Artificial Intelligence

Building AI-powered Apps with MongoDB

Building Gen AI with MongoDB & AI Partners | December 2024

Now that 2024 is behind us, we can see clearly how much change, innovation, and progress there was across the AI landscape in 2024. For MongoDB, the year was particularly marked by collaboration with our AI partners, and by the possibilities that AI collaboration holds; as the saying goes, it takes a village. From the release of breakthrough tools and frameworks, to AI-enriched workflows (for both prototyping and production), together we empowered customers and developers alike to build cutting-edge AI applications. To help you prepare for the rest of 2025, below is a selection of content developed by MongoDB’s Developer Relations team. This work will equip you with the knowledge (and tools!) from MongoDB and our AI partners to create the hottest AI applications in the new year. Building an Agent with Fireworks.AI, MongoDB, and LangChain Learn how to create an intelligent agent that combines Fireworks AI’s advanced capabilities, LangChain’s framework, and MongoDB's robust database. This guide walks you through developing an agent capable of reasoning and decision-making with structured and unstructured data. Claude 3.5 and MongoDB: Revolutionizing Retrieval-Augmented Generation Learn how Anthropic's Claude 3.5 integrates with MongoDB to enhance retrieval-augmented generation (RAG) pipelines. This post demonstrates using Claude for contextual and nuanced text generation while leveraging MongoDB Atlas for efficient data retrieval. Build an AI Agent with LangGraph.js and MongoDB Atlas Explore how LangGraph.js simplifies AI agent development for JavaScript and TypeScript developers. This tutorial showcases building an AI-powered agent and managing data with MongoDB Atlas for seamless functionality and scalability. Ingesting Quantized Vectors with Cohere and MongoDB Discover how to leverage Cohere’s quantized vector representations and MongoDB Atlas for efficient vector storage and retrieval. This guide demonstrates workflows for building scalable, high-performance applications that use vector embeddings for AI-driven solutions. And if you’d like to dig into building with MongoDB and gen AI, explore our GenAI Showcase repository on GitHub for a wide range of sample projects, tools, and inspiration to kickstart your AI journey into 2025! Happy New Year—and happy building! Welcoming new AI and tech partners In December 2024, we welcomed six new AI and tech partners that offer product integrations with MongoDB. Read on to learn more about each great new partner! Apigene Apigene enables users to operate all software applications through a single AI assistant, providing complete control of popular services and platforms. " We're excited to partner with MongoDB to bring natural language capabilities to Atlas users, transforming how teams interact with their data”, said Michal Geva, VP of Business of Apigene. “This collaboration makes database operations as intuitive as having conversations, empowering businesses to unlock Atlas’s full potential without complexity." Bauplan Bauplan is a programmable data lake where users can load, transform, query, run, schedule, and replay all from their code, driving superior cost-efficiency and less management from data teams. “ We're pretty darn excited about partnering up with MongoDB because the combination of Bauplan and MongoDB Atlas makes it so incredibly easy to build full-stack AI applications”, said Ciro Greco, CEO and founder of Bauplan. “One can build powerful applications like embedded analytics, feature stores, recommender systems, and RAG based search in a simple Python script. Zero infrastructure overhead, compute is purely serverless and everything's version controlled in the data lake by default.” Botnoi BOTNOI Group offers innovative AI technologies that enhance business operations such as a conversational AI chatbot for enterprise, speech-to-text, text-to-speech, and computer vision. " We’re excited to announce our partnership with MongoDB ”, said Piyoros Tungthamthiti, CTO of BOTNOI Group. “By integrating MongoDB Atlas, we’re enhancing Botnoi’s capabilities to deliver top-tier conversational AI performance. This collaboration will enable seamless data management, advanced analytics, and reliable system performance, ultimately providing greater value to our clients." Jiva.ai Jiva.ai is a zero-code platform for rapid multimodal AI development using structured and unstructured data. " We are thrilled to join MongoDB's ecosystem and bring our no-code AI platform together with their powerful vector search and multimodal data capabilities,” said Dr. Manish Patel, CEO of Jiva.ai. “MongoDB enables us to help businesses rapidly transform complex data into intelligent solutions, democratizing AI development across industries. By combining Jiva.ai's patented model fusion technology with MongoDB's flexible document model, we're accelerating enterprise AI adoption and helping organizations unlock unprecedented insights from their data." mple.ai mple.ai is an AI-powered sales training platform for enterprises, designed to deliver scalable, measurable, and impactful training through role-plays and AI-driven evaluations. " Our collaboration with MongoDB is redefining AI-driven team training”, said Riddhesh Ganatra, Co-Founder of mple.ai. “With MongoDB's reliable and scalable data solutions, we're delivering real-world scenario-based coaching to help organizations achieve faster, more impactful results." TrueFoundry TrueFoundry is a Kubernetes-based platform designed to simplify the process of building, deploying and scaling compound AI systems across any cloud or on-premise infrastructure. “ We’re thrilled to partner with MongoDB to accelerate the development of compound AI applications”, said Nikunj Bajaj, CEO of TrueFoundry. “With TrueFoundry’s powerful accelerators, including AI Gateway, Model Deployment & Finetuning, and RAG Framework, combined with MongoDB’s scalable vector database, enterprises can quickly build, deploy, and scale production-grade AI solutions. TrueFoundry’s platform ensures robust governance, cost optimization, and faster time to value, empowering enterprises to innovate efficiently and at scale.” But wait, there's more! To learn more about building AI-powered apps with MongoDB, check out our AI Resources Hub and stop by our Partner Ecosystem Catalog to read about our integrations with MongoDB’s ever-evolving AI partner ecosystem.

