解释Atlas Vector Search结果
在此页面上
使用 explain
方法运行Atlas Vector Search查询时,该查询会返回一个 BSON文档,其中包含查询计划和描述查询在内部运行方式的执行统计信息。
另请参阅:
语法
db.<myCollection>.explain("<verbosity>").aggregate([ { "$vectorSearch": { "exact": true | false, "filter": {<filter-specification>}, "index": "<index-name>", "limit": <number-of-results>, "numCandidates": <number-of-candidates>, "path": "<field-to-search>", "queryVector": [<array-of-numbers>] } } ])
详细程度
详细模式控制 explain
的行为和返回的信息量。值可以是以下之一,按详细程度降序排列:
有关查询计划的信息,包括 | |
有关查询计划的信息,包括 | |
queryPlanner(默认) | 有关查询计划的信息。不包括 |
另请参阅:
解释结果
explain
方法返回包含以下字段的BSON文档。
选项 | 类型 | 必要性 | 用途 |
---|---|---|---|
| 文档 | Optional | 描述收集器的执行统计信息。 |
| 文档 | Optional | 包含有用的元数据。 |
| 文档 | Optional | 描述查询的执行统计信息。它不存在于 |
| 文档 | Optional | 有关在查询执行后检索每个文档数据的详细信息。 |
| 文档 | Optional | 详细说明执行查询时的资源使用情况。对于 |
collectors
collectors
是包含以下字段的BSON文档:
字段 | 类型 | 必要性 | 用途 |
---|---|---|---|
| 文档 | 必需 | 查询的所有收集器的统计信息。报告的统计信息表示查询中使用的所有收集器的最大值或所有子收集器的统计信息总和。计时统计信息相加求和,以反映整个查询中所有收集器所花费的总时间。要学习;了解详情,请参阅 |
allCollectorStats
allCollectorStats
是一个BSON文档,描述查询中指定的所有收集器的收集器统计信息。它包含以下键:
字段 | 说明 |
---|---|
| 追踪收集器收集的结果数量和持续时间。 |
| 统计信息跟踪从收集器请求 |
| 统计信息跟踪在收集器上设置记分器的总持续时间和次数。 |
metadata
metadata
包含有用的元数据,例如:
字段 | 类型 | 必要性 | 用途 |
---|---|---|---|
| 字符串 | Optional |
|
| 字符串 | Optional | 用于标识 |
| 字符串 | Optional | Atlas Vector Search查询中使用的索引。 |
| 文档 | Optional | 为 |
| 整型 | Optional | 索引中的文档总数(包括已删除的文档)。 |
query
explain
响应是一个 BSON 文档,其中的键和值描述了查询的执行统计数据。结果集中的 explain
文档包含以下字段:
字段 | 类型 | 必要性 | 用途 |
---|---|---|---|
| 字符串 | Optional | 所查询的 embedding 字段的路径(前提是它不是根)。 |
| 字符串 | 必需 | 向量搜索查询类型的名称。有关更多信息,请参阅 |
| 文档 | 必需 | 向量搜索查询信息。有关更多信息,请参阅 |
| 文档 | Optional |
args
解释响应包含如何在内部执行查询的信息。args
字段包括以下详细信息:
查询类型
每种查询类型的结构化摘要示例
结构化摘要中的查询选项
以下部分描述了查询类型和结构化摘要中的字段:
WrappedKnnQuery
用于组合多个查询的ANN向量搜索的包装器查询。结构化摘要包含有关以下选项的详细信息:
字段类型必要性说明query
阵列
必需
向量搜索中使用的子查询数组,通常包含
KnnFloatVectorQuery
和DocAndScoreQuery
。
KnnFloatVectorQuery
特定于浮点向量上的ANN搜索的查询类型。结构化摘要包含有关以下选项的详细信息:
字段类型必要性说明field
字符串
必需
正在搜索的向量字段路径(Field Path)。
k
整型
必需
要检索的最近邻数量。
ExactVectorSearchQuery
用于新奥向量搜索的查询类型。结构化摘要包含有关以下选项的详细信息:
字段类型必要性说明field
字符串
必需
正在搜索的向量字段路径(Field Path)。
similarityFunction
字符串
必需
使用的相似度函数(
dotProduct
、cosine
或euclidean
)。filter
文档
Optional
用于限制向量搜索范围的预过滤查询。
BooleanQuery
如果您在向量搜索查询中使用预过滤器,则您的解释结果将包含
BooleanQuery
类型。要学习;了解有关此类型的字段以及特定于预筛选查询的其他查询类型的更多信息,请参阅Atlas Search解释页面上的查询类型。
stats
executionStats 和 allPlansExecution 详细模式的explain
响应包含一个stats
字段,该字段包含有关查询在 查询执行的各个阶段所 花费的 时间 的信息。
时序细分
时间细分描述了与查询执行区域相关的执行统计信息。以下字段显示时间细分:
查询区域
统计信息可用于以下查询领域:
resourceUsage
resourceUsage
文档显示了用于运行查询的资源。它包含以下字段:
字段 | 类型 | 必要性 | 用途 |
---|---|---|---|
| Long | 必需 | 主要页面错误的数量,当系统在查询执行期间无法在内存中找到所需数据,导致从磁盘等后备存储中读取数据时,就会发生这种错误。 |
| Long | 必需 | 次要页面错误的数量,当数据在页面缓存中,但尚未映射到进程的页表时发生。 |
| Long | 必需 | 在用户空间中花费的 CPU 时间,以毫秒为单位。 |
| Long | 必需 | 在系统空间中花费的 CPU 时间,以毫秒为单位。 |
| 整型 | 必需 | 在所有批处理中执行查询期间, |
| 整型 | 必需 | 处理查询时请求 |
示例
以下示例对示例ANN 和 ENN 查询使用 explain
方法。如果您想在自己的环境中运行以下示例,则必须首先使用 完成Atlas Vector Search快速入门。mongosh
allPlansExecution
以下示例对plot_embedding
字段的 ANN 和 ENN向量搜索查询运行所述解释方法,详细程度模式为allPlansExecution
