embedded-documents-tutorial")
49 .append(
50 "embeddedDocument",
51 Document("path", "teachers")
52 .append(
53 "operator",
54 Document(
55 "compound",
56 Document("must", mustClauses)
57 .append("should", shouldClauses)
58 )
59 )
60 )
61 .append("highlight", Document("path", "teachers.classes.subject"))
62 )
63
64 // run query and print results
65 val resultsFlow = collection.aggregate<Document>(
66 listOf(
67 agg,
68 limit(5),
69 project(fields(
70 excludeId(),
71 include("teachers"),
72 computed("score", Document("\$meta", "searchScore")),
73 computed("highlights", Document("\$meta", "searchHighlights"))
74 ))
75 )
76 )
77 resultsFlow.collect { println(it) }
78 }
79 mongoClient.close()
80}

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

4

当你在 IDE 中运行 BasicEmbeddedDocumentsSearch.kt 程序时,它会打印以下文档:

Document{{teachers=[Document{{first=Jane, last=Earwhacker, classes=[Document{{subject=art, grade=9th}}, Document{{subject=science, grade=12th}}]}}, Document{{first=John, last=Smith, classes=[Document{{subject=math, grade=12th}}, Document{{subject=art, grade=10th}}]}}], score=0.7830756902694702, highlights=[Document{{score=1.4921371936798096, path=teachers.last, texts=[Document{{value=Smith, type=hit}}]}}]}}
Document{{teachers=[Document{{first=Jane, last=Smith, classes=[Document{{subject=science, grade=9th}}, Document{{subject=math, grade=12th}}]}}, Document{{first=John, last=Redman, classes=[Document{{subject=art, grade=12th}}]}}], score=0.468008816242218, highlights=[Document{{score=1.4702850580215454, path=teachers.last, texts=[Document{{value=Smith, type=hit}}]}}]}}

结果中的两个文档包含名字为 John 的教师。_id: 1 的文档排名较高,因为它包含一位名字为 John 且姓氏为 Smith 的教师。

当你在 IDE 中运行 ComplexEmbeddedDocumentQuery.kt 程序时,它会打印以下文档:

Document{{_id=2, name=Lincoln High, clubs=Document{{sports=[Document{{club_name=dodgeball, description=provides students an opportunity to play dodgeball by throwing balls to eliminate the members of the opposing team while avoiding being hit themselves.}}, Document{{club_name=martial arts, description=provides students an opportunity to learn self-defense or combat that utilize physical skill and coordination without weapons.}}]}}, score=0.633669912815094}}
Document{{_id=1, name=Evergreen High, clubs=Document{{sports=[Document{{club_name=archery, description=provides students an opportunity to practice and hone the skill of using a bow to shoot arrows in a fun and safe environment.}}, Document{{club_name=ultimate frisbee, description=provides students an opportunity to play frisbee and learn the basics of holding the disc and complete passes.}}]}}, score=0.481589138507843}}

结果中的两个文件显示提供学生可以 dodgeballfrisbee 的俱乐部的学校。

当你在 IDE 中运行 NestedEmbeddedDocumentsSearch.kt 程序时,它会打印以下文档:

Document{{teachers=[Document{{first=Jane, last=Smith, classes=[Document{{subject=art of science, grade=12th}}, Document{{subject=applied science and practical science, grade=9th}}, Document{{subject=remedial math, grade=12th}}, Document{{subject=science, grade=10th}}]}}, Document{{first=Bob, last=Green, classes=[Document{{subject=science of art, grade=11th}}, Document{{subject=art art art, grade=10th}}]}}], score=0.9415585994720459, highlights=[Document{{score=0.7354040145874023, path=teachers.classes.subject, texts=[Document{{value=art of , type=text}}, Document{{value=science, type=hit}}]}}, Document{{score=0.7871346473693848, path=teachers.classes.subject, texts=[Document{{value=applied , type=text}}, Document{{value=science, type=hit}}, Document{{value= and practical , type=text}}, Document{{value=science, type=hit}}]}}, Document{{score=0.7581484317779541, path=teachers.classes.subject, texts=[Document{{value=science, type=hit}}]}}, Document{{score=0.7189631462097168, path=teachers.classes.subject, texts=[Document{{value=science, type=hit}}, Document{{value= of art, type=text}}]}}]}}
Document{{teachers=[Document{{first=Jane, last=Earwhacker, classes=[Document{{subject=art, grade=9th}}, Document{{subject=science, grade=12th}}]}}, Document{{first=John, last=Smith, classes=[Document{{subject=math, grade=12th}}, Document{{subject=art, grade=10th}}]}}], score=0.7779859304428101, highlights=[Document{{score=1.502043604850769, path=teachers.classes.subject, texts=[Document{{value=science, type=hit}}]}}]}}

结果中的两个文档包含教授 12th 年级 science 的教师。带有 _id: 0 的文档包含一位姓氏为 Smith 的教师,该教师教授 12th 年级的 science

