Docs 菜单
Docs 主页
/
MongoDB Atlas
/ / /

如何使用 Atlas Search $search 查询运行 $unionWith

在此页面上

  • 创建 Atlas Search 搜索索引
  • 运行带有 $search$unionWith 以搜索集合

从 v6.0 开始,MongoDB $unionWith 聚合阶段支持 $unionWith pipeline 选项内的 $search。使用 $unionWith,您可以将来自同一个数据库中多个集合的 $search 结果合并到结果集中。

本教程演示针对 sample_training 数据库中的 companiesinspections 集合,如何运行带有 $search$unionWith 查询。本教程将引导您完成以下步骤:

  1. sample_training数据库中的companiesinspectionscollection设置具有动态映射的 Atlas Search 索引。

  2. 使用$search 运行 $unionWith 查询,对 companies 集合中名为 mobile 的公司与 inspections 集合中具有相同或相似企业名称的公司进行联合。

开始之前,请确保 Atlas 集群满足先决条件中所述的要求。

注意

要运行带有 $search$unionWith 查询,您的集群必须运行 MongoDB v6.0 或更高版本。

要创建 Atlas Search 索引,您必须拥有 Project Data Access Admin 或更高的项目访问权限。

在本部分中,您将在sample_training数据库中companiescollection的所有字段上创建一个名为default的 Atlas Search 搜索索引。您将在sample_training数据库的inspectionscollection中的所有字段上创建另一个名为default的 Atlas Search 搜索索引。您必须为每个collection执行以下步骤。

1
  1. 如果尚未显示,请从导航栏上的 Organizations 菜单中选择包含所需项目的组织。

  2. 如果尚未显示,请从导航栏的Projects菜单中选择所需的项目。

  3. 如果尚未出现,请单击侧边栏中的 Clusters(部署)。

    会显示集群页面。

2

您可以从侧边栏、 Data Explorer 或集群详细信息页面转到 Atlas Search 页面。

  1. 在侧边栏中,单击 Services 标题下的 Atlas Search

  2. Select data source 下拉菜单中选择您的集群并单击 Go to Atlas Search

    将显示 Atlas Search 页面。

  1. 单击集群的对应 Browse Collections 按钮。

  2. 展开数据库并选择集合。

  3. 单击该集合的 Search Indexes 标签页。

    将显示 Atlas Search 页面。

  1. 单击集群的名称。

  2. 单击 Atlas Search 标签页。

    将显示 Atlas Search 页面。

3

单击 Create Search Index(连接)。

4
  • 要获得引导式体验,请选择 Atlas Search Visual Editor

  • 要编辑原始索引定义,请选择 Atlas SearchJSON Editor

5
  1. Index Name 字段中输入 default

    如果将索引命名为 default,则在使用 $search 管道阶段时无需指定 index 参数。如果您为索引指定了自定义名称,则必须在 index 参数中指定此名称。

  2. Database and Collection部分中,找到sample_training数据库,然后选择集合。

    • 要为companiescollection创建索引,请选择companies

    • 要为inspectionscollection创建索引,请选择inspections

6

以下索引定义对集合中的支持类型字段动态创建索引。您可以使用 Atlas Search Visual Editor 或 Atlas Search JSON Editor 在 Atlas 用户界面中创建索引。

  1. 单击 Next(连接)。

  2. 查看collection的"default"索引定义。

  1. 单击 Next(连接)。

  2. 查看索引定义。

    您的索引定义应类似于以下示例:

    {
    "mappings": {
    "dynamic": true
    }
    }
7
8

此时将显示一个模态窗口,让您知道索引正在构建中。单击 Close 按钮。

9

构建索引大约需要一分钟时间。在构建时,Status 列显示 Build in Progress。构建完成后,Status 列显示 Active


➤ 使用选择语言下拉菜单设置本节中示例的语言。


在本部分中,您将连接到 Atlas 集群,并针对sample_training数据库中的索引集合运行样本查询。

1

在终端窗口中打开mongosh并连接到集群。 有关连接的详细说明,请参阅通过mongosh连接。

2

mongosh 提示符下运行以下命令:

use sample_training
switched to db sample_training
3

以下查询分别在companiesinspectionscollection中搜索namebusiness_name字段中的术语mobile

此查询使用以下阶段:

  • $search可搜索名称中包含mobile的公司。

  • $unionWith 以执行以下操作:

    • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

    • companies中的文档和inspectionscollection中的文档执行并集。

  • $set阶段添加一个名为source的新字段,用于标识输出文档的集合。

    • $limit 阶段将输出限制为每个集合的 3 个结果。

    • $project 阶段到:

      • 在结果中仅包含指定字段。

      • 添加名为 score 的字段。

db.companies.aggregate([
{
"$search": {
"text": {
"query": "Mobile",
"path": "name"
}
}
}, {
"$project": {
"score": {
"$meta": "searchScore"
},
"_id": 0,
"number_of_employees": 1,
"founded_year": 1,
"name": 1
}
}, {
"$set": {
"source": "companies"
}
}, {
"$limit": 3
}, {
"$unionWith": {
"coll": "inspections",
"pipeline": [
{
"$search": {
"text": {
"query": "Mobile",
"path": "business_name"
}
}
}, {
"$set": {
"source": "inspections"
}
}, {
"$project": {
"score": {
"$meta": "searchScore"
},
"source": 1,
"_id": 0,
"business_name": 1,
"address": 1
}
}, {
"$limit": 3
}, {
"$sort": {
"score": -1
}
}
]
}
}
])
[
{
name: 'XLR8 Mobile',
number_of_employees: 21,
founded_year: 2006,
score: 2.0815043449401855,
source: 'companies'
},
{
name: 'Pulse Mobile',
number_of_employees: null,
founded_year: null,
score: 2.0815043449401855,
source: 'companies'
},
{
name: 'T-Mobile',
number_of_employees: null,
founded_year: null,
score: 2.0815043449401855,
source: 'companies'
},
{
business_name: 'T. MOBILE',
address: { city: 'BROOKLYN', zip: 11209, street: '86TH ST', number: 440 },
score: 2.900916337966919,
source: 'inspections'
},
{
business_name: 'BOOST MOBILE',
address: { city: 'BRONX', zip: 10458, street: 'E FORDHAM RD', number: 261 },
score: 2.900916337966919,
source: 'inspections'
},
{
business_name: 'SPRING MOBILE',
address: {
city: 'SOUTH RICHMOND HILL',
zip: 11419,
street: 'LIBERTY AVE',
number: 12207
},
score: 2.900916337966919,
source: 'inspections'
}
]

此查询使用以下阶段:

  • $search可搜索名称中包含mobile的公司。

  • $project 阶段到:

    • 在结果中仅包含指定字段。

    • 添加名为 score 的字段。

  • $addFields 阶段添加以下新字段:

    • 一个名为 source 的新字段,用于标识输出文档的集合。

    • 字段名称 source_count,显示输出文档的计数。

  • $unionWith 以执行以下操作:

    • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

    • companies中的文档和inspectionscollection中的文档执行并集。

  • $project 阶段到:

    • 在结果中仅包含指定字段。

    • 添加名为 score 的字段。

  • $limit 阶段将输出限制为每个集合的 3 个结果。

  • $set 阶段添加以下新字段:

    • 一个名为 source 的新字段,用于标识输出文档的集合。

    • 一个名为 source_count 的新字段,显示输出文档的计数。

db.companies.aggregate([
{
"$search": {
"text": {
"query": "mobile",
"path": "name",
"score": {
"boost": {
"value": 1.6
}
}
}
}
}, {
"$project": {
"score": {
"$meta": "searchScore"
},
"_id": 0,
"number_of_employees": 1,
"founded_year": 1,
"name": 1
}
}, {
"$addFields": {
"source": "companies",
"source_count": "$$SEARCH_META.count.lowerBound"
}
}, {
"$limit": 3
}, {
"$unionWith": {
"coll": "inspections",
"pipeline": [
{
"$search": {
"text": {
"query": "mobile",
"path": "business_name"
}
}
}, {
"$project": {
"score": {
"$meta": "searchScore"
},
"business_name": 1,
"address": 1,
"_id": 0
}
}, {
"$limit": 3
}, {
"$set": {
"source": "inspections",
"source_count": "$$SEARCH_META.count.lowerBound"
}
}, {
"$sort": {
"score": -1
}
}
]
}
}, {
"$facet": {
"allDocs": [],
"totalCount": [
{
"$group": {
"_id": "$source",
"firstCount": {
"$first": "$source_count"
}
}
}, {
"$project": {
"totalCount": {
"$sum": "$firstCount"
}
}
}
]
}
}
])
[
{
allDocs: [
{
name: 'XLR8 Mobile',
number_of_employees: 21,
founded_year: 2006,
score: 3.33040714263916,
source: 'companies',
source_count: Long("52")
},
{
name: 'Pulse Mobile',
number_of_employees: null,
founded_year: null,
score: 3.33040714263916,
source: 'companies',
source_count: Long("52")
},
{
name: 'T-Mobile',
number_of_employees: null,
founded_year: null,
score: 3.33040714263916,
source: 'companies',
source_count: Long("52")
},
{
business_name: 'T. MOBILE',
address: {
city: 'BROOKLYN',
zip: 11209,
street: '86TH ST',
number: 440
},
score: 2.900916337966919,
source: 'inspections',
source_count: Long("456")
},
{
business_name: 'BOOST MOBILE',
address: {
city: 'BRONX',
zip: 10458,
street: 'E FORDHAM RD',
number: 261
},
score: 2.900916337966919,
source: 'inspections',
source_count: Long("456")
},
{
business_name: 'SPRING MOBILE',
address: {
city: 'SOUTH RICHMOND HILL',
zip: 11419,
street: 'LIBERTY AVE',
number: 12207
},
score: 2.900916337966919,
source: 'inspections',
source_count: Long("456")
}
],
totalCount: [
{ _id: 'companies', totalCount: Long("52") },
{ _id: 'inspections', totalCount: Long("456") }
]
}
]
1

打开 MongoDB Compass 并连接到您的集群。有关连接的详细说明,请参阅通过 Compass 连接。

2

Database 屏幕上,依次单击 sample_training 数据库和 companies 集合。

3

以下查询分别在companiesinspectionscollection中搜索namebusiness_name字段中的术语mobile

若要在 MongoDB Compass 中运行此查询:

  1. 单击 Aggregations 标签页。

  2. 单击 Select...,然后从下拉菜单中选择阶段并为该阶段添加查询,以配置以下每个管道阶段。单击 Add Stage 以添加其他阶段。

    此查询使用以下阶段:

    • $search可搜索名称中包含mobile的公司。

    • $unionWith 以执行以下操作:

      • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

      • companies中的文档和inspectionscollection中的文档执行并集。

    • $set阶段添加一个名为source的新字段,用于标识输出文档的集合。

      • $limit 阶段将输出限制为每个集合的 3 个结果。

      • $project 阶段到:

        • 在结果中仅包含指定字段。

        • 添加名为 score 的字段。

    管道阶段
    查询
    $search
    {
    "text": {
    "query": "Mobile",
    "path": "name"
    }
    }
    $project
    {
    "score": {
    "$meta": "searchScore",
    },
    "_id": 0,
    "number_of_employees": 1,
    "founded_year": 1,
    "name": 1
    }
    $set
    {
    "source": "companies"
    }
    $limit
    3
    $unionWith
    {
    "coll": "inspections",
    "pipeline": [
    {
    "$search": {
    "text": {
    "query": "Mobile",
    "path": "business_name",
    }
    }
    },
    {
    "$set": {
    "source": "inspections",
    }
    },
    {
    "$project": {
    "score": {
    "$meta": "searchScore"
    },
    "source": 1,
    "_id": 0,
    "business_name": 1,
    "address": 1
    }
    },
    {
    "$limit": 3
    },
    {
    "$sort": {
    "score": -1
    }
    }
    ]
    }

    如果已启用 Auto Preview,则 MongoDB Compass 将在 $project 管道阶段旁边显示以下文档:

    name: "XLR8 Mobile"
    number_of_employees: 21
    founded_year: 2006
    score: 2.0815043449401855
    source: "companies"
    name: "Pulse Mobile"
    number_of_employees: null
    founded_year: null
    score: 2.0815043449401855
    source: "companies"
    name: "T-Mobile"
    number_of_employees: null
    founded_year: null
    score: 2.0815043449401855
    source: "companies"
    business_name: "T. MOBILE"
    address: Object
    source: "inspections"
    score: 2.900916337966919
    business_name: "BOOST MOBILE"
    address: Object
    source: "inspections"
    score: 2.900916337966919
    business_name: "SPRING MOBILE"
    address: Object
    source: "inspections"
    score: 2.900916337966919

    此查询使用以下阶段:

    • $search可搜索名称中包含mobile的公司。

    • $project 阶段到:

      • 在结果中仅包含指定字段。

      • 添加名为 score 的字段。

    • $addFields 阶段添加以下新字段:

      • 一个名为 source 的新字段,用于标识输出文档的集合。

      • 字段名称 source_count,显示输出文档的计数。

    • $unionWith 以执行以下操作:

      • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

      • companies中的文档和inspectionscollection中的文档执行并集。

    • $project 阶段到:

      • 在结果中仅包含指定字段。

      • 添加名为 score 的字段。

    • $limit 阶段将输出限制为每个集合的 3 个结果。

    • $set 阶段添加以下新字段:

      • 一个名为 source 的新字段,用于标识输出文档的集合。

      • 一个名为 source_count 的新字段,显示输出文档的计数。

    管道阶段
    查询
    $search
    {
    text: {
    query: "mobile",
    path: "name",
    score: {
    boost: {
    value: 1.6
    }
    }
    }
    }
    $project
    {
    "score": {
    "$meta": "searchScore",
    },
    "_id": 0,
    "number_of_employees": 1,
    "founded_year": 1,
    "name": 1
    }
    $addFields
    {
    source: "companies",
    source_count: "$$SEARCH_META.count.lowerBound"
    }
    $limit
    3
    $unionWith
    {
    coll: "inspections",
    pipeline: [
    {
    $search: {
    text: {
    query: "mobile",
    path: "business_name"
    }
    }
    },
    {
    $project: {
    score: {
    $meta: "searchScore"
    },
    business_name: 1,
    address: 1,
    _id: 0
    }
    },
    {
    $limit: 3,
    },
    {
    $set: {
    source: "inspections",
    source_count: "$$SEARCH_META.count.lowerBound"
    }
    },
    {
    $sort: {
    score: -1
    }
    }
    ]
    }
    $facet
    {
    allDocs: [],
    totalCount: [
    {
    $group: {
    _id: "$source",
    firstCount: { $first: "$source_count" }
    }
    },
    {
    $project: {
    totalCount: {
    $sum: "$firstCount"
    }
    }
    }
    ]
    }

    如果已启用 Auto Preview,则 MongoDB Compass 将在 $project 管道阶段旁边显示以下文档:

    allDocs: Array (6)
    0: Object
    name: "XLR8 Mobile"
    number_of_employees: 21
    founded_year: 2006
    score: 3.33040714263916
    source: "companies"
    source_count: 52
    1: Object
    name: "Pulse Mobile"
    number_of_employees: null
    founded_year: null
    score: 3.33040714263916
    source: "companies"
    source_count: 52
    2: Object
    name: "T-Mobile"
    number_of_employees: null
    founded_year: null
    score: 3.33040714263916
    source: "companies"
    source_count: 52
    3: Object
    business_name: "T. MOBILE"
    address: Object
    score: 2.900916337966919
    source: "inspections"
    source_count: 456
    4: Object
    business_name: "BOOST MOBILE"
    address: Object
    score: 2.900916337966919
    source: "inspections"
    source_count: 456
    5: Object
    business_name: "SPRING MOBILE"
    address: Object
    score: 2.900916337966919
    source: "inspections"
    source_count: 456
    totalCount: Array (2)
    0: Object
    _id: "companies"
    totalCount: 52
    1: Object
    _id: "inspections"
    totalCount: 456
4

对于在结果中返回的文档,MongoDB Compass 可能不会显示该文档对象内的所有字段和数组内的所有值。如要查看所有字段和值,请展开结果中的字段。

1
  1. 创建一个名为 search-with-unionwith 的新目录,并使用 dotnet new 命令初始化项目。

    mkdir search-with-unionwith
    cd search-with-unionwith
    dotnet new console
  2. 将 .NET/C# 驱动程序作为依赖项添加到项目中。

    dotnet add package MongoDB.Driver
2

以下查询分别在companiesinspectionscollection中搜索namebusiness_name字段中的术语mobile

此查询使用以下阶段:

  • $search可搜索名称中包含mobile的公司。

  • $unionWith 以执行以下操作:

    • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

    • companies中的文档和inspectionscollection中的文档执行并集。

  • $set阶段添加一个名为source的新字段,用于标识输出文档的集合。

    • $limit 阶段将输出限制为每个集合的 3 个结果。

    • $project 阶段到:

      • 在结果中仅包含指定字段。

      • 添加名为 score 的字段。

1using MongoDB.Bson;
2using MongoDB.Driver;
3using MongoDB.Driver.Search;
4
5public class Program
6{
7 public static void Main(string[] args)
8 {
9 // connect to your Atlas cluster
10 string connectionString = "<connection-string>";
11 var client = new MongoClient(connectionString);
12
13 // define namespace
14 var database = client.GetDatabase("sample_training");
15 var collection = database.GetCollection<BsonDocument>("companies");
16
17 // define pipeline stage
18 var searchStage1 = new BsonDocument("$search", new BsonDocument{{ "text", new BsonDocument
19 {{ "query", "Mobile" },{ "path", "name" }}
20 }});
21 var projectStage1 = new BsonDocument("$project", new BsonDocument{
22 { "score", new BsonDocument("$meta", "searchScore") },
23 { "_id", 0 },{ "number_of_employees", 1 },{ "founded_year", 1 },{ "name", 1 }
24 });
25 var setStage1 = new BsonDocument("$set", new BsonDocument{{ "source", "companies" }});
26 var limitStage1 = new BsonDocument("$limit", 3);
27
28 // define subpipeline
29 var searchStage2 = new BsonDocument("$search", new BsonDocument{{ "text", new BsonDocument
30 {{ "query", "Mobile" },{ "path", "business_name" }}
31 }});
32 var setStage2 = new BsonDocument("$set", new BsonDocument{ { "source", "inspections" } });
33 var projectStage2 = new BsonDocument("$project", new BsonDocument{
34 { "score", new BsonDocument("$meta", "searchScore") },
35 { "source", 1 }, { "_id", 0 }, { "business_name", 1 }, { "address", 1 }
36 });
37 var limitStage2 = new BsonDocument("$limit", 3);
38 var sortStage2 = new BsonDocument("$sort", new BsonDocument{{ "score", -1 }});
39 var unionWithPipeline = new List<BsonDocument>{searchStage2, setStage2, projectStage2, limitStage2, sortStage2};
40 var unionWithStage = new BsonDocument("$unionWith", new BsonDocument
41 {
42 { "coll", "inspections" },
43 { "pipeline", new BsonArray(unionWithPipeline) }
44 });
45 var aggregationPipeline = new List<BsonDocument> {searchStage1, projectStage1, setStage1, limitStage1,unionWithStage};
46
47 // run pipeline
48 var result = collection.Aggregate<BsonDocument>(aggregationPipeline).ToList();
49
50 //print results
51 foreach (var document in result)
52 {
53 Console.WriteLine(document);
54 }
55 }
56}

此查询使用以下阶段:

  • $search可搜索名称中包含mobile的公司。

  • $project 阶段到:

    • 在结果中仅包含指定字段。

    • 添加名为 score 的字段。

  • $addFields 阶段添加以下新字段:

    • 一个名为 source 的新字段,用于标识输出文档的集合。

    • 字段名称 source_count,显示输出文档的计数。

  • $unionWith 以执行以下操作:

    • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

    • companies中的文档和inspectionscollection中的文档执行并集。

  • $project 阶段到:

    • 在结果中仅包含指定字段。

    • 添加名为 score 的字段。

  • $limit 阶段将输出限制为每个集合的 3 个结果。

  • $set 阶段添加以下新字段:

    • 一个名为 source 的新字段,用于标识输出文档的集合。

    • 一个名为 source_count 的新字段,显示输出文档的计数。

1using MongoDB.Bson;
2using MongoDB.Driver;
3
4public class Program
5{
6 public static void Main(string[] args)
7 {
8 // connect to your Atlas cluster
9 var client = new MongoClient("<connection-string>");
10
11 // define namespace
12 var database = client.GetDatabase("sample_training");
13 var collection = database.GetCollection<BsonDocument>("companies");
14
15 // define pipeline
16 var pipeline = new BsonDocument[]
17 {
18 new BsonDocument("$search", new BsonDocument{
19 { "text", new BsonDocument{
20 { "query", "mobile" }, { "path", "name" },
21 { "score", new BsonDocument{
22 { "boost", new BsonDocument{ { "value", 1.6 } }}
23 }}
24 }}
25 }),
26 new BsonDocument("$project", new BsonDocument{
27 { "score", new BsonDocument("$meta", "searchScore") },
28 { "_id", 0 },
29 { "number_of_employees", 1 }, { "founded_year", 1 }, { "name", 1 }
30 }),
31 new BsonDocument("$addFields", new BsonDocument{
32 { "source", "companies" },
33 { "source_count", "$$SEARCH_META.count.lowerBound" }
34 }),
35 new BsonDocument("$limit", 3),
36 new BsonDocument("$unionWith", new BsonDocument{
37 { "coll", "inspections" },
38 { "pipeline", new BsonArray{
39 new BsonDocument("$search", new BsonDocument{
40 { "text", new BsonDocument{
41 { "query", "mobile" },
42 { "path", "business_name" }
43 }}
44 }),
45 new BsonDocument("$project", new BsonDocument{
46 { "score", new BsonDocument("$meta", "searchScore") },
47 { "business_name", 1 }, { "address", 1 }, { "_id", 0 }
48 }),
49 new BsonDocument("$limit", 3),
50 new BsonDocument("$set", new BsonDocument{
51 { "source", "inspections" },
52 { "source_count", "$$SEARCH_META.count.lowerBound" }
53 }),
54 new BsonDocument("$sort", new BsonDocument{
55 { "score", -1 }
56 })
57 }}
58 }),
59 new BsonDocument("$facet", new BsonDocument{
60 { "allDocs", new BsonArray() },
61 { "totalCount", new BsonArray{
62 new BsonDocument("$group", new BsonDocument{
63 { "_id", "$source" },
64 { "firstCount", new BsonDocument("$first", "$source_count") }
65 }),
66 new BsonDocument("$project", new BsonDocument{
67 { "totalCount", new BsonDocument("$sum", "$firstCount") }
68 })
69 }}
70 })
71 };
72
73 // run pipeline
74 var result = collection.Aggregate<BsonDocument>(pipeline).ToList();
75
76 //print results
77 foreach (var document in result)
78 {
79 Console.WriteLine(document);
80 }
81 }
82}
3

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

4
dotnet run search-with-unionwith.csproj
{ "name" : "XLR8 Mobile", "number_of_employees" : 21, "founded_year" : 2006, "score" : 2.0815043449401855, "source" : "companies" }
{ "name" : "Pulse Mobile", "number_of_employees" : null, "founded_year" : null, "score" : 2.0815043449401855, "source" : "companies" }
{ "name" : "T-Mobile", "number_of_employees" : null, "founded_year" : null, "score" : 2.0815043449401855, "source" : "companies" }
{ "business_name" : "T. MOBILE", "address" : { "city" : "BROOKLYN", "zip" : 11209, "street" : "86TH ST", "number" : 440 }, "source" : "inspections", "score" : 2.9009163379669189 }
{ "business_name" : "BOOST MOBILE", "address" : { "city" : "BRONX", "zip" : 10458, "street" : "E FORDHAM RD", "number" : 261 }, "source" : "inspections", "score" : 2.9009163379669189 }
{ "business_name" : "SPRING MOBILE", "address" : { "city" : "SOUTH RICHMOND HILL", "zip" : 11419, "street" : "LIBERTY AVE", "number" : 12207 }, "source" : "inspections", "score" : 2.9009163379669189 }
dotnet run search-with-unionwith.csproj
{
"allDocs" : [
{ "name" : "XLR8 Mobile", "number_of_employees" : 21, "founded_year" : 2006, "score" : 3.3304071426391602, "source" : "companies", "source_count" : NumberLong(52) },
{ "name" : "Pulse Mobile", "number_of_employees" : null, "founded_year" : null, "score" : 3.3304071426391602, "source" : "companies", "source_count" : NumberLong(52) },
{ "name" : "T-Mobile", "number_of_employees" : null, "founded_year" : null, "score" : 3.3304071426391602, "source" : "companies", "source_count" : NumberLong(52) },
{ "business_name" : "T. MOBILE", "address" : { "city" : "BROOKLYN", "zip" : 11209, "street" : "86TH ST", "number" : 440 }, "score" : 2.9009163379669189, "source" : "inspections", "source_count" : NumberLong(456) },
{ "business_name" : "BOOST MOBILE", "address" : { "city" : "BRONX", "zip" : 10458, "street" : "E FORDHAM RD", "number" : 261 }, "score" : 2.9009163379669189, "source" : "inspections", "source_count" : NumberLong(456) },
{ "business_name" : "SPRING MOBILE", "address" : { "city" : "SOUTH RICHMOND HILL", "zip" : 11419, "street" : "LIBERTY AVE", "number" : 12207 }, "score" : 2.9009163379669189, "source" : "inspections", "source_count" : NumberLong(456) }
],
"totalCount" : [
{ "_id" : "companies", "totalCount" : NumberLong(52) },
{ "_id" : "inspections", "totalCount" : NumberLong(456) }
]
}
1
2