January 16, 2025
Artificial Intelligence

Building a Unified Data Platform for Gen AI

In today’s digital-first world, data is the lifeblood of innovation and decision-making. Yet, businesses often find themselves constrained by outdated and fragmented systems that fail to meet the demands of a fast-paced, interconnected landscape. Legacy architectures—such as the 1970s-era mainframes still used in industries like banking—create inefficiencies, siloed data, and operational bottlenecks, leaving organizations struggling to deliver timely, actionable insights. The pressure to adapt is mounting, as customer expectations for real-time interactions and personalized services continue to grow. To thrive in this competitive environment, organizations must embrace a transformative approach to managing their data estates—one that integrates advanced technologies seamlessly. Unified data platforms powered by operational data layers (ODLs), generative AI (gen AI), and vector search are the solution. These innovations do more than just modernize data handling; they unlock new opportunities for agility, efficiency, and value creation, empowering businesses to make informed decisions, improve customer experiences, and drive growth. Let’s explore how these technologies are reshaping the way businesses consume, integrate, and leverage their data. Figure 1. Conceptual model of a Converged AI Data Store, showing multimodal data ingest. From stale to real-time data: The case for operational data layers In the rapidly evolving digital landscape, businesses can no longer afford to rely on outdated, batch-processed data. The demands of modern operations require instant access to fresh, accurate information. Yet many organizations continue to struggle with fragmented systems that deliver stale data, creating roadblocks in decision-making and customer engagement. This is where the concept of an ODL becomes transformative. Acting as a centralized hub, an ODL integrates data from multiple transactional systems in real-time, ensuring businesses have a unified and up-to-date view of their operations. Let’s explore how ODLs can revolutionize business processes: 1. Enabling real-time customer interactions Imagine a customer service representative handling a support call. Without real-time access to the latest data—such as a customer’s recent transactions, support history, or preferences—the interaction may feel disconnected and inefficient. An ODL solves this problem by consolidating and providing real-time data. For example, a telecom provider could use an ODL to ensure its agents have immediate access to recent billing information, technical issues reported, and ongoing resolutions. This not only empowers the agents but also leaves the customer with a seamless and satisfactory experience. 2. Streamlining account management Real-time data isn’t just about resolving customer issues; it’s also critical for proactive engagement. In industries like banking and retail, customers often need immediate updates on their accounts, such as current balances, transaction details, or loyalty points. By integrating APIs with the ODL, businesses can offer instantaneous responses to these queries. For instance, a retail bank could enable customers to check recent purchases or transfers through a chatbot that queries the ODL in real-time, delivering fast, accurate results. 3. Enhancing compliance and reporting Highly regulated industries, such as finance and healthcare, face additional challenges in managing large volumes of historical data for audits and compliance. Traditional systems often struggle to handle such demands, resulting in time-consuming manual processes. ODLs, when combined with gen AI, enable businesses to extract, summarize, and structure this data efficiently. For instance, a financial institution could use an ODL to generate compliance reports that pull data from diverse sources—both structured and unstructured—and ensure they meet regulatory standards with minimal manual intervention. 4. Supporting metadata and governance Another often overlooked advantage of an ODL is its ability to support metadata management and data governance. For large enterprises operating across multiple geographies, changes in localized data models are frequent and complex. An ODL can act as a centralized repository, capturing these updates and enabling advanced search functionalities for impact analysis. For example, a global enterprise could use an ODL to track changes in data definitions, understand usage patterns, and ensure compliance with governance policies across regions—all while reducing the risk of errors. The transformative power of gen AI and vector search As businesses transition to real-time data strategies powered by ODLs, the potential to unlock even greater insights lies in adopting cutting-edge tools like gen AI and vector search. These technologies are revolutionizing the way organizations consume and interpret data, enabling unprecedented efficiency and intelligence. Gen AI: By