1
2

要了解有关这些查询的更多信息,请参阅关于查询。

要了解有关此查询的更多信息,请参阅关于查询。

1const { MongoClient } = require("mongodb");
2
3// connect to your Atlas cluster
4const uri = "<connection-string>";
5const client = new MongoClient(uri);
6
7async function run() {
8 try {
9 await client.connect();
10
11 // set namespace
12 const database = client.db("local_school_district");
13 const coll = database.collection("schools");
14
15 // define pipeline
16 const agg = [
17 {
18 '$search': {
19 'index': 'embedded-documents-tutorial',
20 'embeddedDocument': {
21 'path': 'teachers',
22 'operator': {
23 'compound': {
24 'must': [
25 {
26 'text': {
27 'path': 'teachers.first',
28 'query': 'John'
29 }
30 }
31 ],
32 'should': [
33 {
34 'text': {
35 'path': 'teachers.last',
36 'query': 'Smith'
37 }
38 }
39 ]
40 }
41 }
42 },
43 'highlight': {
44 'path': 'teachers.last'
45 }
46 }
47 }, {
48 '$project': {
49 '_id': 1,
50 'teachers': 1,
51 'score': {
52 '$meta': 'searchScore'
53 },
54 'highlights': {
55 '$meta': 'searchHighlights'
56 }
57 }
58 }
59 ];
60
61 // run pipeline
62 const result = coll.aggregate(agg);
63
64 // print results
65 await result.forEach((doc) => console.dir(JSON.stringify(doc)));
66 } finally {
67 await client.close();
68 }
69}
70run().catch(console.dir);

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

要了解有关此查询的更多信息,请参阅关于查询。

1const { MongoClient } = require("mongodb");
2
3// connect to your Atlas cluster
4const uri = "<connection-string>";
5const client = new MongoClient(uri);
6
7async function run() {
8 try {
9 await client.connect();
10
11 // set namespace
12 const database = client.db("local_school_district");
13 const coll = database.collection("schools");
14
15 // define pipeline
16 const agg = [
17 {
18 '$search': {
19 'index': 'embedded-documents-tutorial',
20 'embeddedDocument': {
21 'path': 'clubs.sports',
22 'operator': {
23 'queryString': {
24 'defaultPath': 'clubs.sports.club_name',
25 'query': 'dodgeball OR frisbee'
26 }
27 }
28 }
29 }
30 }, {
31 '$project': {
32 '_id': 1,
33 'name': 1,
34 'clubs.sports': 1,
35 'score': {
36 '$meta': 'searchScore'
37 }
38 }
39 }
40 ];
41
42 // run pipeline
43 const result = coll.aggregate(agg);
44
45 // print results
46 await result.forEach((doc) => console.dir(JSON.stringify(doc)));
47 } finally {
48 await client.close();
49 }
50}
51run().catch(console.dir);

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

要了解有关此查询的更多信息,请参阅关于查询。

1const { MongoClient } = require("mongodb");
2
3// connect to your Atlas cluster
4const uri = "<connection-string>";
5
6const client = new MongoClient(uri);
7
8async function run() {
9 try {
10 await client.connect();
11
12 // set namespace
13 const database = client.db("local_school_district");
14 const coll = database.collection("schools");
15
16 // define pipeline
17 const agg = [
18 {
19 '$search': {
20 'index': 'embedded-documents-tutorial',
21 'embeddedDocument': {
22 'path': 'teachers',
23 'operator': {
24 'compound': {
25 'must': [
26 {
27 'embeddedDocument': {
28 'path': 'teachers.classes',
29 'operator': {
30 'compound': {
31 'must': [
32 {
33 'text': {
34 'path': 'teachers.classes.grade',
35 'query': '12th'
36 }
37 }, {
38 'text': {
39 'path': 'teachers.classes.subject',
40 'query': 'science'
41 }
42 }
43 ]
44 }
45 }
46 }
47 }
48 ],
49 'should': [
50 {
51 'text': {
52 'path': 'teachers.last',
53 'query': 'smith'
54 }
55 }
56 ]
57 }
58 }
59 },
60 'highlight': {
61 'path': 'teachers.classes.subject'
62 }
63 }
64 }, {
65 '$project': {
66 '_id': 1,
67 'teachers': 1,
68 'score': {
69 '$meta': 'searchScore'
70 },
71 'highlights': {
72 '$meta': 'searchHighlights'
73 }
74 }
75 }
76 ];
77
78 // run pipeline
79 const result = coll.aggregate(agg);
80
81 // print results
82 await result.forEach((doc) => console.dir(JSON.stringify(doc)));
83 } finally {
84 await client.close();
85 }
86}
87run().catch(console.dir);

