Richmond Alake

2 results

Why Vector Quantization Matters for AI Workloads

Key takeaways As vector embeddings scale into millions, memory usage and query latency surge, leading to inflated costs and poor user experience. By storing embeddings in reduced-precision formats (int8 or binary), you can dramatically cut memory requirements and speed up retrieval. Voyage AI's quantization-aware embedding models are specifically tuned to handle compressed vectors without significant loss of accuracy. MongoDB Atlas streamlines the workflow by handling the creation, storage, and indexing of compressed vectors, enabling easier scaling and management. MongoDB is built for change, allowing users to effortlessly scale AI workloads as resource demands evolve. Organizations are now scaling AI applications from proofs of concept to production systems serving millions of users. This shift creates scalability, latency, and resource challenges for mission-critical applications leveraging recommendation engines, semantic search, and retrieval-augmented generation (RAG) systems. At scale, minor inefficiencies compound and become major bottlenecks, increasing latency, memory usage, and infrastructure costs. This guide explains how vector quantization enables high-performance, cost-effective AI applications at scale. The challenge: Scaling vector search in production Let’s start by considering a modern voice assistance platform that combines semantic search with natural language understanding. During development, the system only needs to process a few hundred queries per day, converting speech to text and matching the resulting embeddings against a modest database of responses. The initial implementation is straightforward: each query generates a 32-bit floating-point embedding vector that's matched against a database of similar vectors using cosine similarity. This approach works smoothly in the prototype phase—response times are quick, memory usage is manageable, and the development team can focus on improving accuracy and adding features. However, as the platform gains traction and scales to processing thousands of queries per second against millions of document embeddings, the simple approach begins to break down. Each incoming query now requires loading massive amounts of high-precision floating-point vectors into memory, computing similarity scores across an exponentially larger dataset, and maintaining increasingly complex vector indexes for efficient retrieval. Without proper optimization, the system struggles as memory usage balloons, query latency increases, and infrastructure costs spiral upward. What started as a responsive, efficient prototype has become a bottleneck production system that struggles to maintain its performance requirements while serving a growing user base. The key challenges are: Loading high-precision 32-bit floating-point vectors into memory Computing similarity scores across massive embedding collections Maintaining large vector indexes for efficient retrieval Which can lead to critical issues like: High memory usage as vector databases struggle to keep float32 embeddings in RAM Increased latency as systems process large volumes of high-precision data Growing infrastructure costs as organizations scale their vector operations Reduced query throughput due to computational overhead AI workloads with tens or hundreds of millions of high-dimensional vectors (e.g., 80M+ documents at 1536 dimensions) face soaring RAM and CPU requirements. Storing float32 embeddings for these workloads can become prohibitively expensive. Vector quantization: A path to efficient scaling The obvious question is: How can you maintain the accuracy of your recommendations, semantic matches, and search queries, while drastically cutting down on compute and memory usage and reducing retrieval latency? Vector quantization is how. It helps you store embeddings more compactly, reduce retrieval times, and keep costs under control. Vector quantization offers a powerful solution to scalability, latency, and resource utilization challenges by compressing high-dimensional embeddings into compact representations while preserving their essential characteristics. This technique can dramatically reduce memory requirements and accelerate similarity computations without compromising retrieval accuracy. What is vector quantization? Vector quantization is a compression technique widely applied in digital signal processing and machine learning. Its core idea is to represent numerical data using fewer bits, reducing storage requirements without entirely sacrificing the data’s informative value. In the context of AI workloads, quantization commonly involves converting embeddings—originally stored as 32-bit floating-point values—into formats like 8-bit integers. By doing so, you can substantially decrease memory and storage consumption while maintaining a level of precision suitable for similarity search tasks. An important point to note is that the quantization mechanism is especially suitable for use cases that involve over 1 million vector embeddings, such as RAG applications, semantic search, or recommendation systems that require tight control of operational costs without a compromise on retrieval accuracy. Smaller datasets with fewer than 1 million embeddings might not see significant gains from quantization procedures. For smaller datasets, the overhead of implementing quantization might outweigh its benefits. Understanding vector quantization Vector quantization operates by mapping high-dimensional vectors to a discrete set of prototype vectors or converting them to lower-precision formats. There are three main approaches: Scalar quantization: Converts individual 32-bit floating-point values to 8-bit integers, reducing memory usage of vector values by 75% while maintaining reasonable precision. Product quantization: Compresses entire vectors at once by mapping them to a codebook of representative vectors, offering better compression than scalar quantization at the cost of more complex encoding/decoding. Binary quantization: Transforms vectors into binary (0/1) representations, achieving maximum compression but with more