Docs 菜单
Docs 主页
/
MongoDB Atlas
/ /

如何运行 Atlas Search 复合地理 JSON 查询

在此页面上

  • 创建 Atlas Search 索引
  • 运行地理、数字和文本字段的组合查询

本教程介绍如何在sample_airbnb数据库中的listingsAndReviewscollection上创建索引,并运行查询以返回指定索引范围内每个property具有nameaddressproperty_type的文档。使用coordinates定义的多边形。

本教程将指导您完成以下步骤:

  1. sample_airbnb.listingsAndReviews 集合的 address 字段上设置 Atlas Search 索引。

  2. 运行查询,返回 10 个文档,其中每个属性的nameaddressproperty_type在指定地理coordinates内。 Atlas Search 结果反映了对condominium类型的属性偏好,并且为结果中的每个文档分配了相关性score ,按从高到低的顺序返回。

在开始之前,请确保您的 Atlas 集群满足先决条件中所述的要求。

要创建 Atlas Search 索引,您必须拥有 Project Data Access Admin 或更高的项目访问权限。

在本部分中,您将在sample_airbnb.listingsAndReviews collection中的address字段上创建 Atlas Search 索引。

1
  1. 如果尚未显示,请从导航栏上的 Organizations 菜单中选择包含所需项目的组织。

  2. 如果尚未显示,请从导航栏的Projects菜单中选择所需的项目。

  3. 如果尚未出现,请单击侧边栏中的 Clusters(集群)。

    显示 集群页面。

2

您可以从侧边栏、 Data Explorer 或集群详细信息页面转到 Atlas Search 页面。

  1. 在侧边栏中,单击 Services 标题下的 Atlas Search

  2. Select data source 下拉菜单中选择您的集群并单击 Go to Atlas Search

    将显示 Atlas Search 页面。

  1. 单击集群的对应 Browse Collections 按钮。

  2. 展开数据库并选择集合。

  3. 单击该集合的 Search Indexes 标签页。

    将显示 Atlas Search 页面。

  1. 单击集群的名称。

  2. 单击 Atlas Search 标签页。

    将显示 Atlas Search 页面。

3
4
  • 要获得引导式体验,请选择 Atlas Search Visual Editor

  • 要编辑原始索引定义,请选择 Atlas SearchJSON Editor

5
  1. Index Name 字段中输入 geo-json-tutorial

    如果将索引命名为 default,则在使用 $search 管道阶段时无需指定 index 参数。如果您为索引指定了自定义名称,则必须在 index 参数中指定此名称。

  2. Database and Collection(数据库和集合)部分中找到 sample_airbnb 数据库,然后选择 listingsAndReviews 集合。

6

您可以使用 Atlas 用户界面中的 Atlas Search Visual Editor或 Atlas Search JSON Editor来创建索引。以下索引定义指定 Atlas Search 必须索引:

  • collection中的所有字段都会自动生成。

  • address.locationdocument作为类型geo 的 的字段。

  1. 单击 Next(连接)。

  2. 单击 Refine Your Index(连接)。

  3. Field Mappings 部分中,单击 Add Field 打开 Add Field Mapping > Customized Configuration 标签页。

  4. Field Name 下拉列表中选择 address.location

  5. 单击 Data Type(添加数据)下拉列表并选择 Geo(插入文档)。

  6. 单击 Add(连接)。

  7. 单击 Save Changes(连接)。

  1. 将默认索引定义替换为以下示例索引定义。

    {
    "mappings": {
    "dynamic": true,
    "fields": {
    "address": {
    "fields": {
    "location": {
    "type": "geo"
    }
    },
    "type": "document"
    }
    }
    }
    }
  2. 单击 Next(连接)。

7
8

此时将显示一个模态窗口,让您知道索引正在构建中。点击 Close 按钮。

9

构建索引大约需要一分钟时间。在构建时,Status 列显示 Build in Progress。构建完成后,Status 列显示 Active


➤ 使用本页的“选择语言”下拉菜单设置本节示例的语言。


在本部分中,您将运行一个查询,为指定地理name addressproperty_type内的每个属性返回 10 个文档,其中每个属性具有 、 和coordinates 。还返回指定每个文档score的字段,并优先考虑类型condominium的属性对结果进行排序。

1
  1. 如果尚未显示,请从导航栏上的 Organizations 菜单中选择包含所需项目的组织。

  2. 如果尚未显示,请从导航栏的Projects菜单中选择所需的项目。

  3. 如果尚未出现,请单击侧边栏中的 Clusters(集群)。

    会显示集群页面。

2

您可以从侧边栏、 Data Explorer 或集群详细信息页面转到 Atlas Search 页面。

  1. 在侧边栏中,单击 Services 标题下的 Atlas Search

  2. Select data source 下拉菜单中选择您的集群并单击 Go to Atlas Search

    将显示 Atlas Search 页面。

  1. 单击集群的对应 Browse Collections 按钮。

  2. 展开数据库并选择集合。

  3. 单击该集合的 Search Indexes 标签页。

    将显示 Atlas Search 页面。

  1. 单击集群的名称。

  2. 单击 Atlas Search 标签页。

    将显示 Atlas Search 页面。

3

单击要查询的索引右侧的 Query 按钮。

4

单击Edit Query查看 JSON格式的默认查询语法示例。

5

以下 Atlas Search 查询使用复合操作符执行以下操作:

  • 指定结果must Polygon位于由 集定义的coordinates 内。

  • 优先显示condominium类型属性的结果。

注意

Search Tester 可能不会显示其所返回文档的所有字段。要查看所有字段,包括在查询路径中指定的字段,请展开结果中的文档。

[
{
"$search": {
"index": "geo-json-tutorial",
"compound": {
"must": [{
"geoWithin": {
"geometry": {
"type": "Polygon",
"coordinates": [[[ -161.323242, 22.512557 ],
[ -152.446289, 22.065278 ],
[ -156.09375, 17.811456 ],
[ -161.323242, 22.512557 ]]]
},
"path": "address.location"
}
}],
"should": [{
"text": {
"path": "property_type",
"query": "Condominium"
}
}]
}
}
}
]
1SCORE: 2.238388776779175 _id: "1001265"
2 listing_url: "https://www.airbnb.com/rooms/1001265"
3 name: "Ocean View Waikiki Marina w/prkg"
4 summary: "A short distance from Honolulu's billion dollar mall,
5 and the same dis…"
6 ...
7 property_type: "Condominium"
8 ...
9 address: Object
10 street: "Honolulu, HI, United States"
11 suburb: "Oʻahu"
12 government_area: "Primary Urban Center"
13 market: "Oahu"
14 country: "United States"
15 country_code: "US"
16 location: Object
17 type: "Point"
18 coordinates: Array
19 0: -157.83919
20 1: 21.28634
21 is_location_exact: true
22 ...
23
24SCORE: 2.238388776779175 _id: "10227000"
25 listing_url: "https://www.airbnb.com/rooms/10227000"
26 name: "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!"
27 summary: "THIS IS A VERY SPACIOUS 1 BEDROOM FULL CONDO (SLEEPS 4) AT THE BEAUTIF…"
28 ...
29 property_type: "Condominium"
30 ...
31 address: Object
32 street: "Lahaina, HI, United States"
33 suburb: "Maui"
34 government_area: "Lahaina"
35 market: "Maui"
36 country: "United States"
37 country_code: "US"
38 location: Object
39 type: "Point"
40 coordinates: Array
41 0: -156.68012
42 1: 20.96996
43 is_location_exact: true
44 ...
45
46SCORE: 2.238388776779175 _id: "10266175"
47 listing_url: "https://www.airbnb.com/rooms/10266175"
48 name: "Makaha Valley Paradise with OceanView"
49 summary: "A beautiful and comfortable 1 Bedroom Air Conditioned Condo in Makaha …"
50 ...
51 property_type: "Condominium"
52 ...
53 address: Object
54 street: "Waianae, HI, United States"
55 suburb: "Leeward Side"
56 government_area: "Waianae"
57 market: "Oahu"
58 country: "United States"
59 country_code: "US"
60 location: Object
61 type: "Point"
62 coordinates: Array
63 0: -158.20291
64 1: 21.4818
65 is_location_exact: true
66 ...
67
68SCORE: 2.238388776779175 _id: "1042446"
69 listing_url: "https://www.airbnb.com/rooms/1042446"
70 name: "March 2019 availability! Oceanview on Sugar Beach!"
71 summary: ""
72 ...
73 property_type: "Condominium"
74 ...
75 address: Object
76 street: "Kihei, HI, United States"
77 suburb: "Maui"
78 government_area: "Kihei-Makena"
79 market: "Maui"
80 country: "United States"
81 country_code: "US"
82 location: Object
83 type: "Point"
84 coordinates: Array
85 0: -156.46881
86 1: 20.78621
87 is_location_exact: true
88 ...
89
90SCORE: 2.238388776779175 _id: "10527243"
91 listing_url: "https://www.airbnb.com/rooms/10527243"
92 name: "Tropical Jungle Oasis"
93 summary: "2 bedrooms, one with a queen sized bed, one with 2 single beds. 1 and …"
94 ...
95 property_type: "Condominium"
96 ...
97 address: Object
98 street: "Hilo, HI, United States"
99 suburb: "Island of Hawaiʻi"
100 government_area: "South Hilo"
101 market: "The Big Island"
102 country: "United States"
103 country_code: "US"
104 location: Object
105 type: "Point"
106 coordinates: Array
107 0: -155.09259
108 1: 19.73108
109 is_location_exact: true
110 ...
111
112SCORE: 2.238388776779175 _id: "1104768"
113 listing_url: "https://www.airbnb.com/rooms/1104768"
114 name: "2 Bdrm/2 Bath Family Suite Ocean View"
115 summary: "This breathtaking 180 degree view of Waikiki is one of a kind. You wil…"
116 ...
117 property_type: "Condominium"
118 ...
119 address: Object
120 street: "Honolulu, HI, United States"
121 suburb: "Waikiki"
122 government_area: "Primary Urban Center"
123 market: "Oahu"
124 country: "United States"
125 country_code: "US"
126 location: Object
127 type: "Point"
128 coordinates: Array
129 0: -157.82696
130 1: 21.27971
131 is_location_exact: true
132 ...
133
134SCORE: 2.238388776779175 _id: "11207193"
135 listing_url: "https://www.airbnb.com/rooms/11207193"
136 name: "302 Kanai A Nalu Ocean front/view"
137 summary: "Welcome to Kana'i A Nalu a quiet resort that sits on the ocean away fr…"
138 ...
139 property_type: "Condominium"
140 ...
141 address: Object
142 street: "Wailuku, HI, United States"
143 suburb: "Maui"
144 government_area: "Kihei-Makena"
145 market: "Maui"
146 country: "United States"
147 country_code: "US"
148 location: Object
149 type: "Point"
150 coordinates: Array
151 0: -156.5039
152 1: 20.79664
153 is_location_exact: true
154 ...
155
156SCORE: 2.238388776779175 _id: "11319047"
157 listing_url: "https://www.airbnb.com/rooms/11319047"
158 name: "Sugar Beach Resort 1BR Ground Floor Condo !"
159 summary: "The Sugar Beach Resort enjoys a beachfront setting fit for a postcard."
160 ...
161 property_type: "Condominium"
162 ...
163 address: Object
164 street: "Kihei, HI, United States"
165 suburb: "Maui"
166 government_area: "Kihei-Makena"
167 market: "Maui"
168 country: "United States"
169 country_code: "US"
170 location: Object
171 type: "Point"
172 coordinates: Array
173 0: -156.46697
174 1: 20.78484
175 is_location_exact: true
176 ...
177
178SCORE: 2.238388776779175 _id: "11695887"
179 listing_url: "https://www.airbnb.com/rooms/11695887"
180 name: "2 BR Oceanview - Great Location!"
181 summary: "Location, location, location... This is a great 2 bed, 2 bath condo is…"
182 ...
183 property_type: "Condominium"
184 ...
185 address: Object
186 street: "Kihei, HI, United States"
187 suburb: "Kihei/Wailea"
188 government_area: "Kihei-Makena"
189 market: "Maui"
190 country: "United States"
191 country_code: "US"
192 location: Object
193 type: "Point"
194 coordinates: Array
195 0: -156.44917
196 1: 20.73013
197 is_location_exact: true
198 ...
199
200SCORE: 2.238388776779175 _id: "11817249"
201 listing_url: "https://www.airbnb.com/rooms/11817249"
202 name: "PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC"
203 summary: "Book with confidence this stunning 2 bedroom, 2 bathroom condo at the …"
204 ...
205 property_type: "Condominium"
206 ...
207 address: Object
208 street: "Kihei, HI, United States"
209 suburb: "Maui"
210 government_area: "Kihei-Makena"
211 market: "Maui"
212 country: "United States"
213 country_code: "US"
214 location: Object
215 type: "Point"
216 coordinates: Array
217 0: -156.4409
218 1: 20.69735
219 is_location_exact: true
220 ...
1