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

3
node basic-embedded-documents-query.js
1{
2 "_id":1,
3 "teachers":[{
4 "first":"Jane",
5 "last":"Earwhacker",
6 "classes":[{"subject":"art","grade":"9th"},{"subject":"science","grade":"12th"}]
7 },{
8 "first":"John",
9 "last":"Smith",
10 "classes":[{"subject":"math","grade":"12th"},{"subject":"art","grade":"10th"}]
11 }],
12 "score":0.7830756902694702,
13 "highlights":[{
14 "score":1.4921371936798096,
15 "path":"teachers.last",
16 "texts":[{"value":"Smith","type":"hit"}]
17 }]
18}
19{
20 "_id":2,
21 "teachers":[{
22 "first":"Jane",
23 "last":"Smith",
24 "classes":[{"subject":"science","grade":"9th"},{"subject":"math","grade":"12th"}]
25 },{
26 "first":"John",
27 "last":"Redman",
28 "classes":[{"subject":"art","grade":"12th"}]
29 }],
30 "score":0.468008816242218,
31 "highlights":[{
32 "score":1.4702850580215454,
33 "path":"teachers.last",
34 "texts":[{"value":"Smith","type":"hit"}]
35 }]
36}

结果中的两个文档包含名字为 John 的教师。_id: 1 的文档排名较高,因为它包含一位名字为 John 且姓氏为 Smith 的教师。

node complex-embedded-documents-query.js
1{
2 "_id":2,
3 "name":"Lincoln High",
4 "clubs":{
5 "sports":[{
6 "club_name":"dodgeball",
7 "description":"provides students an opportunity to play dodgeball by throwing balls to eliminate the members of the opposing team while avoiding being hit themselves."
8 },{
9 "club_name":"martial arts",
10 "description":"provides students an opportunity to learn self-defense or combat that utilize physical skill and coordination without weapons."
11 }
12 ]},
13 "score":0.633669912815094
14}
15{
16 "_id":1,
17 "name":"Evergreen High",
18 "clubs":{
19 "sports":[{
20 "club_name":"archery",
21 "description":"provides students an opportunity to practice and hone the skill of using a bow to shoot arrows in a fun and safe environment."
22 },{
23 "club_name":"ultimate frisbee",
24 "description":"provides students an opportunity to play frisbee and learn the basics of holding the disc and complete passes."
25 }]
26 },
27 "score":0.481589138507843
28}

结果中的两个文件显示提供学生可以 dodgeballfrisbee 的俱乐部的学校。

node nested-embedded-documents-query.js
1{
2 "_id":0,
3 "teachers":[{
4 "first":"Jane",
5 "last":"Smith",
6 "classes":[{"subject":"art of science","grade":"12th"},{"subject":"applied science and practical science","grade":"9th"},{"subject":"remedial math","grade":"12th"},{"subject":"science","grade":"10th"}]
7 },{
8 "first":"Bob",
9 "last":"Green",
10 "classes":[{"subject":"science of art","grade":"11th"},{"subject":"art art art","grade":"10th"}]
11 }],
12 "score":0.9415585994720459,
13 "highlights":[{
14 "score":0.7354040145874023,
15 "path":"teachers.classes.subject",
16 "texts":[{"value":"art of ","type":"text"},{"value":"science","type":"hit"}]
17 },{
18 "score":0.7871346473693848,
19 "path":"teachers.classes.subject",
20 "texts":[{"value":"applied ","type":"text"},{"value":"science","type":"hit"},{"value":" and practical ","type":"text"},{"value":"science","type":"hit"}]
21 },{
22 "score":0.7581484317779541,
23 "path":"teachers.classes.subject",
24 "texts":[{"value":"science","type":"hit"}]
25 },{
26 "score":0.7189631462097168,
27 "path":"teachers.classes.subject",
28 "texts":[{"value":"science","type":"hit"},{"value":" of art","type":"text"}]
29 }]
30}
31{
32 "_id":1,
33 "teachers":[{
34 "first":"Jane",
35 "last":"Earwhacker",
36 "classes":[{"subject":"art","grade":"9th"},{"subject":"science","grade":"12th"}]
37 },{
38 "first":"John",
39 "last":"Smith",
40 "classes":[{"subject":"math","grade":"12th"},{"subject":"art","grade":"10th"}]
41 }],
42 "score":0.7779859304428101,
43 "highlights":[{
44 "score":1.502043604850769,
45 "path":"teachers.classes.subject",
46 "texts":[{"value":"science","type":"hit"}]
47 }]
48}

结果中的两个文档包含教授 12th 年级 science 的教师。带有 _id: 0 的文档包含一位姓氏为 Smith 的教师,该教师教授 12th 年级的 science

1
2

要了解有关这些查询的更多信息,请参阅关于查询。

要了解有关此查询的更多信息,请参阅关于查询。

1import pymongo
2
3# connect to your Atlas cluster
4client = pymongo.MongoClient('<connection-string')
5
6# define pipeline
7pipeline = [
8 {
9 '$search': {
10 'index': 'embedded-documents-tutorial',
11 'embeddedDocument': {
12 'path': 'teachers',
13 'operator': {
14 'compound': {
15 'must': [
16 {
17 'text': {
18 'path': 'teachers.first',
19 'query': 'John'
20 }
21 }
22 ],
23 'should': [
24 {
25 'text': {
26 'path': 'teachers.last',
27 'query': 'Smith'
28 }
29 }
30 ]
31 }
32 }
33 },
34 'highlight': {
35 'path': 'teachers.last'
36 }
37 }
38 }, {
39 '$project': {
40 '_id': 1,
41 'teachers': 1,
42 'score': {
43 '$meta': 'searchScore'
44 },
45 'highlights': {
46 '$meta': 'searchHighlights'
47 }
48 }
49 }
50]
51
52# run pipeline
53result = client['local_school_district']['schools'].aggregate(pipeline)
54
55# print results
56for i in result:
57 print(i)