generating actionable insights, predictions, and content, gen AI enables businesses to turn static data into a strategic resource. For example, a retailer could use gen AI to analyze customer purchase histories and recommend personalized product bundles. Vector search: This technology translates high-dimensional data like text, images, and audio into vectors, enabling accurate, intuitive searches. For instance, healthcare providers can search for similar patient cases by symptoms, enhancing diagnostics and treatment planning. By incorporating these tools into an ODL, businesses can go beyond basic data integration, creating smarter, more agile operations capable of delivering value in real-time. Figure 2. Retrieval Augmented Generation (RAG) implementation, using the converged AI data store to provide context to the LLM prompt. New opportunities: Revolutionizing operations with gen AI and operational data layers The integration of gen AI and vector search into ODLs opens up a world of opportunities for businesses to enhance customer experience, streamline operations, and innovate at scale. Here’s how these technologies drive transformation: Enhanced data discovery: With vector search, organizations can quickly and accurately retrieve relevant data from massive datasets, simplifying complex searches. Improved customer experience: Gen AI–powered ODLs analyze customer behavior to deliver personalized recommendations, building stronger customer relationships. Increased operational efficiency: Automating routine data tasks with gen AI reduces manual effort, enabling teams to focus on strategic initiatives. Enhanced agility and innovation: By enabling rapid development of AI-driven applications, businesses can quickly adapt to market changes and stay ahead of the competition. As organizations embrace these capabilities, they position themselves to thrive in an increasingly competitive and data-driven world. Architectural options for data processing Modernizing data platforms requires a robust architecture that can handle both batch and real-time processing. Depending on their needs, organizations often choose between lambda or kappa architectures, and MongoDB can serve as a flexible operational layer for both. The lambda architecture The lambda architecture is ideal for organizations that need to process both batch and real-time data. It consists of three layers: Batch layer: This layer processes large volumes of historical data offline. Gen AI can enrich this data by generating insights and predictions. Speed layer: This layer handles real-time data streams, enabling immediate responses to changes. Serving layer: This layer combines batch and real-time data into a unified view, powered by MongoDB for seamless queries and data access. The kappa architecture For businesses focused on real-time analytics, the kappa architecture simplifies operations by using a single stream for data processing. MongoDB excels as the operational speed layer in this setup, supporting high-speed, real-time data updates enhanced by gen AI. By choosing the right architecture and leveraging MongoDB’s capabilities, businesses can ensure their data platforms are future ready. A journey toward data modernization Data modernization is a progressive journey, transforming businesses step by step into smarter, more agile systems. It begins with a basic operational data store , where read-heavy workloads are offloaded from legacy systems into MongoDB, boosting performance and accessibility. Next comes the enriched ODL , adding real-time analytics to turn raw data into actionable insights. Then, as needs grow, parallel writes enable MongoDB to handle write-heavy operations, enhancing speed and reliability. In the transition to the system of transaction , monolithic systems are replaced with agile microservices directly connected to MongoDB, simplifying operations and accelerating innovation. Finally, businesses reach the system of record , a domain-driven architecture where MongoDB provides unmatched scalability, flexibility, and efficiency. Each phase of this journey unlocks new opportunities, transforming data into a dynamic asset that powers innovation, operational excellence, and growth. Figure 3. A conceptual model showcasing the joint implementation of the Kappa (Data in Motion) and Lambda (Data at Rest) frameworks on MongoDB Atlas, utilizing Stream Processing for real-time data and Online Archive/Federation features for historical data management. The unified and intelligent future of data As businesses embrace real-time data architectures and advanced AI capabilities, the potential for innovation is boundless. With solutions like MongoDB, organizations can seamlessly integrate and harness their data, driving operational excellence and delivering exceptional customer experiences. Now is the time to modernize, innovate, and unlock the full potential of your data. Discover how TCS and MongoDB are harmonizing technologies for the future. Start your data modernization journey today!