在终端窗口中打开mongosh并连接到集群。 有关连接的详细说明,请参阅通过mongosh连接。

2

mongosh 提示符下运行以下命令:

use sample_airbnb
3

以下 Atlas Search 搜索查询:

  • 使用复合$search阶段可以:

    • 指定结果must Polygon位于由 集定义的coordinates 内。

    • 优先显示condominium类型属性的结果。

  • 使用 $project 阶段以:

    • 排除除nameaddressproperty_type之外的所有字段。

    • 为每个返回的文档添加相关性score

查询如下:

db.listingsAndReviews.aggregate([
{
"$search": {
"index": "geo-json-tutorial",
"compound": {
"must": [{
"geoWithin": {
"geometry": {
"type": "Polygon",
"coordinates": [[[ -161.323242, 22.512557 ],
[ -152.446289, 22.065278 ],
[ -156.09375, 17.811456 ],
[ -161.323242, 22.512557 ]]]
},
"path": "address.location"
}
}],
"should": [{
"text": {
"path": "property_type",
"query": "Condominium"
}
}]
}
}
},
{
"$limit": 10
},
{
$project: {
"_id": 0,
"name": 1,
"address": 1,
"property_type": 1,
score: { $meta: "searchScore" }
}
}
])
[
{
name: 'Ocean View Waikiki Marina w/prkg',
property_type: 'Condominium',
address: {
street: 'Honolulu, HI, United States',
suburb: 'Oʻahu',
government_area: 'Primary Urban Center',
market: 'Oahu',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -157.83919, 21.28634 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!',
property_type: 'Condominium',
address: {
street: 'Lahaina, HI, United States',
suburb: 'Maui',
government_area: 'Lahaina',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.68012, 20.96996 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'Makaha Valley Paradise with OceanView',
property_type: 'Condominium',
address: {
street: 'Waianae, HI, United States',
suburb: 'Leeward Side',
government_area: 'Waianae',
market: 'Oahu',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -158.20291, 21.4818 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'March 2019 availability! Oceanview on Sugar Beach!',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.46881, 20.78621 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'Tropical Jungle Oasis',
property_type: 'Condominium',
address: {
street: 'Hilo, HI, United States',
suburb: 'Island of Hawaiʻi',
government_area: 'South Hilo',
market: 'The Big Island',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -155.09259, 19.73108 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: '2 Bdrm/2 Bath Family Suite Ocean View',
property_type: 'Condominium',
address: {
street: 'Honolulu, HI, United States',
suburb: 'Waikiki',
government_area: 'Primary Urban Center',
market: 'Oahu',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -157.82696, 21.27971 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: '302 Kanai A Nalu Ocean front/view',
property_type: 'Condominium',
address: {
street: 'Wailuku, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.5039, 20.79664 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'Sugar Beach Resort 1BR Ground Floor Condo !',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.46697, 20.78484 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: '2 BR Oceanview - Great Location!',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Kihei/Wailea',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.44917, 20.73013 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.4409, 20.69735 ],
is_location_exact: true
}
},
score: 2.238388776779175
}
]
1

打开 MongoDB Compass 并连接到您的集群。有关连接的详细说明,请参阅通过 Compass 连接。

2

Database 屏幕上,依次单击 sample_airbnb 数据库和 listingsAndReviews 集合。

3

以下查询:

  • 使用复合$search阶段可以:

    • 指定结果must Polygon位于由 集定义的coordinates 内。

    • 优先显示condominium类型属性的结果。

  • 使用 $project 阶段以:

    • 排除除nameaddressproperty_type之外的所有字段。

    • 为每个返回的文档添加相关性score

要在 MongoDB Compass 中运行此 Atlas Search 查询,请执行以下操作:

  1. 单击 Aggregations 标签页。

  2. 单击 Select...,然后从下拉菜单中选择阶段并为该阶段添加查询,以配置以下每个管道阶段。单击 Add Stage 以添加其他阶段。

    管道阶段
    查询

    $search

    {
    'index': 'geo-json-tutorial',
    'compound': {
    'must': [
    {
    'geoWithin': {
    'geometry': {
    'type': 'Polygon',
    'coordinates': [
    [
    [
    -161.323242, 22.512557
    ], [
    -152.446289, 22.065278
    ], [
    -156.09375, 17.811456
    ], [
    -161.323242, 22.512557
    ]
    ]
    ]
    },
    'path': 'address.location'
    }
    }
    ],
    'should': [
    {
    'text': {
    'path': 'property_type',
    'query': 'Condominium'
    }
    }
    ]
    }
    }

    $limit

    10

    $project

    {
    '_id': 0,
    'name': 1,
    'address': 1,
    'property_type': 1,
    'score': {
    '$meta': 'searchScore'
    }
    }

如果启用了 Auto Preview,MongoDB Compass 将在 $project 管道阶段旁边显示以下文档:

1{
2 name: 'Ocean View Waikiki Marina w/prkg',
3 property_type: 'Condominium',
4 address: {
5 street: 'Honolulu, HI, United States',
6 suburb: 'Oʻahu',
7 government_area: 'Primary Urban Center',
8 market: 'Oahu',
9 country: 'United States',
10 country_code: 'US',
11 location: {
12 type: 'Point',
13 coordinates: [ -157.83919, 21.28634 ],
14 is_location_exact: true
15 }
16 },
17 score: 2.238388776779175
18},
19{
20 name: 'LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!',
21 property_type: 'Condominium',
22 address: {
23 street: 'Lahaina, HI, United States',
24 suburb: 'Maui',
25 government_area: 'Lahaina',
26 market: 'Maui',
27 country: 'United States',
28 country_code: 'US',
29 location: {
30 type: 'Point',
31 coordinates: [ -156.68012, 20.96996 ],
32 is_location_exact: true
33 }
34 },
35 score: 2.238388776779175
36},
37{
38 name: 'Makaha Valley Paradise with OceanView',
39 property_type: 'Condominium',
40 address: {
41 street: 'Waianae, HI, United States',
42 suburb: 'Leeward Side',
43 government_area: 'Waianae',
44 market: 'Oahu',
45 country: 'United States',
46 country_code: 'US',
47 location: {
48 type: 'Point',
49 coordinates: [ -158.20291, 21.4818 ],
50 is_location_exact: true
51 }
52 },
53 score: 2.238388776779175
54},
55{
56 name: 'March 2019 availability! Oceanview on Sugar Beach!',
57 property_type: 'Condominium',
58 address: {
59 street: 'Kihei, HI, United States',
60 suburb: 'Maui',
61 government_area: 'Kihei-Makena',
62 market: 'Maui',
63 country: 'United States',
64 country_code: 'US',
65 location: {
66 type: 'Point',
67 coordinates: [ -156.46881, 20.78621 ],
68 is_location_exact: true
69 }
70 },
71 score: 2.238388776779175
72},
73{
74 name: 'Tropical Jungle Oasis',
75 property_type: 'Condominium',
76 address: {
77 street: 'Hilo, HI, United States',
78 suburb: 'Island of Hawaiʻi',
79 government_area: 'South Hilo',
80 market: 'The Big Island',
81 country: 'United States',
82 country_code: 'US',
83 location: {
84 type: 'Point',
85 coordinates: [ -155.09259, 19.73108 ],
86 is_location_exact: true
87 }
88 },
89 score: 2.238388776779175
90},
91{
92 name: '2 Bdrm/2 Bath Family Suite Ocean View',
93 property_type: 'Condominium',
94 address: {
95 street: 'Honolulu, HI, United States',
96 suburb: 'Waikiki',
97 government_area: 'Primary Urban Center',
98 market: 'Oahu',
99 country: 'United States',
100 country_code: 'US',
101 location: {
102 type: 'Point',
103 coordinates: [ -157.82696, 21.27971 ],
104 is_location_exact: true
105 }
106 },
107 score: 2.238388776779175
108},
109{
110 name: '302 Kanai A Nalu Ocean front/view',
111 property_type: 'Condominium',
112 address: {
113 street: 'Wailuku, HI, United States',
114 suburb: 'Maui',
115 government_area: 'Kihei-Makena',
116 market: 'Maui',
117 country: 'United States',
118 country_code: 'US',
119 location: {
120 type: 'Point',
121 coordinates: [ -156.5039, 20.79664 ],
122 is_location_exact: true
123 }
124 },
125 score: 2.238388776779175
126},
127{
128 name: 'Sugar Beach Resort 1BR Ground Floor Condo !',
129 property_type: 'Condominium',
130 address: {
131 street: 'Kihei, HI, United States',
132 suburb: 'Maui',
133 government_area: 'Kihei-Makena',
134 market: 'Maui',
135 country: 'United States',
136 country_code: 'US',
137 location: {
138 type: 'Point',
139 coordinates: [ -156.46697, 20.78484 ],
140 is_location_exact: true
141 }
142 },
143 score: 2.238388776779175
144},
145{
146 name: '2 BR Oceanview - Great Location!',
147 property_type: 'Condominium',
148 address: {
149 street: 'Kihei, HI, United States',
150 suburb: 'Kihei/Wailea',
151 government_area: 'Kihei-Makena',
152 market: 'Maui',
153 country: 'United States',
154 country_code: 'US',
155 location: {
156 type: 'Point',
157 coordinates: [ -156.44917, 20.73013 ],
158 is_location_exact: true
159 }
160 },
161 score: 2.238388776779175
162},
163{
164 name: 'PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC',
165 property_type: 'Condominium',
166 address: {
167 street: 'Kihei, HI, United States',
168 suburb: 'Maui',
169 government_area: 'Kihei-Makena',
170 market: 'Maui',
171 country: 'United States',
172 country_code: 'US',
173 location: {
174 type: 'Point',
175 coordinates: [ -156.4409, 20.69735 ],
176 is_location_exact: true
177 }
178 },
179 score: 2.238388776779175
180}

要了解有关 $search 管道阶段的更多信息,请参阅其参考页面。有关聚合管道的完整文档,请参阅 MongoDB 服务器手册

1
  1. 创建一个名为 combined-geo-query 的新目录,并使用 dotnet new 命令初始化项目。

    mkdir combined-geo-query
    cd combined-geo-query
    dotnet new console
  2. 将 .NET/C# 驱动程序作为依赖项添加到项目中。

    dotnet add package MongoDB.Driver
2
  1. Program.cs 文件的内容替换为以下代码。

    以下 Atlas Search 搜索查询:

    • 使用复合$search阶段可以:

      • 指定结果must Polygon位于由 集定义的coordinates 内。

      • 优先显示condominium类型属性的结果。

    • 使用 $project 阶段以:

      • 排除除nameaddressproperty_type之外的所有字段。

      • 为每个返回的文档添加相关性score

    1using MongoDB.Bson;
    2using MongoDB.Bson.IO;
    3using MongoDB.Bson.Serialization;
    4using MongoDB.Bson.Serialization.Attributes;
    5using MongoDB.Bson.Serialization.Conventions;
    6using MongoDB.Driver;
    7using MongoDB.Driver.GeoJsonObjectModel;
    8using MongoDB.Driver.Search;
    9using System;
    10
    11public class GeoQuery
    12{
    13 private const string MongoConnectionString = "<connection-string>";
    14
    15 public static void Main(string[] args)
    16 {
    17 // allow automapping of the camelCase database fields to our AirbnbDocument
    18 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
    19 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
    20
    21 // connect to your Atlas cluster
    22 var mongoClient = new MongoClient(MongoConnectionString);
    23 var airbnbDatabase = mongoClient.GetDatabase("sample_airbnb");
    24 var airbnbCollection = airbnbDatabase.GetCollection<AirbnbDocument>("listingsAndReviews");
    25
    26 // declare data for the compound query
    27 string property_type = "Condominium";
    28 var coordinates = new GeoJson2DCoordinates[]
    29 {
    30 new(-161.323242, 22.512557),
    31 new(-152.446289, 22.065278),
    32 new(-156.09375, 17.811456),
    33 new(-161.323242, 22.512557)
    34 };
    35 var polygon = GeoJson.Polygon(coordinates);
    36
    37 // define and run pipeline
    38 var results = airbnbCollection.Aggregate()
    39 .Search(Builders<AirbnbDocument>.Search.Compound()
    40 .Must(Builders<AirbnbDocument>.Search.GeoWithin(airbnb => airbnb.Address.Location, polygon))
    41 .Should((Builders<AirbnbDocument>.Search.Text(airbnb => airbnb.PropertyType, property_type))),
    42 indexName: "geo-json-tutorial")
    43 .Limit (10)
    44 .Project<AirbnbDocument>(Builders<AirbnbDocument>.Projection
    45 .Include(airbnb => airbnb.PropertyType)
    46 .Include(airbnb => airbnb.Address.Location)
    47 .Include(airbnb => airbnb.Name)
    48 .Exclude(airbnb => airbnb.Id)
    49 .MetaSearchScore(airbnb => airbnb.Score))
    50 .ToList();
    51
    52 // print results
    53 foreach (var x in results) {
    54 Console.WriteLine(x.ToJson());
    55 }
    56 }
    57}
    58[BsonIgnoreExtraElements]
    59public class AirbnbDocument
    60{
    61 [BsonIgnoreIfDefault]
    62 public ObjectId Id { get; set; }
    63 public String Name { get; set; }
    64 [BsonElement("property_type")]
    65 public string PropertyType { get; set; }
    66 public Address Address { get; set; }
    67 public double Score { get; set; }
    68}
    69[BsonIgnoreExtraElements]
    70public class Address
    71{
    72 public GeoJsonPoint<GeoJson2DCoordinates> Location { get; set; }
    73}
  2. 在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