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

要了解有关此查询的更多信息,请参阅关于查询。

1import pymongo
2
3# connect to your Atlas cluster
4client = pymongo.MongoClient('<connection-string>')
5
6# define pipeline
7pipeline = [
8 {
9 '$search': {
10 'index': 'embedded-documents-tutorial',
11 'embeddedDocument': {
12 'path': 'clubs.sports',
13 'operator': {
14 'queryString': {
15 'defaultPath': 'clubs.sports.club_name',
16 'query': 'dodgeball OR frisbee'
17 }
18 }
19 }
20 }
21 }, {
22 '$project': {
23 '_id': 1,
24 'name': 1,
25 'clubs.sports': 1,
26 'score': {
27 '$meta': 'searchScore'
28 }
29 }
30 }
31]
32
33# run pipeline
34result = client['local_school_district']['schools'].aggregate(pipeline)
35
36# print results
37for i in result:
38 print(i)

要了解有关此查询的更多信息,请参阅关于查询。

1import pymongo
2
3# connect to your Atlas cluster
4client = pymongo.MongoClient('<connection-string>')
5
6# define pipeline
7pipeline = [
8 {
9 '$search': {
10 'index': 'embedded-documents-tutorial',
11 'embeddedDocument': {
12 'path': 'teachers',
13 'operator': {
14 'compound': {
15 'must': [
16 {
17 'embeddedDocument': {
18 'path': 'teachers.classes',
19 'operator': {
20 'compound': {
21 'must': [
22 {
23 'text': {
24 'path': 'teachers.classes.grade',
25 'query': '12th'
26 }
27 }, {
28 'text': {
29 'path': 'teachers.classes.subject',
30 'query': 'science'
31 }
32 }
33 ]
34 }
35 }
36 }
37 }
38 ],
39 'should': [
40 {
41 'text': {
42 'path': 'teachers.last',
43 'query': 'smith'
44 }
45 }
46 ]
47 }
48 }
49 },
50 'highlight': {
51 'path': 'teachers.classes.subject'
52 }
53 }
54 }, {
55 '$project': {
56 '_id': 1,
57 'teachers': 1,
58 'score': {
59 '$meta': 'searchScore'
60 },
61 'highlights': {
62 '$meta': 'searchHighlights'
63 }
64 }
65 }
66]
67
68# run pipeline
69result = client['local_school_district']['schools'].aggregate(pipeline)
70
71# print results
72for i in result:
73 print(i)

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

3
python basic-embedded-documents-query.py
1{
2 '_id': 1,
3 'teachers': [{
4 'first': 'Jane',
5 'last': 'Earwhacker',
6 'classes': [{'subject': 'art', 'grade': '9th'}, {'subject': 'science', 'grade': '12th'}]
7 }, {
8 'first': 'John',
9 'last': 'Smith',
10 'classes': [{'subject': 'math', 'grade': '12th'}, {'subject': 'art', 'grade': '10th'}]
11 }],
12 'score': 0.7830756902694702,
13 'highlights': [{
14 'score': 1.4921371936798096,
15 'path': 'teachers.last',
16 'texts': [{'value': 'Smith', 'type': 'hit'}]
17 }]
18}
19{
20 '_id': 2,
21 'teachers': [{
22 'first': 'Jane',
23 'last': 'Smith',
24 'classes': [{'subject': 'science', 'grade': '9th'}, {'subject': 'math', 'grade': '12th'}]
25 }, {
26 'first': 'John',
27 'last': 'Redman',
28 'classes': [{'subject': 'art', 'grade': '12th'}]
29 }],
30 'score': 0.468008816242218,
31 'highlights': [{
32 'score': 1.4702850580215454,
33 'path': 'teachers.last',
34 'texts': [{'value': 'Smith', 'type': 'hit'}]
35 }]
36}