January 15, 2025
Artificial Intelligence

AI-Powered Retail With Together AI and MongoDB

Generative AI (gen AI) is changing retail in fascinating ways. It’s providing new avenues for IT leaders at retailers to enhance customer experiences, streamline operations, and grow revenue in a fast-paced environment. Recently, we’ve been working closely with a fascinating organization in this space—Together AI. In this blog, we’ll explore how Together AI and MongoDB Atlas tremendously accelerated the adoption of gen AI by combining the capabilities of both platforms to bring high-impact retail use cases to life. Introduction to Together AI and MongoDB Atlas From the first look, it’s impressive how well Together AI is designed for gen AI projects. It’s a powerful platform that lets developers train, fine-tune, and deploy open-source AI models with just a few lines of code. This is a critical component for retrieval-augmented generation (RAG) . With RAG, AI can pull real-time business-specific data from MongoDB Atlas , which means retailers get more reliable and relevant outputs. That’s crucial when dealing with data as dynamic as customer behavior or inventory movement from online and physical stores. With its flexible data model, MongoDB Atlas is an ideal database engine for handling diverse data needs. It’s fully managed, multi-cloud, and exceptional at managing different data types, including the vector embeddings that power AI applications. One important feature is MongoDB Atlas Vector Search , a smart library that stores and indexes vector embeddings, making it simple to integrate with Together AI. This lets retailers generate timely, personalized responses to customer queries, creating a better experience all around. Identifying retail use cases With Together AI and MongoDB Atlas working together, the possibilities for retail are huge. Here are some of the use cases we’ve been exploring and testing with clients, each bringing measurable value to the table: Product description generation Product onboarding to a retail e-commerce portal is a time-consuming effort for many retailers. They need to ensure they’ve created a product description that matches the image, then deploy it to their e-commerce portal. For multilingual portals and multiple operating geographies, this challenge of accuracy increases. With Together AI’s support for multimodal models (e.g. Llama 3.2) and MongoDB Atlas’s vector embeddings, we can create accurate product descriptions in multiple languages. Check out a demo app to see it in action. Figure 1. Demo application for generating product descriptions. Personalized product recommendations Imagine being able to offer each customer exactly what they’re looking for, without them even asking. With Together AI’s retrieval and inference endpoints and MongoDB Atlas Vector Search, we can create highly personalized product recommendations. Analyzing individual preferences, browsing history, and past purchases becomes seamless, giving customers exactly what they need, possibly exactly when they need it. Conversational AI-powered tools (a.k.a. chatbots) We’re also deploying intelligent conversational tools that can understand complex questions, offer personalized assistance, and drive conversions. Together AI, paired with MongoDB Atlas, makes these bots responsive and relevant so customers feel like they’re talking to a knowledgeable adviser rather than a chatbot. When real-time data informs the responses, customer experience is enhanced. Dynamic pricing and promotions Pricing in retail is often a moving target, and AI-driven insights help us optimize our approach. We’ve used Together AI and MongoDB Atlas to analyze market trends, competitor pricing, and customer demand to keep our pricing competitive and adjust promotions in real-time. It’s incredible how much more strategic we can be with AI’s help. Inventory management and forecasting This might be one of the most impactful use cases I’ve worked on—using AI to predict demand and optimize stock levels. With Together AI and MongoDB Atlas, it’s easier to balance inventory, reduce waste, and ensure the products customers want are always in stock. This leads to better efficiency and fewer out-of-stock scenarios. Implementing retail use cases with Together