Map-Reduce to Aggregation Pipeline
An aggregation pipeline provides better performance and usability than a map-reduce operation.
Map-reduce operations can be rewritten using aggregation pipeline
stages such as
$group
and $merge
.
For map-reduce operations that require custom functionality, MongoDB
provides the $accumulator
and $function
aggregation operators. Use these operators to
define custom aggregation expressions in JavaScript.
Map-reduce expressions can be re-written as shown in the following sections.
Map-Reduce to Aggregation Pipeline Translation Table
The table is only an approximate translation. For instance, the table
shows an approximate translation of mapFunction
using the
$project
.
However, the
mapFunction
logic may require additional stages, such as if the logic includes iteration over an array:function() { this.items.forEach(function(item){ emit(item.sku, 1); }); } Then, the aggregation pipeline includes an
$unwind
and a$project
:{ $unwind: "$items "}, { $project: { emits: { key: { "$items.sku" }, value: 1 } } }, The
emits
field in$project
may be named something else. For visual comparison, the field nameemits
was chosen.
Map-Reduce | Aggregation Pipeline |
---|---|
db.collection.mapReduce( <mapFunction>, <reduceFunction>, { query: <queryFilter>, sort: <sortOrder>, limit: <number>, finalize: <finalizeFunction>, out: <collection> } ) | db.collection.aggregate( [ { $match: <queryFilter> }, { $sort: <sortOrder> }, { $limit: <number> }, { $project: { emits: { k: <expression>, v: <expression> } } }, { $unwind: "$emits" }, { $group: { _id: "$emits.k"}, value: { $accumulator: { init: <initCode>, accumulate: <reduceFunction>, accumulateArgs: [ "$emit.v"], merge: <reduceFunction>, finalize: <finalizeFunction>, lang: "js" }} } }, { $out: <collection> } ] ) |
db.collection.mapReduce( <mapFunction>, <reduceFunction>, { query: <queryFilter>, sort: <sortOrder>, limit: <number>, finalize: <finalizeFunction>, out: { replace: <collection>, db:<db> } } ) | db.collection.aggregate( [ { $match: <queryFilter> }, { $sort: <sortOrder> }, { $limit: <number> }, { $project: { emits: { k: <expression>, v: <expression> } } }, { $unwind: "$emits" }, { $group: { _id: "$emits.k"}, value: { $accumulator: { init: <initCode>, accumulate: <reduceFunction>, accumulateArgs: [ "$emit.v"], merge: <reduceFunction>, finalize: <finalizeFunction>, lang: "js" }} } }, { $out: { db: <db>, coll: <collection> } } ] ) |
db.collection.mapReduce( <mapFunction>, <reduceFunction>, { query: <queryFilter>, sort: <sortOrder>, limit: <number>, finalize: <finalizeFunction>, out: { merge: <collection>, db: <db> } } ) | db.collection.aggregate( [ { $match: <queryFilter> }, { $sort: <sortOrder> }, { $limit: <number> }, { $project: { emits: { k: <expression>, v: <expression> } } }, { $unwind: "$emits" }, { $group: { _id: "$emits.k"}, value: { $accumulator: { init: <initCode>, accumulate: <reduceFunction>, accumulateArgs: [ "$emit.v"], merge: <reduceFunction>, finalize: <finalizeFunction>, lang: "js" }} } }, { $merge: { into: { db: <db>, coll: <collection>}, on: "_id" whenMatched: "replace", whenNotMatched: "insert" } }, ] ) |
db.collection.mapReduce( <mapFunction>, <reduceFunction>, { query: <queryFilter>, sort: <sortOrder>, limit: <number>, finalize: <finalizeFunction>, out: { reduce: <collection>, db: <db> } } ) | db.collection.aggregate( [ { $match: <queryFilter> }, { $sort: <sortOrder> }, { $limit: <number> }, { $project: { emits: { k: <expression>, v: <expression> } } }, { $unwind: "$emits" }, { $group: { _id: "$emits.k"}, value: { $accumulator: { init: <initCode>, accumulate: <reduceFunction>, accumulateArgs: [ "$emit.v"], merge: <reduceFunction>, finalize: <finalizeFunction>, lang: "js" }} } }, { $merge: { into: { db: <db>, coll: <collection> }, on: "_id" whenMatched: [ { $project: { value: { $function: { body: <reduceFunction>, args: [ "$_id", [ "$value", "$$new.value" ] ], lang: "js" } } } } ] whenNotMatched: "insert" } }, ] ) |
db.collection.mapReduce( <mapFunction>, <reduceFunction>, { query: <queryFilter>, sort: <sortOrder>, limit: <number>, finalize: <finalizeFunction>, out: { inline: 1 } } ) | db.collection.aggregate( [ { $match: <queryFilter> }, { $sort: <sortOrder> }, { $limit: <number> }, { $project: { emits: { k: <expression>, v: <expression> } } }, { $unwind: "$emits" }, { $group: { _id: "$emits.k"}, value: { $accumulator: { init: <initCode>, accumulate: <reduceFunction>, accumulateArgs: [ "$emit.v"], merge: <reduceFunction>, finalize: <finalizeFunction>, lang: "js" }} } } ] ) |
Examples
Various map-reduce expressions can be rewritten using aggregation
pipeline operators, such as $group
, $merge
, and
others, without requiring custom functions. However, for illustrative
purposes, the following examples provide both alternatives.