以下查询分别在companiesinspectionscollection中搜索namebusiness_name字段中的术语mobile

此查询使用以下阶段:

  • $search可搜索名称中包含mobile的公司。

  • $unionWith 以执行以下操作:

    • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

    • companies中的文档和inspectionscollection中的文档执行并集。

  • $set阶段添加一个名为source的新字段,用于标识输出文档的集合。

    • $limit 阶段将输出限制为每个集合的 3 个结果。

    • $project 阶段到:

      • 在结果中仅包含指定字段。

      • 添加名为 score 的字段。

1package main
2import (
3 "context"
4 "fmt"
5 "time"
6
7 "go.mongodb.org/mongo-driver/bson"
8 "go.mongodb.org/mongo-driver/mongo"
9 "go.mongodb.org/mongo-driver/mongo/options"
10)
11
12func main() {
13 var err error
14 // connect to the Atlas cluster
15 ctx := context.Background()
16 client, err := mongo.Connect(ctx, options.Client().ApplyURI("<connection-string>"))
17 if err != nil {
18 panic(err)
19 }
20 defer client.Disconnect(ctx)
21
22 // set namespace
23 collection := client.Database("sample_training").Collection("companies")
24 // define pipeline
25 searchStage := bson.D{{"$search", bson.D{
26 {"text", bson.D{
27 {"query", "Mobile"}, {"path", "name"},
28 }},
29 }}}
30 projectStage := bson.D{{"$project", bson.D{
31 {"score", bson.D{{"$meta", "searchScore"}}},
32 {"_id", 0},
33 {"number_of_employees", 1},
34 {"founded_year", 1},
35 {"name", 1},
36 }}}
37 setStage := bson.D{{"$set", bson.D{{"source", "companies"}}}}
38 limitStage := bson.D{{"$limit", 5}}
39 uinionWithStage := bson.D{{"$unionWith", bson.D{
40 {"coll", "inspections"},
41 {"pipeline", bson.A{
42 bson.D{{"$search", bson.D{
43 {"text", bson.D{
44 {"query", "Mobile"}, {"path", "business_name"},
45 }},
46 }}},
47 bson.D{{"$set", bson.D{{"source", "inspections"}}}},
48 bson.D{{"$project", bson.D{
49 {"score", bson.D{{"$meta", "searchScore"}}},
50 {"source", 1},
51 {"_id", 0},
52 {"business_name", 1},
53 {"address", 1},
54 }}},
55 bson.D{{"$limit", 3}},
56 bson.D{{"$sort", bson.D{{"score", -1}}}},
57 }},
58 }}}
59 // specify the amount of time the operation can run on the server
60 opts := options.Aggregate().SetMaxTime(5 * time.Second)
61 // run pipeline
62 cursor, err := collection.Aggregate(ctx, mongo.Pipeline{searchStage, projectStage, setStage, limitStage, uinionWithStage}, opts)
63 if err != nil {
64 panic(err)
65 }
66 // print results
67 var results []bson.D
68 if err = cursor.All(context.TODO(), &results); err != nil {
69 panic(err)
70 }
71 for _, result := range results {
72 fmt.Println(result)
73 }
74}

此查询使用以下阶段:

  • $search可搜索名称中包含mobile的公司。

  • $project 阶段到:

    • 在结果中仅包含指定字段。

    • 添加名为 score 的字段。

  • $addFields 阶段添加以下新字段:

    • 一个名为 source 的新字段,用于标识输出文档的集合。

    • 字段名称 source_count,显示输出文档的计数。

  • $unionWith 以执行以下操作:

    • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

    • companies中的文档和inspectionscollection中的文档执行并集。

  • $project 阶段到:

    • 在结果中仅包含指定字段。

    • 添加名为 score 的字段。

  • $limit 阶段将输出限制为每个集合的 3 个结果。

  • $set 阶段添加以下新字段:

    • 一个名为 source 的新字段,用于标识输出文档的集合。

    • 一个名为 source_count 的新字段,显示输出文档的计数。

1package main
2import (
3 "context"
4 "fmt"
5 "time"
6
7 "go.mongodb.org/mongo-driver/bson"
8 "go.mongodb.org/mongo-driver/mongo"
9 "go.mongodb.org/mongo-driver/mongo/options"
10)
11
12func main() {
13 var err error
14 // connect to the Atlas cluster
15 ctx := context.Background()
16 client, err := mongo.Connect(ctx, options.Client().ApplyURI("<connection-string>"))
17 if err != nil {
18 panic(err)
19 }
20 defer client.Disconnect(ctx)
21 // set namespace
22 collection := client.Database("sample_training").Collection("companies")
23 // define pipeline
24 searchStage := bson.D{{"$search", bson.D{
25 {"text", bson.D{
26 {"query", "Mobile"}, {"path", "name"}, {"score", bson.D{{"boost", bson.D{{"value", 1.6}}}}},
27 }},
28 }}}
29 projectStage := bson.D{{"$project", bson.D{
30 {"score", bson.D{{"$meta", "searchScore"}}},
31 {"_id", 0},
32 {"number_of_employees", 1},
33 {"founded_year", 1},
34 {"name", 1},
35 }}}
36 addFieldsStage := bson.D{{"$set", bson.D{
37 {"source", "companies"},
38 {"source_count", "$$SEARCH_META.count.lowerBound"},
39 }}}
40 limitStage := bson.D{{"$limit", 3}}
41 uinionWithStage := bson.D{{"$unionWith", bson.D{
42 {"coll", "inspections"},
43 {"pipeline", bson.A{
44 bson.D{{"$search", bson.D{
45 {"text", bson.D{
46 {"query", "mobile"}, {"path", "business_name"},
47 }},
48 }}},
49 bson.D{{"$project", bson.D{
50 {"score", bson.D{{"$meta", "searchScore"}}},
51 {"business_name", 1},
52 {"address", 1},
53 {"_id", 0},
54 }}},
55 bson.D{{"$limit", 3}},
56 bson.D{{"$set", bson.D{
57 {"source", "inspections"},
58 {"source_count", "$$SEARCH_META.count.lowerBound"},
59 }}},
60 bson.D{{"$sort", bson.D{{"score", -1}}}},
61 }},
62 }}}
63 facetStage := bson.D{{"$facet", bson.D{
64 {"allDocs", bson.A{}},
65 {"totalCount", bson.A{
66 bson.D{
67 {"$group", bson.D{
68 {"_id", "$source"},
69 {"firstCount", bson.D{{"$first", "$source_count"}}},
70 }},
71 },
72 bson.D{{"$project", bson.D{{"totalCount", bson.D{{"$sum", "$firstCount"}}}}}},
73 }},
74 }}}
75 // specify the amount of time the operation can run on the server
76 opts := options.Aggregate().SetMaxTime(5 * time.Second)
77 // run pipeline
78 cursor, err := collection.Aggregate(ctx, mongo.Pipeline{searchStage, projectStage, addFieldsStage, limitStage, uinionWithStage, facetStage}, opts)
79 if err != nil {
80 panic(err)
81 }
82 // print results
83 var results []bson.D
84 if err = cursor.All(context.TODO(), &results); err != nil {
85 panic(err)
86 }
87 for _, result := range results {
88 fmt.Println(result)
89 }
90}
3