AI and MongoDB Atlas Let me share a concrete example that really brings these concepts to life. Case study: Building a multilingual product-description-generation system We recently worked on a solution to create a product-description-generation system for an e-commerce platform. The goal was to provide highly descriptive product information based on the images of the products from the product catalog. This use case really demonstrated the value of storing the data in MongoDB and using the multilanguage capabilities of Together AI’s inference engine. Embeddings and inference with Together AI: Together AI generated product descriptions based on images retrieved from the product catalog using Llama 3.2 vision models. This way, each product’s unique characteristics were considered, then generated in multiple languages. These descriptions could then be embedded into the MongoDB Atlas Vector Search database via a simple API. Indexed embeddings with MongoDB Atlas Vector Search: Using MongoDB Atlas Vector Search capabilities, we created embeddings, and then indexed them to be used to retrieve relevant data based on other matched product queries. This step made sure the product descriptions were not just accurate but also relevant to the images. Real-time data processing: By connecting this setup to a real-time product dataset, we ensured that product descriptions in multiple languages were always updated automatically. So when a marketplace vendor or retailer uploads new images with distinct characteristics, they get up-to-date product descriptions in the catalog. This project showcased how Together AI and MongoDB Atlas could work together to deliver a solution that was reliable, highly efficient, and scalable. The feedback from users was overwhelmingly positive. They especially appreciated how intuitive and helpful the product descriptions were and how simple the whole product onboarding process could become for multilingual businesses spread across multiple geographical regions. Figure 2. An example of a query and response flow for a RAG architecture using MongoDB and Together AI. Looking at the business impacts For a retail organization, implementing Together AI and MongoDB Atlas can streamline the approach to gen AI, creating an effective and immediate positive impact to business in several ways: Reduced product onboarding time and costs: Retailers can onboard products faster and quickly make them available on their sales channels because of the ready-to-use tools and prebuilt integrations. This cuts down on the need for custom code and significantly lowers development costs. Increased flexibility and customization: MongoDB’s flexible document model and Together AI’s inference engine enables retailers to mold their applications to fit specific needs, such as back-office data processing, demand forecasting, and pricing as well as customer-facing conversational AI. Seamless integration with existing systems: MongoDB Atlas, in particular, integrates seamlessly with other frameworks we’re already using, like LangChain and LlamaIndex. This has made it easier to bring AI capabilities to adopt across various business units. Added support and expertise: The MongoDB AI Applications Program (MAAP) is especially helpful in beginning the journey into AI adoption across enterprises. It offers not just architectural guidance but also hands-on support, so enterprises can implement AI projects with confidence and a well-defined road map. Combining Together AI and MongoDB Atlas for a powerful approach to retail Together AI and MongoDB Atlas are a powerful combination for anyone in the retail industry looking to make the most of gen AI. It is evident how they help unlock valuable use cases, from personalized customer experiences to real-time operational improvements. By adopting MongoDB Atlas with Together AI, retailers can innovate, create richer customer interactions, and ultimately gain a competitive edge. If you’re exploring gen AI for retail, you’ll find that this combination has a quick, measurable, and transformative impact. Learn more about Together AI by visiting www.together.ai . For additional information, check out Together AI: Advancing the Frontier of AI With Open Source Embeddings, Inference, and MongoDB Atlas .