significant information loss. A vector database that applies these compression techniques must effectively manage multiple data structures: Hierarchical navigable small world (HNSW) graph for navigable search Full-fidelity vectors (32-bit float embeddings) Quantized vectors (int8 or binary) When quantization is defined in the vector index, the system builds quantized vectors and constructs the HNSW graph from these compressed vectors. Both structures are placed in memory for efficient search operations, significantly reducing the RAM footprint compared to storing full-fidelity vectors alone. The table below illustrates how different quantization mechanisms impact memory usage and disk consumption. This example focuses on HNSW indexes storing 30 GB of original float32 embeddings alongside a 0.1 GB HNSW graph structure. Our RAM usage estimates include a 10% overhead factor (1.1 multiplier) to account for JVM memory requirements with indexes loaded into page cache, reflecting typical production deployment conditions. Actual overhead may vary based on specific configurations. Here are key attributes to consider based on the table below: Estimated RAM usage: Combines HNSW graph size with either full or quantized vectors, plus a small overhead factor (1.1 for index overhead). Disk usage: Includes storage for full-fidelity vectors, HNSW graph, and quantized vectors when applicable. Notice that while enabling quantization increases total disk usage —because you still store full-fidelity vectors for exact nearest neighbor queries in both cases and rescoring in the case of binary quantization—it dramatically decreases RAM requirements and speeds up initial retrieval . MongoDB Atlas Vector Search offers powerful scaling capabilities through its automatic quantization system . As illustrated in Figure 1 below, MongoDB Atlas supports multiple vector search indexes with varying precision levels: Float32 for maximum accuracy, Scalar Quantized (int8) for balanced performance with 3.75× RAM reduction, and Binary Quantized (1-bit) for maximum speed with 24× RAM reduction. The quantization variety provided by MongoDB Atlas allows users to optimize their vector search workloads based on specific requirements. For collections exceeding 1M vectors, Atlas automatically applies the appropriate quantization mechanism, with binary quantization particularly effective when combined with Float32 rescoring for final refinement. Figure 1: MongoDB Atlas Vector Search Architecture with Automatic Quantization Data flow through embedding generation, storage, and tiered vector indexing with binary rescoring. Binary quantization with rescoring A particularly effective strategy is to combine binary quantization with a rescoring step using full-fidelity vectors. This approach offers the best of both worlds: extremely fast lookups thanks to binary data formats, plus more precise final rankings from higher-fidelity embeddings. Initial retrieval (Binary) Embeddings are stored as binary to minimize memory usage and accelerate the approximate nearest neighbor (ANN) search. Hamming distance (via XOR + population count) is used, which is computationally faster than Euclidean or cosine similarity on floats. Rescoring The top candidate results from the binary pass are re-evaluated using their float or int8 vectors to refine the ranking. This step mitigates the loss of detail in binary vectors, balancing result accuracy with the speed of the initial retrieval. By pairing binary vectors for rapid recall with full-fidelity embeddings for final refinement, you can keep your system highly performant and maintain strong relevance. The need for quantization-aware models Not all embedding models perform equally well under quantization. Models need to be specifically trained with quantization in mind to maintain their effectiveness when compressed. Some models—especially those trained purely for high-precision scenarios—suffer significant accuracy drops when their embeddings are represented with fewer bits. Quantization-aware training (QAT) involves: Simulating quantization effects during the training process Adjusting model weights to minimize information loss Ensuring robust performance across different precision levels This is particularly important for production applications where maintaining high accuracy is crucial. Embedding models like those from Voyage AI— which recently joined MongoDB —are specifically designed with quantization awareness, making them more suitable for scaled deployments. These models preserve more of their essential feature information even under aggressive compression. Voyage AI provides a suite of embedding models specifically designed with QAT in mind, ensuring minimal loss in semantic quality when shifting to 8-bit integer or even binary representations. Figure 2: Embedding model performance comparing retrieval quality (NDCG@10) versus storage costs . Voyage AI models (green) maintain superior retrieval quality even with binary quantization (triangles) and int8 compression (squares), achieving up to 100x storage efficiency compared to standard float embeddings (circles) . The graph above shows several important patterns that demonstrate why quantization-aware training (QAT) is crucial for maintaining performance under aggressive compression. The Voyage AI family of models (shown in green) demonstrates strong performance in retrieval quality even under extreme compression. The voyage-3-large model demonstrates this dramatically—when using int8 precision at 1024 dimensions, it performs nearly identically to its float precision, 2048-dimensional counterpart, showing only a minimal 0.31% quality reduction despite using 8 times less storage. This showcases how models specifically designed with quantization in mind can preserve their semantic understanding even under substantial compression. Even more impressive is how QAT models maintain their edge over larger, uncompressed models. The voyage-3-large model with int8 precision and 1024 dimensions outperforms OpenAI-v3-large (using float precision and 3072 dimensions) by 9.44% while requiring 12 times less storage. This performance gap highlights that raw model size