。
db.embedded_movies.explain("allPlansExecution").aggregate([ { "$vectorSearch": { "index": "vector_index", "path": "plot_embedding", "queryVector": QUERY_EMBEDDING, "numCandidates": 150, "limit": 10 } } ])
{ explainVersion: '1', stages: [ { '$vectorSearch': { index: 'vector_index', path: 'plot_embedding', queryVector: [ -0.0016261312, -0.028070757, -0.011342932, -0.012775794, ... -0.0060913274, -0.007130985, -0.013109017, -0.009710136 ], numCandidates: 150, limit: 10, explain: { query: { type: 'WrappedKnnQuery', args: { query: [ { type: 'KnnFloatVectorQuery', args: { field: '$type:knnVector/plot_embedding', k: 150 }, stats: { context: { millisElapsed: 0 }, match: { millisElapsed: 0 }, score: { millisElapsed: 0 } } }, { type: 'DocAndScoreQuery', args: {}, stats: { context: { millisElapsed: 0.011281, invocationCounts: { createWeight: Long('1'), createScorer: Long('2') } }, match: { millisElapsed: 0.045831, invocationCounts: { nextDoc: Long('151') } }, score: { millisElapsed: 0.049853, invocationCounts: { score: Long('150'), setMinCompetitiveScore: Long('30') } } } } ] }, stats: { context: { millisElapsed: 3.226133, invocationCounts: { vectorExecution: Long('1'), createWeight: Long('1'), createScorer: Long('2') } }, match: { millisElapsed: 0.045831, invocationCounts: { nextDoc: Long('151') } }, score: { millisElapsed: 0.049853, invocationCounts: { score: Long('150'), setMinCompetitiveScore: Long('30') } } } }, collectors: { allCollectorStats: { millisElapsed: 0.211472, invocationCounts: { collect: Long('150'), competitiveIterator: Long('1'), setScorer: Long('1') } }, facet: { collectorStats: { millisElapsed: 0 } } }, metadata: { mongotVersion: '1.44.0', mongotHostName: '<hostname>.mongodb.net', indexName: 'vector_index', totalLuceneDocs: 3483 }, resourceUsage: { majorFaults: Long('0'), minorFaults: Long('0'), userTimeMs: Long('0'), systemTimeMs: Long('0'), maxReportingThreads: 1, numBatches: 1 } } }, nReturned: Long('0'), executionTimeMillisEstimate: Long('29') }, { '$_internalSearchIdLookup': { limit: Long('10') }, nReturned: Long('0'), executionTimeMillisEstimate: Long('29') } ], queryShapeHash: '9EFFBE6AC5B8DC66D20DB8939CF3ED6669D0C09BB6938C17AD3FB8C7793765B8', serverInfo: { host: '<hostname>.mongodb.net', port: 27017, version: '8.0.5', gitVersion: 'cb9e2e5e552ee39dea1e39d7859336456d0c9820' }, serverParameters: { internalQueryFacetBufferSizeBytes: 104857600, internalQueryFacetMaxOutputDocSizeBytes: 104857600, internalLookupStageIntermediateDocumentMaxSizeBytes: 104857600, internalDocumentSourceGroupMaxMemoryBytes: 104857600, internalQueryMaxBlockingSortMemoryUsageBytes: 104857600, internalQueryProhibitBlockingMergeOnMongoS: 0, internalQueryMaxAddToSetBytes: 104857600, internalDocumentSourceSetWindowFieldsMaxMemoryBytes: 104857600, internalQueryFrameworkControl: 'trySbeRestricted', internalQueryPlannerIgnoreIndexWithCollationForRegex: 1 }, command: { aggregate: 'embedded_movies', pipeline: [ { '$vectorSearch': { index: 