Example 1
The following map-reduce operation on the orders
collection groups
by the cust_id
, and calculates the sum of the price
for each
cust_id
:
var mapFunction1 = function() { emit(this.cust_id, this.price); }; var reduceFunction1 = function(keyCustId, valuesPrices) { return Array.sum(valuesPrices); }; db.orders.mapReduce( mapFunction1, reduceFunction1, { out: "map_reduce_example" } )
Alternative 1: (Recommended) You can rewrite the operation into an aggregation pipeline without translating the map-reduce function to equivalent pipeline stages:
db.orders.aggregate([ { $group: { _id: "$cust_id", value: { $sum: "$price" } } }, { $out: "agg_alternative_1" } ])
Alternative 2: (For illustrative purposes only) The
following aggregation pipeline provides a translation of the various
map-reduce functions, using $accumulator
to define custom
functions:
db.orders.aggregate( [ { $project: { emit: { key: "$cust_id", value: "$price" } } }, // equivalent to the map function { $group: { // equivalent to the reduce function _id: "$emit.key", valuesPrices: { $accumulator: { init: function() { return 0; }, initArgs: [], accumulate: function(state, value) { return state + value; }, accumulateArgs: [ "$emit.value" ], merge: function(state1, state2) { return state1 + state2; }, lang: "js" } } } }, { $out: "agg_alternative_2" } ] )
First, the
$project
stage outputs documents with anemit
field. Theemit
field is a document with the fields:key
that contains thecust_id
value for the documentvalue
that contains theprice
value for the document
{ "_id" : 1, "emit" : { "key" : "Ant O. Knee", "value" : 25 } } { "_id" : 2, "emit" : { "key" : "Ant O. Knee", "value" : 70 } } { "_id" : 3, "emit" : { "key" : "Busby Bee", "value" : 50 } } { "_id" : 4, "emit" : { "key" : "Busby Bee", "value" : 25 } } { "_id" : 5, "emit" : { "key" : "Busby Bee", "value" : 50 } } { "_id" : 6, "emit" : { "key" : "Cam Elot", "value" : 35 } } { "_id" : 7, "emit" : { "key" : "Cam Elot", "value" : 25 } } { "_id" : 8, "emit" : { "key" : "Don Quis", "value" : 75 } } { "_id" : 9, "emit" : { "key" : "Don Quis", "value" : 55 } } { "_id" : 10, "emit" : { "key" : "Don Quis", "value" : 25 } } Then, the
$group
uses the$accumulator
operator to add the emitted values:{ "_id" : "Don Quis", "valuesPrices" : 155 } { "_id" : "Cam Elot", "valuesPrices" : 60 } { "_id" : "Ant O. Knee", "valuesPrices" : 95 } { "_id" : "Busby Bee", "valuesPrices" : 125 } Finally, the
$out
writes the output to the collectionagg_alternative_2
. Alternatively, you could use$merge
instead of$out
.
Example 2
The following map-reduce operation on the orders
collection
groups by the item.sku
field and calculates the number of
orders and the total quantity ordered for each sku. The operation
then calculates the average quantity per order for each sku value
and merges the results into the output collection.