January 13, 2025
Artificial Intelligence

Using Agentic RAG to Transform Retail With MongoDB

In the competitive world of retail and ecommerce, it’s more important than ever for brands to connect with customers in meaningful, personalized ways. Shoppers today expect relevant recommendations, instant support, and unique experiences that feel tailored just for them. Enter retrieval-augmented generation (RAG) : a powerful approach that leverages generative AI and advanced search capabilities to deliver precise insights on demand. For IT decision-makers, the key challenge lies in integrating operational data with unstructured information—which can span object stores (like Amazon S3 and SharePoint), internal wikis, PDFs, Microsoft Word documents, and more. Enterprises must unlock value from curated, reliable internal data sources that often hold critical yet hard-to-access information. By combining RAG’s capabilities with these data assets, retailers can find contextually accurate information. For example, they can seamlessly surface needed information like return policies, refund processes, shipment details, and product recalls, driving operational efficiency and enhancing customer experiences. To provide the most relevant context to a large language model (LLM) , traditional RAG (which has typically relied on vector search) needs to be combined with real-time data in an operational database, the last conversation captured in a customer relationship management API call to a REST endpoint, or both. RAG has evolved to become agentic—that is, it’s capable of understanding a user inquiry and translating it to determine which path to use and which repositories to access to answer the question. MongoDB Atlas and Dataworkz provide an agentic RAG as a service solution that enables retailers to combine operational data with relevant unstructured data to create transformational experiences for their customers. MongoDB Atlas stores and unifies diverse data formats—such as customer purchases, inventory levels, and product descriptions—making them easily accessible. Dataworkz then transforms this data into vector embeddings, enabling a multistep agentic RAG pipeline to retrieve and create personalized, context-aware responses in real time. This is especially powerful in the context of customer support, product recommendations, and inventory management. When customers interact with retailers, Dataworkz dynamically retrieves real-time data from MongoDB Atlas, and, where needed, combines it with unstructured information to generate personalized AI responses, enhancing the customer experience. This architecture improves engagement, optimizes inventory, and provides scalable, adaptable AI capabilities, ultimately driving a more efficient and competitive retail operation. Reasons for using MongoDB Atlas and Dataworkz MongoDB Atlas and Dataworkz work together to deliver agentic RAG as a service for a smarter, more responsive customer experience. Here’s a quick breakdown of how: Vector embeddings and smart search: The Dataworkz RAG builder enables anyone to build sophisticated retrieval mechanisms that turn words, phrases, or even customer behaviors into vector embeddings—essentially, numbers that capture their meaning in a way that’s easy for AI to understand—and store them in MongoDB Atlas. This makes it possible to search for content based on meaning rather than exact wording, so search results are more accurate and relevant. Scalable, reliable performance: MongoDB Atlas’s cloud-based, distributed setup is built to handle high-traffic retail environments, minimizing disruptions during peak shopping times. Deep context with Dataworkz’s agentic RAG as a service: Retailers can build agentic workflows powered by RAG pipelines that combine lexical and semantic search with knowledge graphs to fetch the most relevant data from unstructured operational and analytical data sources before generating AI responses. This combination gives ecommerce brands the power to personalize experiences at a vastly larger scale. Figure 1: Reference architecture for customer support chatbots with Dataworkz and MongoDB Atlas Retail e-commerce use cases So how does this all work in practice? Here are some real-world examples of how MongoDB Atlas and Dataworkz are helping ecommerce brands create standout experiences. Building smarter customer-support chatbots Today’s shoppers want quick, accurate answers, and RAG makes this possible. When a customer asks a chatbot, “Where’s my order?” RAG enables the bot to pull the latest order and shipping details stored in MongoDB Atlas. Even if the question is phrased differently—say, “I need my order status”—the RAG-powered vector search can interpret the intent and fetch the correct response. As a result, the customer gets the help they need without waiting on hold or navigating complex menus. Personalizing product recommendations Imagine a customer who’s shown interest in eco-friendly products. With MongoDB Atlas’s vector embeddings, a RAG-powered system can identify this preference and adjust recommendations accordingly. So when the customer returns, they see suggestions that match their style—like organic cotton clothing or sustainably sourced kitchenware. This kind of recommendation feels relevant and thoughtful, making the shopping experience more enjoyable and increasing the chances of a purchase. Creating dynamic marketing content Marketing thrives on fresh, relevant content. With MongoDB Atlas managing product data and Dataworkz generating personalized messages, brands can send out dynamic promotions that truly resonate. For example, a customer who browsed outdoor gear might receive a curated email with top-rated hiking boots or seasonal discounts on camping equipment. This kind of targeted messaging feels personal, not pushy, building stronger customer loyalty. Enhancing site search experiences Traditional e-commerce searches often rely on exact keyword matches, which can lead to frustrating dead ends. But with MongoDB Atlas Vector Search and Dataworkz’s agentic RAG, search can be much smarter. For example, if a customer searches for “lightweight travel shoes,” the system understands that they’re looking for comfortable, portable footwear for travel, even if none of the product listings contain those exact words. This makes shopping smoother and more intuitive and less of a guessing game. Understanding trends in customer sentiment For e-commerce brands, understanding how customers feel can drive meaningful improvements. With RAG, brands can analyze reviews, social media comments, and support interactions to capture sentiment trends in MongoDB Atlas. Imagine a brand noticing a spike in mentions of “too small” in product reviews for a new shoe release—this insight lets them quickly adjust sizing info on the product page or update their stock. It’s a proactive approach that shows customers they’re being heard. Interactions that meet customers where they are In essence, MongoDB Atlas and Dataworkz’s RAG models enable retailers to make e-commerce personalization and responsiveness smarter, more efficient, and easier to scale. Together, they help retailers deliver exactly what customers are looking for—whether it’s a personalized recommendation, a quick answer from a chatbot, or just a better search experience. In the end, it’s about meeting customers where they are, with the information and recommendations they need. With MongoDB and Dataworkz, e-commerce brands can create that kind of connection—making shopping easier, more enjoyable, and ultimately more memorable. Learn more about Dataworkz on MongoDB by visiting dataworkz.com . The Dataworkz free tier is powered by MongoDB Atlas Vector Search .