结果中的两个文档包含名字为 John 的教师。_id: 1 的文档排名较高,因为它包含一位名字为 John 且姓氏为 Smith 的教师。

python complex-embedded-documents-query.py
1{
2 '_id': 2,
3 'name': 'Lincoln High',
4 'clubs': {
5 'sports': [{
6 'club_name': 'dodgeball',
7 'description': 'provides students an opportunity to play dodgeball by throwing balls to eliminate the members of the opposing team while avoiding being hit themselves.'
8 }, {
9 'club_name': 'martial arts',
10 'description': 'provides students an opportunity to learn self-defense or combat that utilize physical skill and coordination without weapons.'
11 }]
12 },
13 'score': 0.633669912815094
14}
15{
16 '_id': 1,
17 'name': 'Evergreen High',
18 'clubs': {
19 'sports': [{
20 'club_name': 'archery',
21 'description': 'provides students an opportunity to practice and hone the skill of using a bow to shoot arrows in a fun and safe environment.'
22 }, {
23 'club_name': 'ultimate frisbee', 'description': 'provides students an opportunity to play frisbee and learn the basics of holding the disc and complete passes.'
24 }]
25 },
26 'score': 0.481589138507843
27}
python advanced-embedded-documents-query.py
1{
2 '_id': 0,
3 'teachers': [{
4 'first': 'Jane',
5 'last': 'Smith',
6 'classes': [{'subject': 'art of science', 'grade': '12th'}, {'subject': 'applied science and practical science', 'grade': '9th'}, {'subject': 'remedial math', 'grade': '12th'}, {'subject': 'science', 'grade': '10th'}]
7 }, {
8 'first': 'Bob',
9 'last': 'Green',
10 'classes': [{'subject': 'science of art', 'grade': '11th'}, {'subject': 'art art art', 'grade': '10th'}]
11 }],
12 'score': 0.9415585994720459,
13 'highlights': [{
14 'score': 0.7354040145874023,
15 'path': 'teachers.classes.subject',
16 'texts': [{'value': 'art of ', 'type': 'text'}, {'value': 'science', 'type': 'hit'}]
17 }, {
18 'score': 0.7871346473693848,
19 'path': 'teachers.classes.subject',
20 'texts': [{'value': 'applied ', 'type': 'text'}, {'value': 'science', 'type': 'hit'}, {'value': ' and practical ', 'type': 'text'}, {'value': 'science', 'type': 'hit'}]
21 }, {
22 'score': 0.7581484317779541,
23 'path': 'teachers.classes.subject',
24 'texts': [{'value': 'science', 'type': 'hit'}]
25 }, {
26 'score': 0.7189631462097168,
27 'path': 'teachers.classes.subject',
28 'texts': [{'value': 'science', 'type': 'hit'}, {'value': ' of art', 'type': 'text'}]
29 }]
30 }
31 {
32 '_id': 1,
33 'teachers': [{
34 'first': 'Jane',
35 'last': 'Earwhacker',
36 'classes': [{'subject': 'art', 'grade': '9th'}, {'subject': 'science', 'grade': '12th'}]
37 }, {
38 'first': 'John',
39 'last': 'Smith',
40 'classes': [{'subject': 'math', 'grade': '12th'}, {'subject': 'art', 'grade': '10th'}]
41 }],
42 'score': 0.7779859304428101,
43 'highlights': [{
44 'score': 1.502043604850769,
45 'path': 'teachers.classes.subject',
46 'texts': [{'value': 'science', 'type': 'hit'}]
47 }]
48 }

您可以对嵌入式文档字段运行$searchMeta查询。 在本部分中,您将连接到 Atlas 集群,并使用$searchMeta阶段和分面对嵌入式文档字段运行示例查询。

1
  1. 如果尚未显示,请从导航栏上的 Organizations 菜单中选择包含所需项目的组织。

  2. 如果尚未显示,请从导航栏的Projects菜单中选择所需的项目。

  3. 如果尚未显示,请单击侧边栏中的Clusters

    会显示集群页面。

2

您可以从侧边栏、 Data Explorer 或集群详细信息页面转到 Atlas Search 页面。

  1. 在侧边栏中,单击 Services 标题下的 Atlas Search

  2. Select data source 下拉菜单中选择您的集群并单击 Go to Atlas Search

    将显示 Atlas Search 页面。

  1. 单击集群的对应 Browse Collections 按钮。

  2. 展开数据库并选择集合。

  3. 单击该集合的 Search Indexes 标签页。

    将显示 Atlas Search 页面。

  1. 单击集群的名称。

  2. 单击 Atlas Search 标签页。

    将显示 Atlas Search 页面。

3

单击要查询的索引右侧的 Query 按钮。

4

单击 Edit Query 以查看 JSON 格式的默认查询语法示例。

5

该查询查找高中,并要求统计开设各年级课程的学校数量。

将以下查询复制并粘贴到 Query Editor 中,然后点击 Query Editor 中的 Search 按钮。

1[
2 {
3 "$searchMeta": {
4 "index": "embedded-documents-tutorial",
5 "facet": {
6 "operator": {
7 "text":{
8 "path": "name",
9 "query": "High"
10 }
11 },
12 "facets": {
13 "gradeFacet": {
14 "type": "string",
15 "path": "teachers.classes.grade"
16 }
17 }
18 }
19 }
20 }
21]
count: Object
lowerBound: 3
facet: Object
gradeFacet: Object
buckets: Array (4)
0: Object
_id: "12th"
count: 3
1: Object
_id: "9th"
count : 3
2: Object
_id: "10th"
count: 2
3: Object
_id: "11th"
count: 1
1