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

4
go run search-with-unionwith-query.go
[{name XLR8 Mobile} {number_of_employees 21} {founded_year 2006} {score 3.33040714263916} {source companies} {source_count 52}]
[{name Pulse Mobile} {number_of_employees <nil>} {founded_year <nil>} {score 3.33040714263916} {source companies} {source_count 52}]
[{name T-Mobile} {number_of_employees <nil>} {founded_year <nil>} {score 3.33040714263916} {source companies} {source_count 52}]
[{business_name T. MOBILE} {address [{city BROOKLYN} {zip 11209} {street 86TH ST} {number 440}]} {score 2.900916337966919} {source inspections} {source_count 456}]
[{business_name BOOST MOBILE} {address [{city BRONX} {zip 10458} {street E FORDHAM RD} {number 261}]} {score 2.900916337966919} {source inspections} {source_count 456}]
[{business_name SPRING MOBILE} {address [{city SOUTH RICHMOND HILL} {zip 11419} {street LIBERTY AVE} {number 12207}]} {score 2.900916337966919} {source inspections} {source_count 456}]
go run search-with-unionwith-query.go
[
{allDocs [
[{name XLR8 Mobile} {number_of_employees 21} {founded_year 2006} {score 3.33040714263916} {source companies} {source_count 52}]
[{name Pulse Mobile} {number_of_employees <nil>} {founded_year <nil>} {score 3.33040714263916} {source companies} {source_count 52}]
[{name T-Mobile} {number_of_employees <nil>} {founded_year <nil>} {score 3.33040714263916} {source companies} {source_count 52}]
[{business_name T. MOBILE} {address [{city BROOKLYN} {zip 11209} {street 86TH ST} {number 440}]} {score 2.900916337966919} {source inspections} {source_count 456}]
[{business_name BOOST MOBILE} {address [{city BRONX} {zip 10458} {street E FORDHAM RD} {number 261}]} {score 2.900916337966919} {source inspections} {source_count 456}]
[{business_name SPRING MOBILE} {address [{city SOUTH RICHMOND HILL} {zip 11419} {street LIBERTY AVE} {number 12207}]} {score 2.900916337966919} {source inspections} {source_count 456}]
]}
{totalCount [
[{_id inspections} {totalCount 456}]
[{_id companies} {totalCount 52}]
]}
]
1
junit
4.11 或更高版本
mongodb-driver-sync
4.3.0 或更高版本
slf4j-log4j12
1.7.30 或更高版本
2
3

以下查询分别在companiesinspectionscollection中搜索namebusiness_name字段中的术语mobile

此查询使用以下阶段:

  • $search可搜索名称中包含mobile的公司。

  • $unionWith 以执行以下操作:

    • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

    • companies中的文档和inspectionscollection中的文档执行并集。

  • $set阶段添加一个名为source的新字段,用于标识输出文档的集合。

    • $limit 阶段将输出限制为每个集合的 3 个结果。

    • $project 阶段到:

      • 在结果中仅包含指定字段。

      • 添加名为 score 的字段。

1import com.mongodb.client.MongoClients;
2import com.mongodb.client.MongoClient;
3import com.mongodb.client.MongoDatabase;
4import org.bson.Document;
5import java.util.ArrayList;
6import java.util.Arrays;
7import java.util.List;
8
9public class SearchWithUnionwith {
10 public static void main(String[] args) {
11 // connect to Atlas cluster
12 try (MongoClient mongoClient = MongoClients.create("<connection-string>")) {
13 // get database name
14 MongoDatabase database = mongoClient.getDatabase("sample_training");
15 // define pipeline
16 List<Document> pipeline1 = Arrays.asList(
17 new Document("$search", new Document("text",
18 new Document("query", "Mobile")
19 .append("path", "name"))),
20 new Document("$project", new Document("score",
21 new Document("$meta", "searchScore"))
22 .append("_id", 0)
23 .append("number_of_employees", 1)
24 .append("founded_year", 1)
25 .append("name", 1)),
26 new Document("$set", new Document("source", "companies")),
27 new Document("$limit", 3)
28 );
29
30 List<Document> pipeline2 = Arrays.asList(
31 new Document("$search", new Document("text",
32 new Document("query", "Mobile")
33 .append("path", "business_name"))),
34 new Document("$set", new Document("source", "inspections")),
35 new Document("$project", new Document("score",
36 new Document("$meta", "searchScore"))
37 .append("source", 1)
38 .append("_id", 0)
39 .append("business_name", 1)
40 .append("address", 1)),
41 new Document("$limit", 3),
42 new Document("$sort", new Document("score", -1))
43 );
44
45 List<Document> unionWithStage = new ArrayList<>();
46 Document unionWith = new Document("$unionWith", new Document("coll", "inspections")
47 .append("pipeline", pipeline2));
48 unionWithStage.add(unionWith);
49
50 List<Document> finalPipeline = new ArrayList<>(pipeline1);
51 finalPipeline.addAll(unionWithStage);
52 // run pipeline and print results
53 database.getCollection("companies").aggregate(finalPipeline)
54 .forEach(doc -> System.out.println(doc.toJson()));
55 }
56 }
57}

此查询使用以下阶段:

  • $search可搜索名称中包含mobile的公司。

  • $project 阶段到:

    • 在结果中仅包含指定字段。

    • 添加名为 score 的字段。

  • $addFields 阶段添加以下新字段:

    • 一个名为 source 的新字段,用于标识输出文档的集合。

    • 字段名称 source_count,显示输出文档的计数。

  • $unionWith 以执行以下操作:

    • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

    • companies中的文档和inspectionscollection中的文档执行并集。

  • $project 阶段到:

    • 在结果中仅包含指定字段。

    • 添加名为 score 的字段。

  • $limit 阶段将输出限制为每个集合的 3 个结果。

  • $set 阶段添加以下新字段:

    • 一个名为 source 的新字段,用于标识输出文档的集合。

    • 一个名为 source_count 的新字段,显示输出文档的计数。

1import com.mongodb.client.MongoClients;
2import com.mongodb.client.MongoCollection;
3import com.mongodb.client.MongoClient;
4import org.bson.Document;
5
6public class SearchWithUnionwith {
7 public static void main(String[] args) {
8 // connect to Atlas cluster
9 try (MongoClient mongoClient = MongoClients.create("<connection-string>")) {
10 // define namespace
11 MongoCollection<Document> collection = mongoClient.getDatabase("sample_training").getCollection("companies");
12 // define pipeline
13 Document searchStage = new Document("$search", new Document("text",
14 new Document("query", "mobile")
15 .append("path", "name")
16 .append("score", new Document("boost", new Document("value", 1.6)))
17 )
18 );
19
20 Document projectStage = new Document("$project", new Document("score", new Document("$meta", "searchScore"))
21 .append("_id", 0)
22 .append("number_of_employees", 1)
23 .append("founded_year", 1)
24 .append("name", 1)
25 );
26
27 Document addFieldsStage = new Document("$addFields", new Document("source", "companies")
28 .append("source_count", "$$SEARCH_META.count.lowerBound")
29 );
30
31 Document limitStage = new Document("$limit", 3);
32
33 Document unionWithStage = new Document("$unionWith", new Document("coll", "inspections")
34 .append("pipeline", java.util.Arrays.asList(
35 new Document("$search", new Document("text",
36 new Document("query", "mobile")
37 .append("path", "business_name")
38 )),
39 new Document("$project", new Document("score", new Document("$meta", "searchScore"))
40 .append("business_name", 1)
41 .append("address", 1)
42 .append("_id", 0)
43 ),
44 new Document("$limit", 3),
45 new Document("$set", new Document("source", "inspections")
46 .append("source_count", "$$SEARCH_META.count.lowerBound")
47 ),
48 new Document("$sort", new Document("score", -1))
49 ))
50 );
51
52 Document facetStage = new Document("$facet", new Document("allDocs", java.util.Arrays.asList())
53 .append("totalCount", java.util.Arrays.asList(
54 new Document("$group", new Document("_id", "$source")
55 .append("firstCount", new Document("$first", "$source_count"))
56 ),
57 new Document("$project", new Document("totalCount",
58 new Document("$sum", "$firstCount")
59 ))
60 ))
61 );
62 // run pipeline and print results
63 collection.aggregate(java.util.Arrays.asList(
64 searchStage, projectStage, addFieldsStage, limitStage, unionWithStage, facetStage
65 )).forEach(doc -> System.out.println(doc.toJson()));
66 }
67 }
68}