var mapFunction2 = function() { for (var idx = 0; idx < this.items.length; idx++) { var key = this.items[idx].sku; var value = { count: 1, qty: this.items[idx].qty }; emit(key, value); } }; var reduceFunction2 = function(keySKU, countObjVals) { reducedVal = { count: 0, qty: 0 }; for (var idx = 0; idx < countObjVals.length; idx++) { reducedVal.count += countObjVals[idx].count; reducedVal.qty += countObjVals[idx].qty; } return reducedVal; }; var finalizeFunction2 = function (key, reducedVal) { reducedVal.avg = reducedVal.qty/reducedVal.count; return reducedVal; }; db.orders.mapReduce( mapFunction2, reduceFunction2, { out: { merge: "map_reduce_example2" }, query: { ord_date: { $gte: new Date("2020-03-01") } }, finalize: finalizeFunction2 } );
Alternative 1: (Recommended) You can rewrite the operation into an aggregation pipeline without translating the map-reduce function to equivalent pipeline stages:
db.orders.aggregate( [ { $match: { ord_date: { $gte: new Date("2020-03-01") } } }, { $unwind: "$items" }, { $group: { _id: "$items.sku", qty: { $sum: "$items.qty" }, orders_ids: { $addToSet: "$_id" } } }, { $project: { value: { count: { $size: "$orders_ids" }, qty: "$qty", avg: { $divide: [ "$qty", { $size: "$orders_ids" } ] } } } }, { $merge: { into: "agg_alternative_3", on: "_id", whenMatched: "replace", whenNotMatched: "insert" } } ] )
Alternative 2: (For illustrative purposes only) The following
aggregation pipeline provides a translation of the various
map-reduce functions, using $accumulator
to define custom
functions:
db.orders.aggregate( [ { $match: { ord_date: {$gte: new Date("2020-03-01") } } }, { $unwind: "$items" }, { $project: { emit: { key: "$items.sku", value: { count: { $literal: 1 }, qty: "$items.qty" } } } }, { $group: { _id: "$emit.key", value: { $accumulator: { init: function() { return { count: 0, qty: 0 }; }, initArgs: [], accumulate: function(state, value) { state.count += value.count; state.qty += value.qty; return state; }, accumulateArgs: [ "$emit.value" ], merge: function(state1, state2) { return { count: state1.count + state2.count, qty: state1.qty + state2.qty }; }, finalize: function(state) { state.avg = state.qty / state.count; return state; }, lang: "js"} } } }, { $merge: { into: "agg_alternative_4", on: "_id", whenMatched: "replace", whenNotMatched: "insert" } } ] )
The
$match
stage selects only those documents withord_date
greater than or equal tonew Date("2020-03-01")
.The
$unwind
stage breaks down the document by theitems
array field to output a document for each array element. For example:{ "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 1, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-01T00:00:00Z"), "price" : 25, "items" : { "sku" : "apples", "qty" : 5, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "oranges", "qty" : 8, "price" : 2.5 }, "status" : "A" } { "_id" : 2, "cust_id" : "Ant O. Knee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 70, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 3, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-08T00:00:00Z"), "price" : 50, "items" : { "sku" : "pears", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 4, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-18T00:00:00Z"), "price" : 25, "items" : { "sku" : "oranges", "qty" : 10, "price" : 2.5 }, "status" : "A" } { "_id" : 5, "cust_id" : "Busby Bee", "ord_date" : ISODate("2020-03-19T00:00:00Z"), "price" : 50, "items" : { "sku" : "chocolates", "qty" : 5, "price" : 10 }, "status" : "A" } ... The
$project
stage outputs documents with anemit
field. Theemit
field is a document with the fields:key
that contains theitems.sku
valuevalue
that contains a document with theqty
value and acount
value
{ "_id" : 1, "emit" : { "key" : "oranges", "value" : { "count" : 1, "qty" : 5 } } } { "_id" : 1, "emit" : { "key" : "apples", "value" : { "count" : 1, "qty" : 5 } } } { "_id" : 2, "emit" : { "key" : "oranges", "value" : { "count" : 1, "qty" : 8 } } } { "_id" : 2, "emit" : { "key" : "chocolates", "value" : { "count" : 1, "qty" : 5 } } } { "_id" : 3, "emit" : { "key" : "oranges", "value" : { "count" : 1, "qty" : 10 } } } { "_id" : 3, "emit" : { "key" : "pears", "value" : { "count" : 1, "qty" : 10 } } } { "_id" : 4, "emit" : { "key" : "oranges", "value" : { "count" : 1, "qty" : 10 } } } { "_id" : 5, "emit" : { "key" : "chocolates", "value" : { "count" : 1, "qty" : 5 } } } ... The
$group
uses the$accumulator
operator to add the emittedcount
andqty
and calculate theavg
field:{ "_id" : "chocolates", "value" : { "count" : 3, "qty" : 15, "avg" : 5 } } { "_id" : "oranges", "value" : { "count" : 7, "qty" : 63, "avg" : 9 } } { "_id" : "carrots", "value" : { "count" : 2, "qty" : 15, "avg" : 7.5 } } { "_id" : "apples", "value" : { "count" : 4, "qty" : 35, "avg" : 8.75 } } { "_id" : "pears", "value" : { "count" : 1, "qty" : 10, "avg" : 10 } } Finally, the
$merge
writes the output to the collectionagg_alternative_4
. If an existing document has the same key_id
as the new result, the operation overwrites the existing document. If there is no existing document with the same key, the operation inserts the document.