在终端窗口中打开mongosh并连接到集群。 有关连接的详细说明,请参阅通过mongosh连接。

2

mongosh 提示符下运行以下命令:

use local_school_district
switched to db local_school_district
3

该查询查找高中,并要求统计开设各年级课程的学校数量。

1db.schools.aggregate({
2 "$searchMeta": {
3 "index": "embedded-documents-tutorial",
4 "facet": {
5 "operator": {
6 "text":{
7 "path": "name",
8 "query": "High"
9 }
10 },
11 "facets": {
12 "gradeFacet": {
13 "type": "string",
14 "path": "teachers.classes.grade"
15 }
16 }
17 }
18 }
19})
1[
2 {
3 count: { lowerBound: Long('3') },
4 facet: {
5 gradeFacet: {
6 buckets: [
7 { _id: '12th', count: Long('3') },
8 { _id: '9th', count: Long('3') },
9 { _id: '10th', count: Long('2') },
10 { _id: '11th', count: Long('1') }
11 ]
12 }
13 }
14 }
15]

结果表明,3 学校提供 12th 年级和 9th 年级的课程,2 学校提供 10th 年级的课程,1 学校提供 11th 年级的课程。通过嵌入式文档中的字段进行分面时,查询会返回顶层父文档的计数,即该查询的 teachers 字段。

1

打开 MongoDB Compass 并连接到您的集群。有关连接的详细说明,请参阅通过 Compass 连接。

2

Database 屏幕上,单击 local_school_district 数据库,然后单击 schools 集合。

3

该查询查找高中,并要求统计开设各年级课程的学校数量。

管道阶段
查询
$searchMeta
{
"index": "embedded-embedded-documents-tutorial",
"facet": {
"operator": {
"text":{
"path": "name",
"query": "High"
}
},
"facets": {
"gradeFacet": {
"type": "string",
"path": "teachers.classes.grade"
}
}
}
}

MongoDB Compass 显示以下结果:

1count: Object
2 lowerBound: 3
3facet: Object
4 gradeFacet: Object
5 buckets: Array (4)
6 0: Object
7 _id: "12th"
8 count: 3
9 1: Object
10 _id: "9th"
11 count : 3
12 2: Object
13 _id: "10th"
14 count: 2
15 3: Object
16 _id: "11th"
17 count: 1

结果表明,3 学校提供 12th 年级和 9th 年级的课程,2 学校提供 10th 年级的课程,1 学校提供 11th 年级的课程。通过嵌入式文档中的字段进行分面时,查询会返回顶层父文档的计数,即该查询的 teachers 字段。

1
  1. 创建一个名为 embedded-documents-query 的新目录,并使用 dotnet new 命令初始化项目。

    mkdir embedded-documents-facet-query
    cd embedded-documents-facet-query
    dotnet new console
  2. 将 .NET/C# 驱动程序作为依赖项添加到项目中。

    dotnet add package MongoDB.Driver
2

该查询查找高中,并要求统计开设各年级课程的学校数量。

1using MongoDB.Bson;
2using MongoDB.Bson.Serialization.Attributes;
3using MongoDB.Bson.Serialization.Conventions;
4using MongoDB.Driver;
5
6public class EmbeddedDocumentsFacetExample
7{
8 private const string MongoConnectionString = "<connection-string>";
9
10 public static void Main(string[] args)
11 {
12 // allow automapping of the camelCase database fields to our MovieDocument
13 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
14 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
15
16 // connect to your Atlas cluster
17 var mongoClient = new MongoClient(MongoConnectionString);
18 var districtDatabase = mongoClient.GetDatabase("local_school_district");
19 var schoolCollection = districtDatabase.GetCollection<SchoolDocument>("schools");
20
21 // define and run pipeline
22 var results = schoolCollection.Aggregate()
23 .SearchMeta(Builders<SchoolDocument>.Search.Facet(
24 Builders<SchoolDocument>.Search.Text(school => school.Name, "High"),
25 Builders<SchoolDocument>.SearchFacet.String("gradeFacet", "teachers.classes.grade")),
26 indexName: "embedded-documents-tutorial")
27 .Single();
28
29 // print results
30 Console.WriteLine(results.ToJson());
31 }
32}
33
34[BsonIgnoreExtraElements]
35public class SchoolDocument
36{
37 public int Id { get; set; }
38 public string Name { get; set; }
39 public TeacherDocument[] Teachers { get; set; }
40}
41[BsonIgnoreExtraElements]
42public class TeacherDocument
43{
44 public ClassDocument[] Classes { get; set; }
45}
46[BsonIgnoreExtraElements]
47public class ClassDocument
48{
49 public string Grade { get; set; }
50}
3

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

4
dotnet run embedded-documents-facet-query.csproj
{
"count" : { "lowerBound" : NumberLong(3), "total" : null },
"facet" : {
"gradeFacet" : {
"buckets" : [
{ "_id" : "12th", "count" : NumberLong(3) },
{ "_id" : "9th", "count" : NumberLong(3) },
{ "_id" : "10th", "count" : NumberLong(2) },
{ "_id" : "11th", "count" : NumberLong(1) }
]
}
}
}