注意

要在 Maven 环境中运行示例代码,请将以下代码添加到文件中的 import 语句上方。

package com.mongodb.drivers;
4

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

5
javac SearchWithUnionwithQuery.java
java SearchWithUnionwithQuery
{"name": "XLR8 Mobile", "number_of_employees": 21, "founded_year": 2006, "score": 2.0815043449401855, "source": "companies"}
{"name": "Pulse Mobile", "number_of_employees": null, "founded_year": null, "score": 2.0815043449401855, "source": "companies"}
{"name": "T-Mobile", "number_of_employees": null, "founded_year": null, "score": 2.0815043449401855, "source": "companies"}
{"business_name": "T. MOBILE", "address": {"city": "BROOKLYN", "zip": 11209, "street": "86TH ST", "number": 440}, "source": "inspections", "score": 2.900916337966919}
{"business_name": "BOOST MOBILE", "address": {"city": "BRONX", "zip": 10458, "street": "E FORDHAM RD", "number": 261}, "source": "inspections", "score": 2.900916337966919}
{"business_name": "SPRING MOBILE", "address": {"city": "SOUTH RICHMOND HILL", "zip": 11419, "street": "LIBERTY AVE", "number": 12207}, "source": "inspections", "score": 2.900916337966919}
javac SearchWithUnionwithQuery.java
java SearchWithUnionwithQuery
{
"allDocs": [
{"name": "XLR8 Mobile", "number_of_employees": 21, "founded_year": 2006, "score": 3.33040714263916, "source": "companies", "source_count": 52},
{"name": "Pulse Mobile", "number_of_employees": null, "founded_year": null, "score": 3.33040714263916, "source": "companies", "source_count": 52},
{"name": "T-Mobile", "number_of_employees": null, "founded_year": null, "score": 3.33040714263916, "source": "companies", "source_count": 52},
{"business_name": "T. MOBILE", "address": {"city": "BROOKLYN", "zip": 11209, "street": "86TH ST", "number": 440}, "score": 2.900916337966919, "source": "inspections", "source_count": 456},
{"business_name": "BOOST MOBILE", "address": {"city": "BRONX", "zip": 10458, "street": "E FORDHAM RD", "number": 261}, "score": 2.900916337966919, "source": "inspections", "source_count": 456},
{"business_name": "SPRING MOBILE", "address": {"city": "SOUTH RICHMOND HILL", "zip": 11419, "street": "LIBERTY AVE", "number": 12207}, "score": 2.900916337966919, "source": "inspections", "source_count": 456}
],
"totalCount": [
{"_id": "companies", "totalCount": 52},
{"_id": "inspections", "totalCount": 456}
]
}
1
mongodb-driver-kotlin-coroutine
4.10.0 或更高版本
2
3

以下查询分别在companiesinspectionscollection中搜索namebusiness_name字段中的术语mobile

此查询使用以下阶段:

  • $search可搜索名称中包含mobile的公司。

  • $unionWith 以执行以下操作:

    • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

    • companies中的文档和inspectionscollection中的文档执行并集。

  • $set阶段添加一个名为source的新字段,用于标识输出文档的集合。

    • $limit 阶段将输出限制为每个集合的 3 个结果。

    • $project 阶段到:

      • 在结果中仅包含指定字段。

      • 添加名为 score 的字段。

1import com.mongodb.kotlin.client.coroutine.MongoClient
2import kotlinx.coroutines.runBlocking
3import org.bson.Document
4
5fun main() {
6 // connect to Atlas cluster
7 val uri = "<connection-string>"
8 val mongoClient = MongoClient.create(uri)
9
10 // set namespace
11 val database = mongoClient.getDatabase("sample_training")
12 val collection = database.getCollection<Document>("companies")
13
14 runBlocking {
15 // define pipeline
16 val pipeline1 = listOf(
17 Document("\$search", Document("text",
18 Document("query", "Mobile")
19 .append("path", "name"))), Document("\$project", Document("score",
20 Document("\$meta", "searchScore"))
21 .append("_id", 0)
22 .append("number_of_employees", 1)
23 .append("founded_year", 1)
24 .append("name", 1)), Document("\$set", Document("source", "companies")),
25 Document("\$limit", 3)
26 )
27
28 val pipeline2 = listOf(
29 Document(
30 "\$search", Document(
31 "text",
32 Document("query", "Mobile")
33 .append("path", "business_name")
34 )
35 ),
36 Document("\$set", Document("source", "inspections")),
37 Document(
38 "\$project", Document(
39 "score",
40 Document("\$meta", "searchScore")
41 )
42 .append("source", 1)
43 .append("_id", 0)
44 .append("business_name", 1)
45 .append("address", 1)
46 ),
47 Document("\$limit", 3),
48 Document("\$sort", Document("score", -1))
49 )
50
51 val unionWithStage: MutableList<Document> = ArrayList()
52 val unionWith = Document(
53 "\$unionWith", Document("coll", "inspections")
54 .append("pipeline", pipeline2)
55 )
56 unionWithStage.add(unionWith)
57 val finalPipeline: MutableList<Document> = ArrayList(pipeline1)
58 finalPipeline.addAll(unionWithStage)
59
60 // run pipeline and print results
61 val resultsFlow = collection.aggregate<Document>(finalPipeline)
62 resultsFlow.collect { println(it) }
63
64 }
65 mongoClient.close()
66}

此查询使用以下阶段:

  • $search可搜索名称中包含mobile的公司。

  • $project 阶段到:

    • 在结果中仅包含指定字段。

    • 添加名为 score 的字段。

  • $addFields 阶段添加以下新字段:

    • 一个名为 source 的新字段,用于标识输出文档的集合。

    • 字段名称 source_count,显示输出文档的计数。

  • $unionWith 以执行以下操作:

    • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

    • companies中的文档和inspectionscollection中的文档执行并集。

  • $project 阶段到:

    • 在结果中仅包含指定字段。

    • 添加名为 score 的字段。

  • $limit 阶段将输出限制为每个集合的 3 个结果。

  • $set 阶段添加以下新字段:

    • 一个名为 source 的新字段,用于标识输出文档的集合。

    • 一个名为 source_count 的新字段,显示输出文档的计数。

1import com.mongodb.kotlin.client.coroutine.MongoClient
2import kotlinx.coroutines.runBlocking
3import org.bson.Document
4import java.util.*
5
6fun main() {
7 // connect to Atlas cluster
8 val uri = "<connection-string>"
9 val mongoClient = MongoClient.create(uri)
10
11 // set namespace
12 val database = mongoClient.getDatabase("sample_training")
13 val collection = database.getCollection<Document>("companies")
14
15 runBlocking {
16 // define pipeline stages
17 val searchStage = Document(
18 "\$search", Document(
19 "text",
20 Document("query", "mobile")
21 .append("path", "name")
22 .append("score", Document("boost", Document("value", 1.6)))
23 )
24 )
25
26 val projectStage = Document(
27 "\$project", Document("score", Document("\$meta", "searchScore"))
28 .append("_id", 0)
29 .append("number_of_employees", 1)
30 .append("founded_year", 1)
31 .append("name", 1)
32 )
33
34 val addFieldsStage = Document(
35 "\$addFields", Document("source", "companies")
36 .append("source_count", "$\$SEARCH_META.count.lowerBound")
37 )
38
39 val limitStage = Document("\$limit", 3)
40
41 val unionWithStage = Document(
42 "\$unionWith", Document("coll", "inspections")
43 .append(
44 "pipeline", Arrays.asList(
45 Document(
46 "\$search", Document(
47 "text",
48 Document("query", "mobile")
49 .append("path", "business_name")
50 )
51 ),
52 Document(
53 "\$project", Document("score", Document("\$meta", "searchScore"))
54 .append("business_name", 1)
55 .append("address", 1)
56 .append("_id", 0)
57 ),
58 Document("\$limit", 3),
59 Document(
60 "\$set", Document("source", "inspections")
61 .append("source_count", "$\$SEARCH_META.count.lowerBound")
62 ),
63 Document("\$sort", Document("score", -1))
64 )
65 )
66 )
67
68 val facetStage = Document(
69 "\$facet", Document("allDocs", Arrays.asList<Any>())
70 .append(
71 "totalCount", Arrays.asList(
72 Document(
73 "\$group", Document("_id", "\$source")
74 .append("firstCount", Document("\$first", "\$source_count"))
75 ),
76 Document(
77 "\$project", Document(
78 "totalCount",
79 Document("\$sum", "\$firstCount")
80 )
81 )
82 )
83 )
84 )
85
86 // run pipeline and print results
87 val resultsFlow = collection.aggregate<Document>(
88 listOf(
89 searchStage,
90 projectStage,
91 addFieldsStage,
92 limitStage,
93 unionWithStage,
94 facetStage
95 )
96 )
97 resultsFlow.collect { println(it) }
98
99 }
100 mongoClient.close()
101}
4