and dimension count aren't the decisive factors —it's the intelligent design for quantization that matters. The cost implications become truly striking when we examine binary quantization. Using voyage-3-large with 512-dimensional binary embeddings, we still achieve better retrieval quality than OpenAI-v3-large with its full 3072-dimensional float embeddings while using 200 times less storage. To put this in practical terms: what would have cost $20,000 in monthly storage can be reduced to just $100 while actually improving performance. In contrast, models not specifically trained for quantization, such as OpenAI's v3-small (shown in gray), show a more dramatic drop in retrieval quality as compression increases. While these models perform well in their full floating-point representation (at 1x storage cost), their effectiveness deteriorates more sharply when quantized, especially with binary quantization. For production applications where both accuracy and efficiency are crucial, choosing a model that has undergone quantization-aware training can make the difference between a system that degrades under compression and one that maintains its effectiveness while dramatically reducing resource requirements. Read more on the Voyage AI blog . Impact: Memory, retrieval latency, and cost Vector quantization addresses the three core challenges of large-scale AI workloads—memory, retrieval latency, and cost—by compressing full-precision embeddings into more compact representations. Below is a breakdown of how quantization drives efficiency in each area. Figure 3: Quantization Performance Metrics: Memory Savings with Minimal Accuracy Trade-offs Comparison of scalar vs. binary quantization showing RAM reduction (75%/96%), query accuracy retention (99%/95%), and performance gains (>100%) for vector search operations Memory and storage optimization Quantization techniques dramatically reduce compute resource requirements while maintaining search accuracy for vector embeddings at scale. Lower RAM footprint Storage in RAM is often the primary bottleneck for vector search systems Embeddings stored as 8-bit integers or binary reduce overall memory usage, allowing significantly more vectors to remain in memory. This compression directly shrinks vector indexes (e.g., HNSW), leading to faster lookups and fewer disk I/O operations. Reduced disk usage in collection with binData binData (binary) formats can cut raw storage needs by up to 66%. Some disk overhead may remain when storing both quantized and original vectors, but the performance benefits justify this tradeoff. Practical gains 3.75× reduction in RAM usage with scalar (int8) quantization Up to 24× reduction with binary quantization, especially when combined with rescoring to preserve accuracy. Significantly more efficient vector indexes, enabling large-scale deployments without prohibitive hardware upgrades. Retrieval latency Quantization methods leverage CPU cache optimizations and efficient distance calculations to accelerate vector search operations beyond what's possible with standard float32 embeddings. Faster similarity computations Smaller data types are more CPU-cache-friendly, which speeds up distance calculations. Binary quantization uses Hamming distance (XOR + popcount), yielding dramatically faster top-k candidate retrieval. Improved throughput With reduced memory overhead, the system can handle more concurrent queries at lower latencies. In internal benchmarks, query performance for large-scale retrievals improved by up to 80% when adopting quantized vectors. Cost efficiency Vector quantization provides substantial infrastructure savings by reducing memory and computation requirements while maintaining retrieval quality through compression and rescoring techniques. Lower infrastructure costs Smaller vectors consume fewer hardware resources, enabling deployments on less expensive instances or tiers. Reduced CPU/GPU time per query allows resource reallocation to other critical parts of the application. Better scalability As data volumes grow, memory and compute requirements don’t escalate as sharply. Quantization-aware training (QAT) models, such as those from Voyage AI, help maintain accuracy while reaping cost savings at scale. By compressing vectors into int8 or binary formats, you tackle memory constraints, accelerate lookups, and curb infrastructure expenses—making vector quantization an indispensable strategy for high-volume AI applications. MongoDB Atlas: Built for Changing Workloads with Automatic Vector Quantization The good news for developers is that MongoDB Atlas supports “automatic scalar” and “automatic binary quantization” in index definitions, reducing the need for external scripts or manual data preprocessing. By quantizing at index build time and query time, organizations can run large-scale vector workloads on smaller, more cost-effective clusters. A common question most developers ask is when to use quantization. Quantization becomes most valuable once you reach substantial data volumes—on the order of a million or more embeddings. At this scale, memory and compute demands can skyrocket, making reduced memory footprints and faster retrieval speeds essential. Examples of cases that call for quantization include: High-volume scenarios: Datasets with millions of vector embeddings where you must tightly control memory and disk usage. Real-time responses: Systems needing low-latency queries under high user concurrency. High query throughput: Environments with numerous concurrent requests demanding both speed and cost-efficiency. For smaller datasets (under 1 million vectors), the added complexity of quantization may not justify the benefits. However, for large-scale deployments, it becomes a critical optimization that can dramatically improve both performance and cost-effectiveness. Now that we have established a strong foundation on the advantages of quantization—specifically the benefits of binary quantization with rescoring— feel free to refer to the MongoDB documentation to learn more about implementing vector quantization. You can also learn more about Voyage AI’s state-of-the-art embedding models on our product page .