3
dotnet run combined-geo-query.csproj
{
"name" : "Ocean View Waikiki Marina w/prkg",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-157.83919, 21.286339999999999],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.68011999999999, 20.96996],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "Makaha Valley Paradise with OceanView",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-158.20291, 21.4818],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "March 2019 availability! Oceanview on Sugar Beach!",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.46880999999999, 20.786210000000001],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "Tropical Jungle Oasis",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-155.09259, 19.731079999999999],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "2 Bdrm/2 Bath Family Suite Ocean View",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-157.82696000000001, 21.279710000000001],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "302 Kanai A Nalu Ocean front/view",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.50389999999999, 20.79664],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "Sugar Beach Resort 1BR Ground Floor Condo !",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.46697, 20.784839999999999],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "2 BR Oceanview - Great Location!",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.44917000000001, 20.730129999999999],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.4409, 20.69735],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
1
2

以下代码示例:

  • 导入mongodb包和依赖项。

  • 建立与您的 Atlas 集群的连接。

  • 使用复合$search阶段可以:

    • 指定结果must Polygon位于由 集定义的coordinates 内。

    • 优先显示condominium类型属性的结果。

  • 使用 $project 阶段以:

    • 排除除nameaddressproperty_type之外的所有字段。

    • 为每个返回的文档添加相关性score

  • 遍历游标以打印与查询匹配的文档。

1package main
2
3import (
4 "context"
5 "fmt"
6
7 "go.mongodb.org/mongo-driver/bson"
8 "go.mongodb.org/mongo-driver/mongo"
9 "go.mongodb.org/mongo-driver/mongo/options"
10)
11
12func main() {
13 // connect to your Atlas cluster
14 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>"))
15 if err != nil {
16 panic(err)
17 }
18 defer client.Disconnect(context.TODO())
19
20 // set namespace
21 collection := client.Database("sample_airbnb").Collection("listingsAndReviews")
22
23 // define polygon
24 polygon := [][][]float64{{
25 {-161.323242, 22.512557},
26 {-152.446289, 22.065278},
27 {-156.09375, 17.811456},
28 {-161.323242, 22.512557},
29 }}
30
31 // define pipeline
32 searchStage := bson.D{{"$search", bson.M{
33 "index": "geo-json-tutorial",
34 "compound": bson.M{
35 "must": bson.M{
36 "geoWithin": bson.M{
37 "geometry": bson.M{
38 "type": "Polygon",
39 "coordinates": polygon,
40 },
41 "path": "address.location",
42 },
43 },
44 "should": bson.M{
45 "text": bson.M{
46 "path": "property_type",
47 "query": "Condominium",
48 }},
49 },
50 },
51 }}
52 limitStage := bson.D{{"$limit", 10}}
53 projectStage := bson.D{{"$project", bson.D{{"name", 1}, {"address", 1}, {"property_type", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}}}}
54
55 // run pipeline
56 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage})
57 if err != nil {
58 panic(err)
59 }
60
61 // print results
62 var results []bson.D
63 if err = cursor.All(context.TODO(), &results); err != nil {
64 panic(err)
65 }
66 for _, result := range results {
67 fmt.Println(result)
68 }
69}
3

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

4
go run run-geo-query.go
[{name Ocean View Waikiki Marina w/prkg} {property_type Condominium} {address [{street Honolulu, HI, United States} {suburb Oʻahu} {government_area Primary Urban Center} {market Oahu} {country United States} {country_code US} {location [{type Point} {coordinates [-157.83919 21.28634]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!} {property_type Condominium} {address [{street Lahaina, HI, United States} {suburb Maui} {government_area Lahaina} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.68012 20.96996]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name Makaha Valley Paradise with OceanView} {property_type Condominium} {address [{street Waianae, HI, United States} {suburb Leeward Side} {government_area Waianae} {market Oahu} {country United States} {country_code US} {location [{type Point} {coordinates [-158.20291 21.4818]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name March 2019 availability! Oceanview on Sugar Beach!} {property_type Condominium} {address [{street Kihei, HI, United States} {suburb Maui} {government_area Kihei-Makena} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.46881 20.78621]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name Tropical Jungle Oasis} {property_type Condominium} {address [{street Hilo, HI, United States} {suburb Island of Hawaiʻi} {government_area South Hilo} {market The Big Island} {country United States} {country_code US} {location [{type Point} {coordinates [-155.09259 19.73108]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name 2 Bdrm/2 Bath Family Suite Ocean View} {property_type Condominium} {address [{street Honolulu, HI, United States} {suburb Waikiki} {government_area Primary Urban Center} {market Oahu} {country United States} {country_code US} {location [{type Point} {coordinates [-157.82696 21.27971]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name 302 Kanai A Nalu Ocean front/view} {property_type Condominium} {address [{street Wailuku, HI, United States} {suburb Maui} {government_area Kihei-Makena} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.5039 20.79664]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name Sugar Beach Resort 1BR Ground Floor Condo !} {property_type Condominium} {address [{street Kihei, HI, United States} {suburb Maui} {government_area Kihei-Makena} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.46697 20.78484]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name 2 BR Oceanview - Great Location!} {property_type Condominium} {address [{street Kihei, HI, United States} {suburb Kihei/Wailea} {government_area Kihei-Makena} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.44917 20.73013]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC} {property_type Condominium} {address [{street Kihei, HI, United States} {suburb Maui} {government_area Kihei-Makena} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.4409 20.69735]} {is_location_exact true}]}]} {score 2.238388776779175}]
1

junit

4.11 或更高版本

mongodb-driver-sync

4.3.0 或更高版本

slf4j-log4j12

1.7.30 或更高版本

2
3

以下代码示例:

  • 导入mongodb包和依赖项。

  • 建立与您的 Atlas 集群的连接。

  • 使用复合$search阶段可以:

    • 指定结果must Polygon位于由 集定义的coordinates 内。

    • 优先显示condominium类型属性的结果。

  • 使用 $project 阶段以:

    • 排除除nameaddressproperty_type之外的所有字段。

    • 为每个返回的文档添加相关性score

  • 遍历游标以打印与以下内容匹配的文档
    查询。
1import java.util.Arrays;
2import static com.mongodb.client.model.Filters.eq;
3import static com.mongodb.client.model.Aggregates.limit;
4import static com.mongodb.client.model.Aggregates.project;
5import static com.mongodb.client.model.Projections.computed;
6import static com.mongodb.client.model.Projections.excludeId;
7import static com.mongodb.client.model.Projections.fields;
8import static com.mongodb.client.model.Projections.include;
9import com.mongodb.client.MongoClient;
10import com.mongodb.client.MongoClients;
11import com.mongodb.client.MongoCollection;
12import com.mongodb.client.MongoDatabase;
13import org.bson.Document;
14
15public class GeoQuery {
16 public static void main( String[] args ) {
17 Document agg = new Document( "$search",
18 new Document( "index", "geo-json-tutorial")
19 .append("compound",
20 new Document("must", Arrays.asList(new Document("geoWithin",
21 new Document("geometry",
22 new Document("type", "Polygon")
23 .append("coordinates", Arrays.asList(Arrays.asList(Arrays.asList(-161.323242d, 22.512557d), Arrays.asList(-152.446289d, 22.065278d), Arrays.asList(-156.09375d, 17.811456d), Arrays.asList(-161.323242d, 22.512557d)))))
24 .append("path", "address.location"))))
25 .append("should", Arrays.asList(new Document("text",
26 new Document("path", "property_type")
27 .append("query", "Condominium"))))));
28
29 String uri = "<connection-string>";
30
31 try (MongoClient mongoClient = MongoClients.create(uri)) {
32 MongoDatabase database = mongoClient.getDatabase("sample_airbnb");
33 MongoCollection<Document> collection = database.getCollection("listingsAndReviews");
34
35 collection.aggregate(Arrays.asList(agg,
36 limit(10),
37 project(fields(excludeId(), include("name", "address", "property_type"), computed("score", new Document("$meta", "searchScore"))))))
38 .forEach(doc -> System.out.println(doc.toJson() + "\n"));
39 }
40 }
41}

注意

要在 Maven 环境中运行示例代码,请在文件中的 import 语句上方添加以下内容。

package com.mongodb.drivers;
4

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

5
javac GeoQuery.java
java GeoQuery
{"name": "Ocean View Waikiki Marina w/prkg", "property_type": "Condominium", "address": {"street": "Honolulu, HI, United States", "suburb": "O\u02bbahu", "government_area": "Primary Urban Center", "market": "Oahu", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-157.83919, 21.28634], "is_location_exact": true}}, "score": 1.0},
{"name": "Kailua-Kona, Kona Coast II 2b condo", "property_type": "Apartment", "address": {"street": "Kailua-Kona, HI, United States", "suburb": "Kailua/Kona", "government_area": "North Kona", "market": "The Big Island", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-155.96445, 19.5702], "is_location_exact": true}}, "score": 1.0},
{"name": "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!", "property_type": "Condominium", "address": {"street": "Lahaina, HI, United States", "suburb": "Maui", "government_area": "Lahaina", "market": "Maui", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-156.68012, 20.96996], "is_location_exact": true}}, "score": 1.0},
{"name": "Makaha Valley Paradise with OceanView", "property_type": "Condominium", "address": {"street": "Waianae, HI, United States", "suburb": "Leeward Side", "government_area": "Waianae", "market": "Oahu", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-158.20291, 21.4818], "is_location_exact": true}}, "score": 1.0},
{"name": "~Ao Lele~ Flying Cloud", "property_type": "Treehouse", "address": {"street": "Volcano, HI, United States", "suburb": "Island of Hawai\u02bbi", "government_area": "Puna", "market": "The Big Island", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-155.21763, 19.42151], "is_location_exact": false}}, "score": 1.0},
{"name": "Private OceanFront - Bathtub Beach. Spacious House", "property_type": "House", "address": {"street": "Laie, HI, United States", "suburb": "Ko'olauloa", "government_area": "Koolauloa", "market": "Oahu", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-157.91952, 21.63549], "is_location_exact": true}}, "score": 1.0},
{"name": "Banyan Bungalow", "property_type": "Bungalow", "address": {"street": "Waialua, HI, United States", "suburb": "O\u02bbahu", "government_area": "North Shore Oahu", "market": "Oahu", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-158.1602, 21.57561], "is_location_exact": false}}, "score": 1.0},
{"name": "March 2019 availability! Oceanview on Sugar Beach!", "property_type": "Condominium", "address": {"street": "Kihei, HI, United States", "suburb": "Maui", "government_area": "Kihei-Makena", "market": "Maui", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-156.46881, 20.78621], "is_location_exact": true}}, "score": 1.0},
{"name": "Tropical Jungle Oasis", "property_type": "Condominium", "address": {"street": "Hilo, HI, United States", "suburb": "Island of Hawai\u02bbi", "government_area": "South Hilo", "market": "The Big Island", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-155.09259, 19.73108], "is_location_exact": true}}, "score": 1.0},
{"name": "Jubilee By The Sea (Ocean Views)", "property_type": "House", "address": {"street": "Kailua-Kona, HI, United States", "suburb": "Island of Hawai\u02bbi", "government_area": "North Kona", "market": "The Big Island", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-155.97349, 19.61318], "is_location_exact": false}}, "score": 1.0}
1

mongodb-driver-kotlin-coroutine

4.10.0 或更高版本

2
3

以下代码示例:

  • 导入mongodb包和依赖项。

  • 建立与您的 Atlas 集群的连接。

  • 使用复合$search阶段可以:

    • 指定结果must Polygon位于由 集定义的coordinates 内。

    • 优先显示condominium类型属性的结果。

  • 使用 $project 阶段以:

    • 排除除nameaddressproperty_type之外的所有字段。

    • 为每个返回的文档添加相关性score

  • 打印与 AggregateFlow 实例中的查询相匹配的文档。

1import com.mongodb.client.model.Aggregates.limit
2import com.mongodb.client.model.Aggregates.project
3import com.mongodb.client.model.Projections.*
4import com.mongodb.kotlin.client.coroutine.MongoClient
5import kotlinx.coroutines.runBlocking
6import org.bson.Document
7
8fun main() {
9 // connect to your Atlas cluster
10 val uri = "<connection-string>"
11 val mongoClient = MongoClient.create(uri)
12
13 // set namespace
14 val database = mongoClient.getDatabase("sample_airbnb")
15 val collection = database.getCollection<Document>("listingsAndReviews")
16
17 runBlocking {
18 // define pipeline
19 val agg = Document(
20 "\$search",
21 Document("index", "geo-json-tutorial")
22 .append(
23 "compound",
24 Document(
25 "must", listOf(
26 Document(
27 "geoWithin",
28 Document(
29 "geometry",
30 Document("type", "Polygon")
31 .append(
32 "coordinates",
33 listOf(
34 listOf(
35 listOf(-161.323242, 22.512557),
36 listOf(-152.446289, 22.065278),
37 listOf(-156.09375, 17.811456),
38 listOf(-161.323242, 22.512557)
39 )
40 )
41 )
42 )
43 .append("path", "address.location")
44 )
45 )
46 )
47 .append(
48 "should", listOf(
49 Document(
50 "text",
51 Document("path", "property_type")
52 .append("query", "Condominium")
53 )
54 )
55 )
56 )
57 )
58
59 // run pipeline and print results
60 val resultsFlow = collection.aggregate<Document>(
61 listOf(
62 agg,
63 limit(10),
64 project(fields(
65 excludeId(),
66 include("name", "address", "property_type"),
67 computed("score", Document("\$meta", "searchScore"))
68 ))
69 )
70 )
71 resultsFlow.collect { println(it) }
72 }
73 mongoClient.close()
74}
4

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

5

当你在 IDE 中运行 GeoQuery.kt 程序时,它会打印以下文档:

Document{{name=Ocean View Waikiki Marina w/prkg, property_type=Condominium, address=Document{{street=Honolulu, HI, United States, suburb=Oʻahu, government_area=Primary Urban Center, market=Oahu, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-157.83919, 21.28634], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!, property_type=Condominium, address=Document{{street=Lahaina, HI, United States, suburb=Maui, government_area=Lahaina, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.68012, 20.96996], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=Makaha Valley Paradise with OceanView, property_type=Condominium, address=Document{{street=Waianae, HI, United States, suburb=Leeward Side, government_area=Waianae, market=Oahu, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-158.20291, 21.4818], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=March 2019 availability! Oceanview on Sugar Beach!, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.46881, 20.78621], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=Tropical Jungle Oasis, property_type=Condominium, address=Document{{street=Hilo, HI, United States, suburb=Island of Hawaiʻi, government_area=South Hilo, market=The Big Island, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-155.09259, 19.73108], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=2 Bdrm/2 Bath Family Suite Ocean View, property_type=Condominium, address=Document{{street=Honolulu, HI, United States, suburb=Waikiki, government_area=Primary Urban Center, market=Oahu, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-157.82696, 21.27971], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=302 Kanai A Nalu Ocean front/view, property_type=Condominium, address=Document{{street=Wailuku, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.5039, 20.79664], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=Sugar Beach Resort 1BR Ground Floor Condo !, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.46697, 20.78484], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=2 BR Oceanview - Great Location!, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Kihei/Wailea, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.44917, 20.73013], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.4409, 20.69735], is_location_exact=true}}}}, score=2.238388776779175}}
1
2

以下代码示例:

  • 导入 mongodb,即 MongoDB 的 Node.js 驱动程序。

  • 创建一个 MongoClient 类实例,以建立与 Atlas 集群的连接。

    • 使用复合$search阶段可以:

      • 指定结果must Polygon位于由 集定义的coordinates 内。

      • 优先显示condominium类型属性的结果。

    • 使用 $project 阶段以:

      • 排除除nameaddressproperty_type之外的所有字段。

      • 为每个返回的文档添加相关性score

  • 遍历游标以打印与查询匹配的文档。

    1const { MongoClient } = require("mongodb");
    2
    3// connect to your Atlas cluster
    4const uri ="<connection-string>";
    5
    6const client = new MongoClient(uri);
    7
    8async function run() {
    9 try {
    10 await client.connect();
    11
    12 // set namespace
    13 const database = client.db("sample_airbnb");
    14 const coll = database.collection("listingsAndReviews");
    15
    16 // define pipeline
    17 const agg = [
    18 {
    19 '$search': {
    20 'index': 'geo-json-tutorial',
    21 'compound': {
    22 'must': [
    23 {
    24 'geoWithin': {
    25 'geometry': {
    26 'type': 'Polygon',
    27 'coordinates': [
    28 [
    29 [
    30 -161.323242, 22.512557
    31 ], [
    32 -152.446289, 22.065278
    33 ], [
    34 -156.09375, 17.811456
    35 ], [
    36 -161.323242, 22.512557
    37 ]
    38 ]
    39 ]
    40 },
    41 'path': 'address.location'
    42 }
    43 }
    44 ],
    45 'should': [
    46 {
    47 'text': {
    48 'path': 'property_type',
    49 'query': 'Condominium'
    50 }
    51 }
    52 ]
    53 }
    54 }
    55 }, {
    56 '$limit': 10
    57 }, {
    58 '$project': {
    59 '_id': 0,
    60 'name': 1,
    61 'address': 1,
    62 'property_type': 1,
    63 'score': {
    64 '$meta': 'searchScore'
    65 }
    66 }
    67 }
    68 ];
    69 // run pipeline
    70 const result = await coll.aggregate(agg);
    71
    72 // print results
    73 await result.forEach((doc) => console.log(doc));
    74 } finally {
    75 await client.close();
    76 }
    77}
    78run().catch(console.dir);
3