'vector_index', path: 'plot_embedding', queryVector: [ -0.0016261312, -0.028070757, -0.011342932, -0.012775794, ... -0.0060913274, -0.007130985, -0.013109017, -0.009710136 ], numCandidates: 150, limit: 10 } } ], cursor: {}, '$db': 'sample_mflix' }, ok: 1, '$clusterTime': { clusterTime: Timestamp({ t: 1740781674, i: 1 }), signature: { hash: Binary.createFromBase64('gpGnPOB17p3NnKu74vhm+kCLXf8=', 0), keyId: Long('7446434162581438465') } }, operationTime: Timestamp({ t: 1740781674, i: 1 }) }
db.embedded_movies.explain("allPlansExecution").aggregate([ { "$vectorSearch": { "index": "vector_index", "path": "plot_embedding", "queryVector": QUERY_EMBEDDING, "exact": true, "limit": 10 } } ])
{ explainVersion: '1', stages: [ { '$vectorSearch': { index: 'vector_index', path: 'plot_embedding', queryVector: [ -0.0016261312, -0.028070757, -0.011342932, -0.012775794, ... -0.0060913274, -0.007130985, -0.013109017, -0.009710136 ], exact: true, limit: 10, explain: { query: { type: 'ExactVectorSearchQuery', args: { field: '$type:knnVector/plot_embedding', similarityFunction: 'dotProduct', filter: { type: 'DefaultQuery', args: { queryType: 'FieldExistsQuery' }, stats: { context: { millisElapsed: 0.031999, invocationCounts: { createWeight: Long('1'), createScorer: Long('2') } }, match: { millisElapsed: 1.2138, invocationCounts: { nextDoc: Long('3403') } }, score: { millisElapsed: 0 } } } }, stats: { context: { millisElapsed: 0.055318, invocationCounts: { createWeight: Long('1'), createScorer: Long('2') } }, match: { millisElapsed: 2.578062, invocationCounts: { nextDoc: Long('3403') } }, score: { millisElapsed: 5.624325, invocationCounts: { score: Long('3402'), setMinCompetitiveScore: Long('71') } } } }, collectors: { allCollectorStats: { millisElapsed: 7.095773, invocationCounts: { collect: Long('3402'), competitiveIterator: Long('1'), setScorer: Long('1') } }, facet: { collectorStats: { millisElapsed: 0 } } }, metadata: { mongotVersion: '1.44.0', mongotHostName: '<hostname>.mongodb.net', indexName: 'vector_index', totalLuceneDocs: 3483 }, resourceUsage: { majorFaults: Long('0'), minorFaults: Long('0'), userTimeMs: Long('0'), systemTimeMs: Long('0'), maxReportingThreads: 1, numBatches: 1 } } }, nReturned: Long('0'), executionTimeMillisEstimate: Long('19') }, { '$_internalSearchIdLookup': { limit: Long('10') }, nReturned: Long('0'), executionTimeMillisEstimate: Long('19') } ], queryShapeHash: '9EFFBE6AC5B8DC66D20DB8939CF3ED6669D0C09BB6938C17AD3FB8C7793765B8', serverInfo: { host: '<hostname>.mongodb.net', port: 27017, version: '8.0.5', gitVersion: 'cb9e2e5e552ee39dea1e39d7859336456d0c9820' }, serverParameters: { internalQueryFacetBufferSizeBytes: 104857600, internalQueryFacetMaxOutputDocSizeBytes: 104857600, internalLookupStageIntermediateDocumentMaxSizeBytes: 104857600, internalDocumentSourceGroupMaxMemoryBytes: 104857600, internalQueryMaxBlockingSortMemoryUsageBytes: 104857600, internalQueryProhibitBlockingMergeOnMongoS: 0, internalQueryMaxAddToSetBytes: 