结果表明,3 学校提供 12th 年级和 9th 年级的课程,2 学校提供 10th 年级的课程,1 学校提供 11th 年级的课程。通过嵌入式文档中的字段进行分面时,查询会返回顶层父文档的计数,即该查询的 teachers 字段。

1
2

该查询查找高中,并要求统计开设各年级课程的学校数量。

1package main
2
3import (
4 "context"
5 "fmt"
6
7 "go.mongodb.org/mongo-driver/bson"
8 "go.mongodb.org/mongo-driver/mongo"
9 "go.mongodb.org/mongo-driver/mongo/options"
10)
11
12func main() {
13 // connect to your Atlas cluster
14 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>"))
15 if err != nil {
16 panic(err)
17 }
18 defer client.Disconnect(context.TODO())
19
20 // set namespace
21 collection := client.Database("local_school_district").Collection("schools")
22
23 // define pipeline stages
24 searchStage := bson.D{{"$searchMeta", bson.M{
25 "index": "embedded-documents-tutorial",
26 "facet": bson.M{
27 "operator": bson.M{
28 "text": bson.M{
29 "path": "name",
30 "query": "High"},
31 },
32 "facets": bson.M{
33 "gradeFacet": bson.M{
34 "path": "teachers.classes.grade",
35 "type": "string"},
36 }}}}}
37
38 // run pipeline
39 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage})
40 if err != nil {
41 panic(err)
42 }
43
44 // print results
45 var results []bson.D
46 if err = cursor.All(context.TODO(), &results); err != nil {
47 panic(err)
48 }
49 for _, result := range results {
50 fmt.Println(result)
51 }
52}
3

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

4
go run embedded-documents-facet-query.go
1[
2 {count [{lowerBound 3}]}
3 {facet [
4 {gradeFacet [
5 {buckets [
6 [{_id 12th} {count 3}]
7 [{_id 9th} {count 3}]
8 [{_id 10th} {count 2}]
9 [{_id 11th} {count 1}]
10 ]}
11 ]}
12 ]}
13]

结果表明,3 学校提供 12th 年级和 9th 年级的课程,2 学校提供 10th 年级的课程,1 学校提供 11th 年级的课程。通过嵌入式文档中的字段进行分面时,查询会返回顶层父文档的计数,即该查询的 teachers 字段。

1
junit
4.11 或更高版本
mongodb-driver-sync
4.3.0 或更高版本
slf4j-log4j12
1.7.30 或更高版本
2
3

该查询查找高中,并要求统计开设各年级课程的学校数量。

1import com.mongodb.client.MongoClient;
2import com.mongodb.client.MongoClients;
3import com.mongodb.client.MongoCollection;
4import com.mongodb.client.MongoDatabase;
5import org.bson.Document;
6import java.util.Arrays;
7
8public class FacetEmbeddedDocumentsSearch {
9 public static void main(String[] args) {
10 // connect to your Atlas cluster
11 String uri = "<connection-string>";
12 try (MongoClient mongoClient = MongoClients.create(uri)) {
13 // set namespace
14 MongoDatabase database = mongoClient.getDatabase("local_school_district");
15 MongoCollection<Document> collection = database.getCollection("schools");
16
17 // define pipeline
18 Document agg = new Document("$searchMeta",
19 new Document( "index", "embedded-documents-tutorial")
20 .append("facet",
21 new Document("operator",
22 new Document("text",
23 new Document("path", "name")
24 .append("query", "High")))
25 .append("facets",
26 new Document("gradeFacet",
27 new Document("type", "string").append("path", "teachers.classes.grade"))
28 )));
29 // run pipeline and print results
30 collection.aggregate(Arrays.asList(agg))
31 .forEach(doc -> System.out.println(doc.toJson()));
32 }
33 }
34}

注意

要在 Maven 环境中运行示例代码,请将以下代码添加到文件中的 import 语句上方。

package com.mongodb.drivers;
4

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

5
javac FacetEmbeddedDocumentsSearch.java
java FacetEmbeddedDocumentsSearch
1{
2 "count": {"lowerBound": 3},
3 "facet": {
4 "gradeFacet": {
5 "buckets": [
6 {"_id": "12th", "count": 3},
7 {"_id": "9th", "count": 3},
8 {"_id": "10th", "count": 2},
9 {"_id": "11th", "count": 1}
10 ]
11 }
12 }
13}

结果表明,3 学校提供 12th 年级和 9th 年级的课程,2 学校提供 10th 年级的课程,1 学校提供 11th 年级的课程。通过嵌入式文档中的字段进行分面时,查询会返回顶层父文档的计数,即该查询的 teachers 字段。