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

4

运行以下命令来查询您的集合:

node run-geo-query.js
{
name: 'Ocean View Waikiki Marina w/prkg',
property_type: 'Condominium',
address: {
street: 'Honolulu, HI, United States',
suburb: 'Oʻahu',
government_area: 'Primary Urban Center',
market: 'Oahu',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -157.83919, 21.28634 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!',
property_type: 'Condominium',
address: {
street: 'Lahaina, HI, United States',
suburb: 'Maui',
government_area: 'Lahaina',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.68012, 20.96996 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'Makaha Valley Paradise with OceanView',
property_type: 'Condominium',
address: {
street: 'Waianae, HI, United States',
suburb: 'Leeward Side',
government_area: 'Waianae',
market: 'Oahu',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -158.20291, 21.4818 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'March 2019 availability! Oceanview on Sugar Beach!',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.46881, 20.78621 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'Tropical Jungle Oasis',
property_type: 'Condominium',
address: {
street: 'Hilo, HI, United States',
suburb: 'Island of Hawaiʻi',
government_area: 'South Hilo',
market: 'The Big Island',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -155.09259, 19.73108 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: '2 Bdrm/2 Bath Family Suite Ocean View',
property_type: 'Condominium',
address: {
street: 'Honolulu, HI, United States',
suburb: 'Waikiki',
government_area: 'Primary Urban Center',
market: 'Oahu',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -157.82696, 21.27971 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: '302 Kanai A Nalu Ocean front/view',
property_type: 'Condominium',
address: {
street: 'Wailuku, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.5039, 20.79664 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'Sugar Beach Resort 1BR Ground Floor Condo !',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.46697, 20.78484 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: '2 BR Oceanview - Great Location!',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Kihei/Wailea',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.44917, 20.73013 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.4409, 20.69735 ],
is_location_exact: true
}
},
score: 2.238388776779175
}
1
2

以下代码示例:

  • 导入 pymongo 、MongoDB 的 Python 驱动程序和 dns 模块,这是使用 DNS 种子列表连接字符串将 pymongo 连接到 Atlas 所必需的。

  • 创建一个 MongoClient 类实例,以建立与 Atlas 集群的连接。

    • 使用复合$search阶段可以:

      • 指定结果must Polygon位于由 集定义的coordinates 内。

      • 优先显示condominium类型属性的结果。

    • 使用 $project 阶段以:

      • 排除除nameaddressproperty_type之外的所有字段。

      • 为每个返回的文档添加相关性score

  • 遍历游标以打印与查询匹配的文档。

    1import pymongo
    2
    3# connect to your Atlas cluster
    4client = pymongo.MongoClient('<connection-string>')
    5
    6# define pipeline
    7pipeline = [
    8 {
    9 '$search': {
    10 'index': 'geo-json-tutorial',
    11 'compound': {
    12 'must': [
    13 {
    14 'geoWithin': {
    15 'geometry': {
    16 'type': 'Polygon',
    17 'coordinates': [
    18 [
    19 [
    20 -161.323242, 22.512557
    21 ], [
    22 -152.446289, 22.065278
    23 ], [
    24 -156.09375, 17.811456
    25 ], [
    26 -161.323242, 22.512557
    27 ]
    28 ]
    29 ]
    30 },
    31 'path': 'address.location'
    32 }
    33 }
    34 ],
    35 'should': [
    36 {
    37 'text': {
    38 'path': 'property_type',
    39 'query': 'Condominium'
    40 }
    41 }
    42 ]
    43 }
    44 }
    45 }, {
    46 '$limit': 10
    47 }, {
    48 '$project': {
    49 '_id': 0,
    50 'name': 1,
    51 'address': 1,
    52 'property_type': 1,
    53 'score': {
    54 '$meta': 'searchScore'
    55 }
    56 }
    57 }
    58]
    59# run pipeline
    60result = client["sample_airbnb"]["listingsAndReviews"].aggregate(pipeline)
    61
    62# print results
    63for i in result:
    64 print(i)
3

在运行示例之前,请将 <connection-string> 替换为 Atlas 连接字符串。确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接。

4
python run-geo-query.py
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Primary Urban Center",
"location": {
"coordinates": [
-157.83919,
21.28634
],
"is_location_exact": true,
"type": "Point"
},
"market": "Oahu",
"street": "Honolulu, HI, United States",
"suburb": "O\u02bbahu"
},
"name": "Ocean View Waikiki Marina w/prkg",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Lahaina",
"location": {
"coordinates": [
-156.68012,
20.96996
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Lahaina, HI, United States",
"suburb": "Maui"
},
"name": "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Waianae",
"location": {
"coordinates": [
-158.20291,
21.4818
],
"is_location_exact": true,
"type": "Point"
},
"market": "Oahu",
"street": "Waianae, HI, United States",
"suburb": "Leeward Side"
},
"name": "Makaha Valley Paradise with OceanView",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Kihei-Makena",
"location": {
"coordinates": [
-156.46881,
20.78621
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Kihei, HI, United States",
"suburb": "Maui"
},
"name": "March 2019 availability! Oceanview on Sugar Beach!",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "South Hilo",
"location": {
"coordinates": [
-155.09259,
19.73108
],
"is_location_exact": true,
"type": "Point"
},
"market": "The Big Island",
"street": "Hilo, HI, United States",
"suburb": "Island of Hawai\u02bbi"
},
"name": "Tropical Jungle Oasis",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Primary Urban Center",
"location": {
"coordinates": [
-157.82696,
21.27971
],
"is_location_exact": true,
"type": "Point"
},
"market": "Oahu",
"street": "Honolulu, HI, United States",
"suburb": "Waikiki"
},
"name": "2 Bdrm/2 Bath Family Suite Ocean View",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Kihei-Makena",
"location": {
"coordinates": [
-156.5039,
20.79664
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Wailuku, HI, United States",
"suburb": "Maui"
},
"name": "302 Kanai A Nalu Ocean front/view",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Kihei-Makena",
"location": {
"coordinates": [
-156.46697,
20.78484
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Kihei, HI, United States",
"suburb": "Maui"
},
"name": "Sugar Beach Resort 1BR Ground Floor Condo !",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Kihei-Makena",
"location": {
"coordinates": [
-156.44917,
20.73013
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Kihei, HI, United States",
"suburb": "Kihei/Wailea"
},
"name": "2 BR Oceanview - Great Location!",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Kihei-Makena",
"location": {
"coordinates": [
-156.4409,
20.69735
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Kihei, HI, United States",
"suburb": "Maui"
},
"name": "PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC",
"property_type": "Condominium",
"score": 2.238388776779175
}

后退

不区分变音符号