104857600, internalDocumentSourceSetWindowFieldsMaxMemoryBytes: 104857600, internalQueryFrameworkControl: 'trySbeRestricted', internalQueryPlannerIgnoreIndexWithCollationForRegex: 1 }, command: { aggregate: 'embedded_movies', pipeline: [ { '$vectorSearch': { index: 'vector_index', path: 'plot_embedding', queryVector: [ -0.0016261312, -0.028070757, -0.011342932, -0.012775794, ... -0.0060913274, -0.007130985, -0.013109017, -0.009710136 ], exact: true, limit: 10 } } ], cursor: {}, '$db': 'sample_mflix' }, ok: 1, '$clusterTime': { clusterTime: Timestamp({ t: 1740781894, i: 1 }), signature: { hash: Binary.createFromBase64('cNmipB7AsFGaT4ipmWCKizM/EbU=', 0), keyId: Long('7446434162581438465') } }, operationTime: Timestamp({ t: 1740781894, i: 1 }) }
queryPlanner
以下示例对plot_embedding
字段的 ANN 和 ENN向量搜索查询运行所述解释方法,详细程度模式为queryPlanner
。
db.embedded_movies.explain("queryPlanner").aggregate([ { "$vectorSearch": { "index": "vector_index", "path": "plot_embedding", "queryVector": QUERY_EMBEDDING, "numCandidates": 150, "limit": 10 } } ])
{ explainVersion: '1', stages: [ { '$vectorSearch': { index: 'vector_index', path: 'plot_embedding', queryVector: [ -0.0016261312, -0.028070757, -0.011342932, -0.012775794, ... -0.0060913274, -0.007130985, -0.013109017, -0.009710136 ], numCandidates: 150, limit: 10, explain: { query: { type: 'WrappedKnnQuery', args: { query: [ { type: 'KnnFloatVectorQuery', args: { field: '$type:knnVector/plot_embedding', k: 150 } }, { type: 'DocAndScoreQuery', args: {} } ] } }, metadata: { mongotVersion: '1.44.0', mongotHostName: '<hostname>.mongodb.net', indexName: 'vector_index', totalLuceneDocs: 3483 } } } }, { '$_internalSearchIdLookup': { limit: Long('10') } } ], queryShapeHash: '9EFFBE6AC5B8DC66D20DB8939CF3ED6669D0C09BB6938C17AD3FB8C7793765B8', serverInfo: { host: '<hostname>.mongodb.net', port: 27017, version: '8.0.5', gitVersion: 'cb9e2e5e552ee39dea1e39d7859336456d0c9820' }, serverParameters: { internalQueryFacetBufferSizeBytes: 104857600, internalQueryFacetMaxOutputDocSizeBytes: 104857600, internalLookupStageIntermediateDocumentMaxSizeBytes: 104857600, internalDocumentSourceGroupMaxMemoryBytes: 104857600, internalQueryMaxBlockingSortMemoryUsageBytes: 104857600, internalQueryProhibitBlockingMergeOnMongoS: 0, internalQueryMaxAddToSetBytes: 104857600, internalDocumentSourceSetWindowFieldsMaxMemoryBytes: 104857600, internalQueryFrameworkControl: 'trySbeRestricted', internalQueryPlannerIgnoreIndexWithCollationForRegex: 1 }, command: { aggregate: 'embedded_movies', pipeline: [ { '$vectorSearch': { index: 'vector_index', path: 'plot_embedding', queryVector: [ -0.0016261312, -0.028070757, -0.011342932, -0.012775794, ... -0.0060913274, -0.007130985, -0.013109017, -0.009710136 ], numCandidates: 150, limit: 10 } } ], cursor: {}, '$db': 'sample_mflix' }, ok: 1, '$clusterTime': { clusterTime: Timestamp({ t: 1740782044, i: 1 }), signature: { hash: Binary.createFromBase64('/ZHh6h+2qbJtYdOBHmeZepo1Wsc=', 0), keyId: Long('7446434162581438465') } }, operationTime: Timestamp({ t: 1740782044, i: 1 }) }