1
  • MongoDB

    mongodb-driver-kotlin-coroutine

    如需了解更多信息,请参阅添加 MongoDB 作为依赖项。

  • 序列化库

    bson-kotlinx

    要了解更多信息,请参阅添加序列化库依赖项。

2
3

该查询查找高中,并要求统计开设各年级课程的学校数量。

1import com.mongodb.kotlin.client.coroutine.MongoClient
2import kotlinx.coroutines.runBlocking
3import org.bson.Document
4
5fun main() {
6 // establish connection and set namespace
7 val uri = "<connection-string>"
8 val mongoClient = MongoClient.create(uri)
9 val database = mongoClient.getDatabase("local_school_district")
10 val collection = database.getCollection<Document>("schools")
11
12 runBlocking {
13
14 // define query
15 val agg = Document(
16 "\$searchMeta",
17 Document("index", "embedded-documents-tutorial")
18 .append("facet",
19 Document(
20 "operator",
21 Document(
22 "text",
23 Document("path", "name")
24 .append("query", "High")
25 )
26 )
27 .append(
28 "facets",
29 Document(
30 "gradeFacet",
31 Document("type", "string").append("path", "teachers.classes.grade")
32 )
33 )
34 )
35 )
36
37 // run query and print results
38 val resultsFlow = collection.aggregate<Document>(listOf(agg))
39 resultsFlow.collect { println(it) }
40 }
41 mongoClient.close()
42}
4

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

5

当你在 IDE 中运行 EmbeddedDocumentsFacetQuery.kt 程序时,它会打印以下文档:

Document{{
count=Document{{lowerBound=3}},
facet=Document{{
gradeFacet=Document{{
buckets=[
Document{{_id=12th, count=3}},
Document{{_id=9th, count=3}},
Document{{_id=10th, count=2}},
Document{{_id=11th, count=1}}
]
}}
}}
}}

结果表明,3 学校提供 12th 年级和 9th 年级的课程,2 学校提供 10th 年级的课程,1 学校提供 11th 年级的课程。通过嵌入式文档中的字段进行分面时,查询会返回顶层父文档的计数,即该查询的 teachers 字段。

1
2

该查询查找高中,并要求统计开设各年级课程的学校数量。

1const { MongoClient } = require("mongodb");
2
3// connect to your Atlas cluster
4const uri = "<connection-string>";
5const client = new MongoClient(uri);
6
7async function run() {
8 try {
9 await client.connect();
10
11 // set namespace
12 const database = client.db("local_school_district");
13 const coll = database.collection("schools");
14
15 // define pipeline
16 const agg = [
17 {
18 "$searchMeta": {
19 "index": "embedded-documents-tutorial",
20 "facet": {
21 "operator": {
22 "text":{
23 "path": "name",
24 "query": "High"
25 }
26 },
27 "facets": {
28 "gradeFacet": {
29 "type": "string",
30 "path": "teachers.classes.grade"
31 }
32 }
33 }
34 }
35 }
36 ];
37
38 // run pipeline
39 const result = coll.aggregate(agg);
40
41 // print results
42 await result.forEach((doc) => console.dir(JSON.stringify(doc)));
43 } finally {
44 await client.close();
45 }
46}
47run().catch(console.dir);
3

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

4
node embedded-documents-facet-query.js
1{
2 "count":{"lowerBound":3},
3 "facet":{
4 "gradeFacet":{
5 "buckets":[
6 {"_id":"12th","count":3},
7 {"_id":"9th","count":3},
8 {"_id":"10th","count":2},
9 {"_id":"11th","count":1}
10 ]
11 }
12 }
13}

结果表明,3 学校提供 12th 年级和 9th 年级的课程,2 学校提供 10th 年级的课程,1 学校提供 11th 年级的课程。通过嵌入式文档中的字段进行分面时,查询会返回顶层父文档的计数,即该查询的 teachers 字段。

1
2

该查询查找高中,并要求统计开设各年级课程的学校数量。

1import pymongo
2
3# connect to your Atlas cluster
4client = pymongo.MongoClient('<connection-string>')
5
6# define pipeline
7pipeline = [{"$searchMeta": {
8 "index": "embedded-documents-tutorial",
9 "facet": {
10 "operator": {
11 "text": {"path": "name", "query": 'High'}
12 },
13 "facets": {
14 "gradeFacet": {"type": "string", "path": "teachers.classes.grade"}
15 }
16 }
17}}]
18
19# run pipeline
20result = client["local_school_district"]["schools"].aggregate(pipeline)
21
22# print results
23for i in result:
24 print(i)
3

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

4
python embedded-documents-facet-query.py
1{
2 'count': {'lowerBound': 3},
3 'facet': {
4 'gradeFacet': {
5 'buckets': [
6 {'_id': '12th', 'count': 3},
7 {'_id': '9th', 'count': 3},
8 {'_id': '10th', 'count': 2},
9 {'_id': '11th', 'count': 1}
10 ]
11 }
12 }
13}

结果表明,3 学校提供 12th 年级和 9th 年级的课程,2 学校提供 10th 年级的课程,1 学校提供 11th 年级的课程。通过嵌入式文档中的字段进行分面时,查询会返回顶层父文档的计数,即该查询的 teachers 字段。

后退

$unionWith 和 $search