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

5

当你在 IDE 中运行 SearchWithUnionwithQuery.kt 程序时,它会打印以下文档:

Document{{name=XLR8 Mobile, number_of_employees=21, founded_year=2006, score=2.0815043449401855, source=companies}}
Document{{name=Pulse Mobile, number_of_employees=null, founded_year=null, score=2.0815043449401855, source=companies}}
Document{{name=Mobile Trend, number_of_employees=null, founded_year=2003, score=2.0815043449401855, source=companies}}
Document{{business_name=T-MOBILE, address=Document{{city=BROOKLYN, zip=11229, street=AVENUE U, number=1616}}, source=inspections, score=2.900916337966919}}
Document{{business_name=BOOST MOBILE, address=Document{{city=BRONX, zip=10458, street=E FORDHAM RD, number=261}}, source=inspections, score=2.900916337966919}}
Document{{business_name=SPRING MOBILE, address=Document{{city=SOUTH RICHMOND HILL, zip=11419, street=LIBERTY AVE, number=12207}}, source=inspections, score=2.900916337966919}}

当您在 IDE 中运行 SearchWithUnionwithQuery.kt 程序时,它会打印以下结果:

Document{{allDocs=[Document{{name=XLR8 Mobile,
number_of_employees=21, founded_year=2006,
score=3.33040714263916, source=companies,
source_count=52}}, Document{{name=Pulse Mobile,
number_of_employees=null, founded_year=null,
score=3.33040714263916, source=companies,
source_count=52}}, Document{{name=Mobile Trend,
number_of_employees=null, founded_year=2003,
score=3.33040714263916, source=companies,
source_count=52}}, Document{{business_name=T-MOBILE,
address=Document{{city=BROOKLYN, zip=11229, street=AVENUE
U, number=1616}}, score=2.900916337966919,
source=inspections, source_count=456}},
Document{{business_name=BOOST MOBILE,
address=Document{{city=BRONX, zip=10458, street=E FORDHAM
RD, number=261}}, score=2.900916337966919,
source=inspections, source_count=456}},
Document{{business_name=SPRING MOBILE,
address=Document{{city=SOUTH RICHMOND HILL, zip=11419,
street=LIBERTY AVE, number=12207}},
score=2.900916337966919, source=inspections,
source_count=456}}],
totalCount=[Document{{_id=inspections, totalCount=456}},
Document{{_id=companies, totalCount=52}}]}}
1
2

以下查询分别在companiesinspectionscollection中搜索namebusiness_name字段中的术语mobile

此查询使用以下阶段:

  • $search可搜索名称中包含mobile的公司。

  • $unionWith 以执行以下操作:

    • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

    • companies中的文档和inspectionscollection中的文档执行并集。

  • $set阶段添加一个名为source的新字段,用于标识输出文档的集合。

    • $limit 阶段将输出限制为每个集合的 3 个结果。

    • $project 阶段到:

      • 在结果中仅包含指定字段。

      • 添加名为 score 的字段。

1const MongoClient = require("mongodb").MongoClient;
2const assert = require("assert");
3
4const agg = [
5 {
6 '$search': {
7 'text': { 'query': 'Mobile', 'path': 'name' }
8 }
9 }, {
10 '$project': {
11 'score': { '$meta': 'searchScore' },
12 '_id': 0, 'number_of_employees': 1, 'founded_year': 1, 'name': 1
13 }
14 }, {
15 '$set': { 'source': 'companies' }
16 }, {
17 '$limit': 3
18 }, {
19 '$unionWith': {
20 'coll': 'inspections',
21 'pipeline': [
22 {
23 '$search': {
24 'text': { 'query': 'Mobile', 'path': 'business_name' }
25 }
26 }, {
27 '$set': { 'source': 'inspections' }
28 }, {
29 '$project': {
30 'score': { '$meta': 'searchScore' },
31 'source': 1, '_id': 0, 'business_name': 1, 'address': 1
32 }
33 }, {
34 '$limit': 3
35 }, {
36 '$sort': { 'score': -1 }
37 }
38 ]
39 }
40 }
41 ];
42
43MongoClient.connect(
44 "<connection-string>",
45 { useNewUrlParser: true, useUnifiedTopology: true },
46 async function (connectErr, client) {
47 assert.equal(null, connectErr);
48 const coll = client.db("sample_training").collection("companies");
49 let cursor = await coll.aggregate(agg);
50 await cursor.forEach((doc) => console.log(doc));
51 client.close();
52 }
53);

此查询使用以下阶段:

  • $search可搜索名称中包含mobile的公司。

  • $project 阶段到:

    • 在结果中仅包含指定字段。

    • 添加名为 score 的字段。

  • $addFields 阶段添加以下新字段:

    • 一个名为 source 的新字段,用于标识输出文档的集合。

    • 字段名称 source_count,显示输出文档的计数。

  • $unionWith 以执行以下操作:

    • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

    • companies中的文档和inspectionscollection中的文档执行并集。

  • $project 阶段到:

    • 在结果中仅包含指定字段。

    • 添加名为 score 的字段。

  • $limit 阶段将输出限制为每个集合的 3 个结果。

  • $set 阶段添加以下新字段:

    • 一个名为 source 的新字段,用于标识输出文档的集合。

    • 一个名为 source_count 的新字段,显示输出文档的计数。

1const MongoClient = require("mongodb").MongoClient;
2const assert = require("assert");
3
4const agg = [
5 {'$search': { 'text': {
6 'query': 'mobile',
7 'path': 'name',
8 'score': {
9 'boost': { 'value': 1.6 }
10 }
11 }}},
12 {'$project': {
13 'score': { '$meta': 'searchScore' },
14 '_id': 0,
15 'number_of_employees': 1,
16 'founded_year': 1,
17 'name': 1
18 }},
19 {'$addFields': {
20 'source': 'companies',
21 'source_count': '$$SEARCH_META.count.lowerBound'
22 }},
23 {'$limit': 3},
24 {'$unionWith': {
25 'coll': 'inspections',
26 'pipeline': [
27 {'$search': {
28 'text': { 'query': 'mobile', 'path': 'business_name' }
29 }},
30 {'$project': {
31 'score': { '$meta': 'searchScore' },
32 'business_name': 1,
33 'address': 1,
34 '_id': 0
35 }},
36 {'$limit': 3},
37 {'$set': {
38 'source': 'inspections',
39 'source_count': '$$SEARCH_META.count.lowerBound'
40 }},
41 {'$sort': { 'score': -1 } }
42 ]
43 }},
44 {'$facet': {
45 'allDocs': [],
46 'totalCount': [
47 {'$group': {
48 '_id': '$source',
49 'firstCount': { '$first': '$source_count' }
50 }},
51 {'$project': {
52 'totalCount': { '$sum': '$firstCount' }
53 }}
54 ]
55 }}
56];
57
58MongoClient.connect(
59 "<connection-string>",
60 { useNewUrlParser: true, useUnifiedTopology: true },
61 async function (connectErr, client) {
62 assert.equal(null, connectErr);
63 const coll = client.db("sample_training").collection("companies");
64 let cursor = await coll.aggregate(agg);
65 await cursor.forEach((doc) => console.log(doc));
66 client.close();
67 }
68);
3