February 27, 2025

MongoDB AI Course in Partnership with Andrew Ng and DeepLearning.AI

MongoDB is committed to empowering developers and meeting them where they are. With a thriving community of 7 million developers across 117 regions, MongoDB has become a cornerstone in the world of database technology. Building on this foundation, we're excited to announce our collaboration with AI pioneer Andrew Ng and DeepLearning.AI, a leading educational technology company specializing in AI and machine learning. Together, we've created an informative course that bridges the gap between database technology and modern AI applications, further enhancing our mission to support developers in their journey to build innovative solutions. Introducing "Prompt Compression and Query Optimization" MongoDB’s latest course on DeepLearning.AI, Prompt Compression and Query Optimization , covers the prominent form factor of modern AI applications today: Retrieval Augmented Generation (RAG) . This course showcases how MongoDB Atlas Vector Search capabilities enable developers to build sophisticated AI applications, leveraging MongoDB as an operational and vector database. To ensure that learners taking this course are not just introduced to vector search, the course presents an approach to reducing the operational cost of running AI applications in production by a technique known as prompt compression. “RAG, or retrieval augmented generation, has moved from being an interesting new idea a few months ago to becoming a mainstream large-scale application.” — Andrew Ng, DeepLearning.AI Key course highlights RAG Applications: Learn to build and optimize the most prominent form of AI applications using MongoDB Atlas and the MongoDB Query Language(MQL). MongoDB Atlas Vector Search: Leverage the power of vector search for efficient information retrieval. MongoDB Document Model: Explore MongoDB's flexible, JSON-like document model, which represents complex data structures and is ideal for storing and querying diverse AI-related data. Prompt Compression: Use techniques to reduce the operational costs of AI applications in production environments. In this course, you'll learn techniques to enhance your RAG applications' efficiency, search relevance, and cost-effectiveness. As AI applications become more sophisticated, efficient data retrieval and processing becomes crucial. This course bridges the gap between traditional database operations and modern vector search capabilities, enabling you to confidently build robust, scalable AI applications that can handle real-world challenges. MongoDB's document model: The perfect fit for AI A key aspect of this course is that it introduces learners to MongoDB's document model and its numerous benefits for AI applications: Python-Compatible Structure: MongoDB's BSON format aligns seamlessly with Python dictionaries, enabling effortless data representation and manipulation. Schema Flexibility: Adapt to varied data structures without predefined schemas, matching the dynamic nature of AI applications. Nested Data Structures: Easily represent complex, hierarchical data often found in AI models and datasets. Efficient Data Ingestion: Directly ingest data without complex transformations, speeding up the data preparation process. Leveraging the combined insights from MongoDB and DeepLearning.AI, this course offers a perfect blend of practical database knowledge and advanced AI concepts. Who should enroll? This course is ideal for developers who: Are familiar with vector search concepts Building RAG applications and Agentic Systems Have a basic understanding of Python and MongoDB and are curious about AI Want to optimize their RAG applications for better performance and cost-efficiency This course offers an opportunity to grasp techniques in AI application development. You'll gain the skills to build more efficient, powerful, cost-effective RAG applications, from advanced query optimization to innovative prompt compression. With hands-on code, detailed walkthroughs, and real-world applications, you'll be equipped to tackle complex AI challenges using MongoDB's robust features. Take advantage of this chance to stay ahead in the rapidly evolving field of AI. Whether you're a seasoned developer or just starting your AI journey, this course will provide invaluable insights and practical skills to enhance your capabilities. Improve your AI application development skills with MongoDB's practical course. Learn to build efficient RAG applications using vector search and prompt compression. Enroll now and enhance your developer toolkit.

August 8, 2024