December 23, 2024
Artificial Intelligence

Building Gen AI with MongoDB & AI Partners | November 2024

Unless you’ve been living under a rock, you know it’s that time of year again—re:Invent season! Last week, I was in Las Vegas for AWS re:Invent, one of our industry’s most important annual conferences. re:Invent 2024 was a whirlwind of keynote speeches, inspirational panels and talks, and myriad ways to spend time with colleagues and partners alike. And this year, MongoDB had its biggest re:Invent presence ever, alongside some of the most innovative players in AI. The headline? The MongoDB AI Application Program (MAAP) . Capgemini, Confluent, IBM, QuantumBlack AI by McKinsey, and Unstructured joined MAAP, boosting the value customers receive from the program and cementing MongoDB’s position as a leader in driving AI innovation. We also announced that MongoDB is collaborating with Meta to support developers with Meta models and the end-to-end MAAP technology stack. Figure 1: The MongoDB booth at re:Invent 2024 MongoDB’s re:Invent AI Showcase was another showstopper. As part of the AI Hub in the re:Invent expo hall, MongoDB and partners Arcee, Arize, Fireworks AI, and Together AI collaborated on engaging demos and presentations. Meanwhile, the “ Building Your AI Stack ” panel—which included leaders from MongoDB and MAAP partners Anyscale, Cohere, and Fireworks AI—featured an insightful discussion on building AI technologies, challenges with taking applications to production, and what’s next in AI. As at every re:Invent, networking opportunities abounded; I had so many interesting and fruitful conversations with partners, customers, and developers during the week’s many events, including those MongoDB sponsored—like the Cabaret of Innovation with Accenture, Anthropic, and AWS; the Galactic Gala with Cohere; and Tuesday’s fun AI Game Night with Arize, Fireworks AI, and Hasura. Figure 2: Networking at the Galactic Gala Whether building solutions or building relationships, MongoDB’s activities at re:Invent 2024 showcased the importance of collaboration to the future of AI. As we close out the year, I’d like to thank our amazing partners for their support—we look forward to more opportunities to collaborate in 2025! And if you want to learn more about MongoDB’s announcements at re:Invent 2024, please read this blog post by my colleague Oliver Tree. Welcoming new AI and tech partners In November, we also welcomed two new AI and tech partners that offer product integrations with MongoDB. Read on to learn more about each great new partner! Braintrust Braintrust is an end-to-end platform for building and evaluating world-class AI apps. “ We're excited to partner with MongoDB to share how you can build reliable and scalable AI applications with vector databases,” said Ankur Goyal, CEO of Braintrust. “By combining Braintrust’s simple evaluation workflows with MongoDB Atlas, developers can build an end-to-end RAG application and iterate on prompts and models without redeploying their code.” Langtrace Langtrace is an open-source observability tool that collects and analyzes traces in order to help you improve your LLM apps. “ We're thrilled to join forces with MongoDB to help companies trace, debug, and optimize their RAG features for faster production deployment and better accuracy,” said Karthik Kalyanaraman, Co-founder and CTO at Langtrace AI. “MongoDB has made it dead simple to launch a scalable vector database with operational data. Our collaboration streamlines the RAG development process by empowering teams with database observability, speeding up time to market and helping companies get real value to customers faster.” But wait, there's more! To learn more about building AI-powered apps with MongoDB, check out our AI Resources Hub and stop by our Partner Ecosystem Catalog to read about our integrations with MongoDB’s ever-evolving AI partner ecosystem.