db.embedded_movies.explain("queryPlanner").aggregate([ { "$vectorSearch": { "index": "vector_index", "path": "plot_embedding", "queryVector": QUERY_EMBEDDING, "exact": true, "limit": 10 } } ])
{ explainVersion: '1', stages: [ { '$vectorSearch': { index: 'vector_index', path: 'plot_embedding', queryVector: [ -0.0016261312, -0.028070757, -0.011342932, -0.012775794, ... -0.0060913274, -0.007130985, -0.013109017, -0.009710136 ], exact: true, limit: 10, explain: { query: { type: 'ExactVectorSearchQuery', args: { field: '$type:knnVector/plot_embedding', similarityFunction: 'dotProduct', filter: { type: 'DefaultQuery', args: { queryType: 'FieldExistsQuery' } } } }, metadata: { mongotVersion: '1.44.0', mongotHostName: '<hostname>.mongodb.net', indexName: 'vector_index', totalLuceneDocs: 3483 } } } }, { '$_internalSearchIdLookup': { limit: Long('10') } } ], queryShapeHash: '9EFFBE6AC5B8DC66D20DB8939CF3ED6669D0C09BB6938C17AD3FB8C7793765B8', serverInfo: { host: '<hostname>.mongodb.net', port: 27017, version: '8.0.5', gitVersion: 'cb9e2e5e552ee39dea1e39d7859336456d0c9820' }, serverParameters: { internalQueryFacetBufferSizeBytes: 104857600, internalQueryFacetMaxOutputDocSizeBytes: 104857600, internalLookupStageIntermediateDocumentMaxSizeBytes: 104857600, internalDocumentSourceGroupMaxMemoryBytes: 104857600, internalQueryMaxBlockingSortMemoryUsageBytes: 104857600, internalQueryProhibitBlockingMergeOnMongoS: 0, internalQueryMaxAddToSetBytes: 104857600, internalDocumentSourceSetWindowFieldsMaxMemoryBytes: 104857600, internalQueryFrameworkControl: 'trySbeRestricted', internalQueryPlannerIgnoreIndexWithCollationForRegex: 1 }, command: { aggregate: 'embedded_movies', pipeline: [ { '$vectorSearch': { index: 'vector_index', path: 'plot_embedding', queryVector: [ -0.0016261312, -0.028070757, -0.011342932, -0.012775794, ... -0.0060913274, -0.007130985, -0.013109017, -0.009710136 ], exact: true, limit: 10 } } ], cursor: {}, '$db': 'sample_mflix' }, ok: 1, '$clusterTime': { clusterTime: Timestamp({ t: 1740782103, i: 23 }), signature: { hash: Binary.createFromBase64('yn3TtM4cfhu6HXCGzBGPbLmlM4E=', 0), keyId: Long('7446434162581438465') } }, operationTime: Timestamp({ t: 1740782103, i: 23 }) }
executionStats
以下示例对plot_embedding
字段的 ANN 和 ENN向量搜索查询运行所述解释方法,详细程度模式为executionStats
。
db.embedded_movies.explain("executionStats").aggregate([ { "$vectorSearch": { "index": "vector_index", "path": "plot_embedding", "queryVector": QUERY_EMBEDDING, "numCandidates": 150, "limit": 10 } } ])
{ explainVersion: '1', stages: [ { '$vectorSearch': { index: 'vector_index', path: 'plot_embedding', queryVector: [ -0.0016261312, -0.028070757, -0.011342932, -0.012775794, ... -0.0060913274, -0.007130985, -0.013109017, -0.009710136 ], numCandidates: 150, limit: 10, explain: { query: { type: 'WrappedKnnQuery', args: { query: [ { type: 'KnnFloatVectorQuery', args: { field: '$type:knnVector/plot_embedding', k: 150 }, stats: { context: { millisElapsed: 0 }, match: { millisElapsed: 0 }, score: { millisElapsed: 0 } } }, { type: 'DocAndScoreQuery', args: {}, stats: { context: { millisElapsed: 0.015853, invocationCounts: { createWeight: Long('1'), createScorer: Long('2') } }, match: { millisElapsed: 0.013112, invocationCounts: { nextDoc: Long('151') } }, score: { millisElapsed: 0.033269, invocationCounts: { score: Long('150'), setMinCompetitiveScore: Long('30') } } } } ] }, stats: { context: { millisElapsed: 3.979414, invocationCounts: { vectorExecution: Long('1'), createWeight: Long('1'), createScorer: Long('2') } }, match: { millisElapsed: 0.013112, invocationCounts: { nextDoc: Long('151') } }, score: { millisElapsed: 0.033269, invocationCounts: { score: Long('150'), setMinCompetitiveScore: Long('30') } } } }, collectors: { allCollectorStats: { millisElapsed: 0.115101, invocationCounts: { collect: Long('150'), competitiveIterator: Long('1'), setScorer: Long('1') } }, facet: { collectorStats: { millisElapsed: 0 } } }, metadata: { mongotVersion: '1.44.0', mongotHostName: '<hostname>.mongodb.net', indexName: 'vector_index', totalLuceneDocs: 3483 }, resourceUsage: { majorFaults: Long('0'), minorFaults: Long('0'), userTimeMs: Long('0'), systemTimeMs: Long('0'), maxReportingThreads: 1, numBatches: 1 } } }, nReturned: Long('0'), executionTimeMillisEstimate: Long('13') }, { '$_internalSearchIdLookup': { limit: Long('10') }, nReturned: Long('0'), executionTimeMillisEstimate: Long('13') } ], queryShapeHash: '9EFFBE6AC5B8DC66D20DB8939CF3ED6669D0C09BB6938C17AD3FB8C7793765B8', serverInfo: { host: '<hostname>.mongodb.net', port: 27017, version: '8.0.5', gitVersion: 'cb9e2e5e552ee39dea1e39d7859336456d0c9820' }, serverParameters: { internalQueryFacetBufferSizeBytes: 104857600, internalQueryFacetMaxOutputDocSizeBytes: 104857600, internalLookupStageIntermediateDocumentMaxSizeBytes: 104857600, internalDocumentSourceGroupMaxMemoryBytes: 104857600, internalQueryMaxBlockingSortMemoryUsageBytes: 104857600, internalQueryProhibitBlockingMergeOnMongoS: 0, internalQueryMaxAddToSetBytes: 104857600, internalDocumentSourceSetWindowFieldsMaxMemoryBytes: 104857600, internalQueryFrameworkControl: 'trySbeRestricted', internalQueryPlannerIgnoreIndexWithCollationForRegex: 1 }, command: { aggregate: 'embedded_movies', pipeline: [ { '$vectorSearch': { index: 'vector_index', path: 'plot_embedding', queryVector: [ -0.0016261312, -0.028070757, -0.011342932, -0.012775794, ... -0.0060913274, -0.007130985, -0.013109017, -0.009710136 ], numCandidates: 150, limit: 10 } } ], cursor: {}, '$db': 'sample_mflix' }, ok: 1, '$clusterTime': { clusterTime: Timestamp({ t: 1740782136, i: 1 }), signature: { hash: Binary.createFromBase64('33LuqO946oIzmslClhuu+Z+PthQ=', 0), keyId: Long('7446434162581438465') } }, operationTime: Timestamp({ t: 1740782136, i: 1 }) }
db.embedded_movies.explain("executionStats").aggregate([ { "$vectorSearch": { "index": "vector_index", "path": "plot_embedding", "queryVector": QUERY_EMBEDDING, "exact": true, "limit": 10 } } ])