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

4

运行以下命令来查询您的集合:

node unionwith-with-search-query.js
{
name: 'SoftBank Mobile',
number_of_employees: null,
founded_year: null,
score: 2.0815043449401855,
source: 'companies'
}
{
name: 'Mobile Factory',
number_of_employees: 53,
founded_year: 2001,
score: 2.0815043449401855,
source: 'companies'
}
{
name: 'ZOOZ Mobile',
number_of_employees: 5,
founded_year: 2008,
score: 2.0815043449401855,
source: 'companies'
}
{
business_name: 'T. MOBILE',
address: { city: 'BROOKLYN', zip: 11209, street: '86TH ST', number: 440 },
source: 'inspections',
score: 2.900916337966919
}
{
business_name: 'BOOST MOBILE',
address: { city: 'BRONX', zip: 10458, street: 'E FORDHAM RD', number: 261 },
source: 'inspections',
score: 2.900916337966919
}
{
business_name: 'T-MOBILE',
address: { city: 'BROOKLYN', zip: 11229, street: 'AVENUE U', number: 1616 },
source: 'inspections',
score: 2.900916337966919
}
node unionwith-with-search-query.js
{
allDocs: [
{
name: 'XLR8 Mobile',
number_of_employees: 21,
founded_year: 2006,
score: 3.33040714263916,
source: 'companies',
source_count: 52
},
{
name: 'Pulse Mobile',
number_of_employees: null,
founded_year: null,
score: 3.33040714263916,
source: 'companies',
source_count: 52
},
{
name: 'T-Mobile',
number_of_employees: null,
founded_year: null,
score: 3.33040714263916,
source: 'companies',
source_count: 52
},
{
business_name: 'T. MOBILE',
address: [Object],
score: 2.900916337966919,
source: 'inspections',
source_count: 456
},
{
business_name: 'BOOST MOBILE',
address: [Object],
score: 2.900916337966919,
source: 'inspections',
source_count: 456
},
{
business_name: 'SPRING MOBILE',
address: [Object],
score: 2.900916337966919,
source: 'inspections',
source_count: 456
}
],
totalCount: [
{ _id: 'companies', totalCount: 52 },
{ _id: 'inspections', totalCount: 456 }
]
}
1
2

以下查询分别在companiesinspectionscollection中搜索namebusiness_name字段中的术语mobile

此查询使用以下阶段:

  • $search可搜索名称中包含mobile的公司。

  • $unionWith 以执行以下操作:

    • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

    • companies中的文档和inspectionscollection中的文档执行并集。

  • $set阶段添加一个名为source的新字段,用于标识输出文档的集合。

    • $limit 阶段将输出限制为每个集合的 3 个结果。

    • $project 阶段到:

      • 在结果中仅包含指定字段。

      • 添加名为 score 的字段。

1import pymongo
2import dns
3
4client = pymongo.MongoClient('<connection-string>')
5result = client['sample_training']['companies'].aggregate([
6 {
7 '$search': {
8 'text': { 'query': 'Mobile', 'path': 'name' }
9 }
10 }, {
11 '$project': {
12 'score': { '$meta': 'searchScore' }, '_id': 0, 'number_of_employees': 1, 'founded_year': 1, 'name': 1
13 }
14 }, {
15 '$set': { 'source': 'companies' }
16 }, {
17 '$limit': 3
18 }, {
19 '$unionWith': {
20 'coll': 'inspections',
21 'pipeline': [
22 {
23 '$search': {
24 'text': { 'query': 'Mobile', 'path': 'business_name' }
25 }
26 }, {
27 '$set': { 'source': 'inspections' }
28 }, {
29 '$project': {
30 'score': { '$meta': 'searchScore' }, 'source': 1, '_id': 0, 'business_name': 1, 'address': 1
31 }
32 }, {
33 '$limit': 3
34 }, {
35 '$sort': { 'score': -1 }
36 }
37 ]
38 }
39 }
40])
41
42for i in result:
43 print(i)

此查询使用以下阶段:

  • $search可搜索名称中包含mobile的公司。

  • $project 阶段到:

    • 在结果中仅包含指定字段。

    • 添加名为 score 的字段。

  • $addFields 阶段添加以下新字段:

    • 一个名为 source 的新字段,用于标识输出文档的集合。

    • 字段名称 source_count,显示输出文档的计数。

  • $unionWith 以执行以下操作:

    • 使用子管道中的$search阶段搜索名称中包含mobile的公司的检查。

    • companies中的文档和inspectionscollection中的文档执行并集。

  • $project 阶段到:

    • 在结果中仅包含指定字段。

    • 添加名为 score 的字段。

  • $limit 阶段将输出限制为每个集合的 3 个结果。

  • $set 阶段添加以下新字段:

    • 一个名为 source 的新字段,用于标识输出文档的集合。

    • 一个名为 source_count 的新字段,显示输出文档的计数。

1import pymongo
2import dns
3
4client = pymongo.MongoClient('<connection-string>')
5result = client['sample_training']['companies'].aggregate([
6 {'$search': { 'text': {
7 'query': 'mobile',
8 'path': 'name',
9 'score': { 'boost': { 'value': 1.6 } }
10 }}},
11 {'$project': {
12 'score': { '$meta': 'searchScore' },
13 '_id': 0,
14 'number_of_employees': 1,
15 'founded_year': 1,
16 'name': 1
17 }},
18 {'$addFields': {
19 'source': 'companies',
20 'source_count': '$$SEARCH_META.count.lowerBound'
21 }},
22 {'$limit': 3},
23 {'$unionWith': {
24 'coll': 'inspections',
25 'pipeline': [
26 {'$search': { 'text': {
27 'query': 'mobile',
28 'path': 'business_name'
29 }} },
30 {'$project': {
31 'score': { '$meta': 'searchScore' },
32 'business_name': 1,
33 'address': 1,
34 '_id': 0
35 }},
36 {'$limit': 3},
37 {'$set': {
38 'source': 'inspections',
39 'source_count': '$$SEARCH_META.count.lowerBound'
40 }},
41 {'$sort': { 'score': -1 }}
42 ]
43 }},
44 {'$facet': {
45 'allDocs': [],
46 'totalCount': [
47 {'$group': {
48 '_id': '$source',
49 'firstCount': { '$first': '$source_count' }
50 }},
51 {'$project': {
52 'totalCount': { '$sum': '$firstCount' }
53 }}
54 ]
55 }}
56])
57
58for i in result:
59 print(i)
3

确保您的连接字符串包含数据库用户的档案。要了解详情,请参阅通过驱动程序连接

4
python search-with-unionwith-query.py
{'name': 'XLR8 Mobile', 'number_of_employees': 21, 'founded_year': 2006, 'score': 2.0815043449401855, 'source': 'companies'}
{'name': 'Pulse Mobile', 'number_of_employees': None, 'founded_year': None, 'score': 2.0815043449401855, 'source': 'companies'}
{'name': 'T-Mobile', 'number_of_employees': None, 'founded_year': None, 'score': 2.0815043449401855, 'source': 'companies'}
{'business_name': 'T. MOBILE', 'address': {'city': 'BROOKLYN', 'zip': 11209, 'street': '86TH ST', 'number': 440}, 'source': 'inspections', 'score': 2.900916337966919}
{'business_name': 'BOOST MOBILE', 'address': {'city': 'BRONX', 'zip': 10458, 'street': 'E FORDHAM RD', 'number': 261}, 'source': 'inspections', 'score': 2.900916337966919}
{'business_name': 'SPRING MOBILE', 'address': {'city': 'SOUTH RICHMOND HILL', 'zip': 11419, 'street': 'LIBERTY AVE', 'number': 12207}, 'source': 'inspections', 'score': 2.900916337966919}
python search-with-unionwith-query.py
{
'allDocs': [
{'name': 'XLR8 Mobile', 'number_of_employees': 21, 'founded_year': 2006, 'score': 3.33040714263916, 'source': 'companies', 'source_count': 52},
{'name': 'Pulse Mobile', 'number_of_employees': None, 'founded_year': None, 'score': 3.33040714263916, 'source': 'companies', 'source_count': 52},
{'name': 'T-Mobile', 'number_of_employees': None, 'founded_year': None, 'score': 3.33040714263916, 'source': 'companies', 'source_count': 52},
{'business_name': 'T. MOBILE', 'address': {'city': 'BROOKLYN', 'zip': 11209, 'street': '86TH ST', 'number': 440}, 'score': 2.900916337966919, 'source': 'inspections', 'source_count': 456},
{'business_name': 'BOOST MOBILE', 'address': {'city': 'BRONX', 'zip': 10458, 'street': 'E FORDHAM RD', 'number': 261}, 'score': 2.900916337966919, 'source': 'inspections', 'source_count': 456},
{'business_name': 'SPRING MOBILE', 'address': {'city': 'SOUTH RICHMOND HILL', 'zip': 11419, 'street': 'LIBERTY AVE', 'number': 12207}, 'score': 2.900916337966919, 'source': 'inspections', 'source_count': 456}
],
'totalCount': [
{'_id': 'companies', 'totalCount': 52},
{'_id': 'inspections', 'totalCount': 456}
]
}

后退

带 $search 的 $lookup