$avg (aggregation)
On this page
Definition
Changed in version 5.0.
Returns the average value of the numeric values. $avg
ignores non-numeric values.
$avg
is available in these stages:
$addFields
(Available starting in MongoDB 3.4)$replaceRoot
(Available starting in MongoDB 3.4)$replaceWith
(Available starting in MongoDB 4.2)$set
(Available starting in MongoDB 4.2)$setWindowFields
(Available starting in MongoDB 5.0)
Syntax
When used in the $bucket
, $bucketAuto
,
$group
, and $setWindowFields
stages,
$avg
has this syntax:
{ $avg: <expression> }
When used in other supported stages, $avg
has one of two
syntaxes:
$avg
has one specified expression as its operand:{ $avg: <expression> } $avg
has a list of specified expressions as its operand:{ $avg: [ <expression1>, <expression2> ... ] }
For more information on expressions, see Expression Operators.
Behavior
Non-numeric or Missing Values
$avg
ignores non-numeric values, including missing values. If all of the
operands for the average are non-numeric, $avg
returns
null
since the average of zero values is undefined.
Array Operand
In the $group
stage, if the expression resolves to an
array, $avg
treats the operand as a non-numerical value.
In the other supported stages:
With a single expression as its operand, if the expression resolves to an array,
$avg
traverses into the array to operate on the numerical elements of the array to return a single value.With a list of expressions as its operand, if any of the expressions resolves to an array,
$avg
does not traverse into the array but instead treats the array as a non-numerical value.
Examples
Use in $group
Stage
Consider a sales
collection with the following documents:
{ "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" : ISODate("2014-01-01T08:00:00Z") } { "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" : ISODate("2014-02-03T09:00:00Z") } { "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 5, "date" : ISODate("2014-02-03T09:05:00Z") } { "_id" : 4, "item" : "abc", "price" : 10, "quantity" : 10, "date" : ISODate("2014-02-15T08:00:00Z") } { "_id" : 5, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-02-15T09:12:00Z") }
Grouping the documents by the item
field, the following operation
uses the $avg
accumulator to compute the average amount and
average quantity for each grouping.
db.sales.aggregate( [ { $group: { _id: "$item", avgAmount: { $avg: { $multiply: [ "$price", "$quantity" ] } }, avgQuantity: { $avg: "$quantity" } } } ] )
The operation returns the following results:
{ "_id" : "xyz", "avgAmount" : 37.5, "avgQuantity" : 7.5 } { "_id" : "jkl", "avgAmount" : 20, "avgQuantity" : 1 } { "_id" : "abc", "avgAmount" : 60, "avgQuantity" : 6 }
Use in $project
Stage
A collection students
contains the following documents:
{ "_id": 1, "quizzes": [ 10, 6, 7 ], "labs": [ 5, 8 ], "final": 80, "midterm": 75 } { "_id": 2, "quizzes": [ 9, 10 ], "labs": [ 8, 8 ], "final": 95, "midterm": 80 } { "_id": 3, "quizzes": [ 4, 5, 5 ], "labs": [ 6, 5 ], "final": 78, "midterm": 70 }
The following example uses the $avg
in the
$project
stage to calculate the average quiz scores, the
average lab scores, and the average of the final and the midterm:
db.students.aggregate([ { $project: { quizAvg: { $avg: "$quizzes"}, labAvg: { $avg: "$labs" }, examAvg: { $avg: [ "$final", "$midterm" ] } } } ])
The operation results in the following documents:
{ "_id" : 1, "quizAvg" : 7.666666666666667, "labAvg" : 6.5, "examAvg" : 77.5 } { "_id" : 2, "quizAvg" : 9.5, "labAvg" : 8, "examAvg" : 87.5 } { "_id" : 3, "quizAvg" : 4.666666666666667, "labAvg" : 5.5, "examAvg" : 74 }
Use in $setWindowFields
Stage
New in version 5.0.
Create a cakeSales
collection that contains cake sales in the states
of California (CA
) and Washington (WA
):
db.cakeSales.insertMany( [ { _id: 0, type: "chocolate", orderDate: new Date("2020-05-18T14:10:30Z"), state: "CA", price: 13, quantity: 120 }, { _id: 1, type: "chocolate", orderDate: new Date("2021-03-20T11:30:05Z"), state: "WA", price: 14, quantity: 140 }, { _id: 2, type: "vanilla", orderDate: new Date("2021-01-11T06:31:15Z"), state: "CA", price: 12, quantity: 145 }, { _id: 3, type: "vanilla", orderDate: new Date("2020-02-08T13:13:23Z"), state: "WA", price: 13, quantity: 104 }, { _id: 4, type: "strawberry", orderDate: new Date("2019-05-18T16:09:01Z"), state: "CA", price: 41, quantity: 162 }, { _id: 5, type: "strawberry", orderDate: new Date("2019-01-08T06:12:03Z"), state: "WA", price: 43, quantity: 134 } ] )
This example uses $avg
in the $setWindowFields
stage to output the moving average for the cake sales quantity
for
each state
:
db.cakeSales.aggregate( [ { $setWindowFields: { partitionBy: "$state", sortBy: { orderDate: 1 }, output: { averageQuantityForState: { $avg: "$quantity", window: { documents: [ "unbounded", "current" ] } } } } } ] )
In the example:
partitionBy: "$state"
partitions the documents in the collection bystate
. There are partitions forCA
andWA
.sortBy: { orderDate: 1 }
sorts the documents in each partition byorderDate
in ascending order (1
), so the earliestorderDate
is first.
output
sets theaverageQuantityForState
field to the moving averagequantity
using$avg
for the documents in a documents window.The window contains documents between an
unbounded
lower limit and thecurrent
document in the output. This means$avg
returns the moving averagequantity
for the documents between the beginning of the partition and the current document.
In this output, the moving average quantity
for CA
and WA
is shown in the averageQuantityForState
field:
{ "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"), "state" : "CA", "price" : 41, "quantity" : 162, "averageQuantityForState" : 162 } { "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"), "state" : "CA", "price" : 13, "quantity" : 120, "averageQuantityForState" : 141 } { "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"), "state" : "CA", "price" : 12, "quantity" : 145, "averageQuantityForState" : 142.33333333333334 } { "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"), "state" : "WA", "price" : 43, "quantity" : 134, "averageQuantityForState" : 134 } { "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"), "state" : "WA", "price" : 13, "quantity" : 104, "averageQuantityForState" : 119 } { "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"), "state" : "WA", "price" : 14, "quantity" : 140, "averageQuantityForState" : 126 }