{ explainVersion: '1', stages: [ { '$vectorSearch': { index: 'vector_index', path: 'plot_embedding', queryVector: [ -0.0016261312, -0.028070757, -0.011342932, -0.012775794, ... -0.0060913274, -0.007130985, -0.013109017, -0.009710136 ], exact: true, limit: 10, explain: { query: { type: 'ExactVectorSearchQuery', args: { field: '$type:knnVector/plot_embedding', similarityFunction: 'dotProduct', filter: { type: 'DefaultQuery', args: { queryType: 'FieldExistsQuery' }, stats: { context: { millisElapsed: 0.029472, invocationCounts: { createWeight: Long('1'), createScorer: Long('2') } }, match: { millisElapsed: 0.234054, invocationCounts: { nextDoc: Long('3403') } }, score: { millisElapsed: 0 } } } }, stats: { context: { millisElapsed: 0.050328, invocationCounts: { createWeight: Long('1'), createScorer: Long('2') } }, match: { millisElapsed: 0.622028, invocationCounts: { nextDoc: Long('3403') } }, score: { millisElapsed: 3.03997, invocationCounts: { score: Long('3402'), setMinCompetitiveScore: Long('71') } } } }, collectors: { allCollectorStats: { millisElapsed: 3.601357, invocationCounts: { collect: Long('3402'), competitiveIterator: Long('1'), setScorer: Long('1') } }, facet: { collectorStats: { millisElapsed: 0 } } }, metadata: { mongotVersion: '1.44.0', mongotHostName: '<hostname>.mongodb.net', indexName: 'vector_index', totalLuceneDocs: 3483 }, resourceUsage: { majorFaults: Long('0'), minorFaults: Long('0'), userTimeMs: Long('0'), systemTimeMs: Long('0'), maxReportingThreads: 1, numBatches: 1 } } }, nReturned: Long('0'), executionTimeMillisEstimate: Long('12') }, { '$_internalSearchIdLookup': { limit: Long('10') }, nReturned: Long('0'), executionTimeMillisEstimate: Long('12') } ], queryShapeHash: '9EFFBE6AC5B8DC66D20DB8939CF3ED6669D0C09BB6938C17AD3FB8C7793765B8', serverInfo: { host: '<hostname>.mongodb.net', port: 27017, version: '8.0.5', gitVersion: 'cb9e2e5e552ee39dea1e39d7859336456d0c9820' }, serverParameters: { internalQueryFacetBufferSizeBytes: 104857600, internalQueryFacetMaxOutputDocSizeBytes: 104857600, internalLookupStageIntermediateDocumentMaxSizeBytes: 104857600, internalDocumentSourceGroupMaxMemoryBytes: 104857600, internalQueryMaxBlockingSortMemoryUsageBytes: 104857600, internalQueryProhibitBlockingMergeOnMongoS: 0, internalQueryMaxAddToSetBytes: 104857600, internalDocumentSourceSetWindowFieldsMaxMemoryBytes: 104857600, internalQueryFrameworkControl: 'trySbeRestricted', internalQueryPlannerIgnoreIndexWithCollationForRegex: 1 }, command: { aggregate: 'embedded_movies', pipeline: [ { '$vectorSearch': { index: 'vector_index', path: 'plot_embedding', queryVector: [ -0.0016261312, -0.028070757, -0.011342932, -0.012775794, ... -0.0060913274, -0.007130985, -0.013109017, -0.009710136 ], exact: true, limit: 10 } } ], cursor: {}, '$db': 'sample_mflix' }, ok: 1, '$clusterTime': { clusterTime: Timestamp({ t: 1740782184, i: 1 }), signature: { hash: Binary.createFromBase64('tpxoW70Y+Z5HmDqaswag+matLQQ=', 0), keyId: Long('7446434162581438465') } }, operationTime: Timestamp({ t: 1740782184, i: 1 }) }