December 12, 2024
Artificial Intelligence

Binary Quantization & Rescoring: 96% Less Memory, Faster Search

We are excited to share that several new vector quantization capabilities are now available in public preview in MongoDB Atlas Vector Search : support for binary quantized vector ingestion, automatic scalar quantization, and automatic binary quantization and rescoring. Together with our recently released support for scalar quantized vector ingestion , these capabilities will empower developers to scale semantic search and generative AI applications more cost-effectively. For a primer on vector quantization, check out our previous blog post . Enhanced developer experience with native quantization in Atlas Vector Search Effective quantization methods—specifically scalar and binary quantization—can now be done automatically in Atlas Vector Search. This makes it easier and more cost-effective for developers to use Atlas Vector Search to unlock a wide range of applications, particularly those requiring over a million vectors. With the new “quantization” index definition parameters, developers can choose to use full-fidelity vectors by specifying “none,” or they can quantize vector embeddings by specifying the desired quantization type—”scalar” or “binary” (Figure 1). This native quantization capability supports vector embeddings from any model provider as well as MongoDB’s BinData float32 vector subtype . Figure 1: New index definition parameters for specifying automatic quantization type in Atlas Vector Search Scalar quantization—converting a float point into an integer—is generally used when it's crucial to maintain search accuracy on par with full-precision vectors. Meanwhile, binary quantization—converting a float point into a single bit of 0 or 1—is more suitable for scenarios where storage and memory efficiency are paramount, and a slight reduction in search accuracy is acceptable. If you’re interested in learning more about this process, check out our documentation . Binary quantization with rescoring: Balance cost and accuracy Compared to scalar quantization, binary quantization further reduces memory usage, leading to lower costs and improved scalability—but also a decline in search accuracy. To mitigate this, when “binary” is chosen in the “quantization” index parameter, Atlas Vector Search incorporates an automatic rescoring step, which involves re-ranking a subset of the top binary vector search results using their full-precision counterparts, ensuring that the final search results are highly accurate despite the initial vector compression. Empirical evidence demonstrates that incorporating a rescoring step when working with binary quantized vectors can dramatically enhance search accuracy, as shown in Figure 2 below. Figure 2: Combining binary quantization and rescoring helps retain search accuracy by up to 95% And as Figure 3 shows, in our tests, binary quantization reduced processing memory requirement by 96% while retaining up to 95% search accuracy and improving query performance. Figure 3: Improvements in Atlas Vector Search with the use of vector quantization It’s worth noting that even though the quantized vectors are used for indexing and search, their full-fidelity vectors are still stored on disk to support rescoring. Furthermore, retaining the full-fidelity vectors enables developers to perform exact vector search for experimental, high-precision use cases, such as evaluating the search accuracy of quantized vectors produced by different embedding model providers, as needed. For more on evaluating the accuracy of quantized vectors, please see our documentation . So how can developers make the most of vector quantization? Here are some example use cases that can be made more efficient and scaled effectively with quantized vectors: Massive knowledge bases can be used efficiently and cost-effectively for analysis and insight-oriented use cases, such as content summarization and sentiment analysis. Unstructured data like customer reviews, articles, audio, and videos can be processed and analyzed at a much larger scale, at a lower cost and faster speed. Using quantized vectors can enhance the performance of retrieval-augmented generation (RAG) applications. The efficient processing can support query performance from large knowledge bases, and the cost-effectiveness advantage can enable a more scalable, robust RAG system, which can result in better customer and employee experience. Developers can easily A/B test different embedding models using multiple vectors produced from the same source field during prototyping. MongoDB’s flexible document model lets developers quickly deploy and compare embedding models’ results without the need to rebuild the index or provision an entirely new data model or set of infrastructure. The relevance of search results or context for large language models (LLMs) can be improved by incorporating larger volumes of vectors from multiple sources of relevance, such as different source fields (product descriptions, product images, etc.) embedded within the same or different models. To get started with vector quantization in Atlas Vector Search, see the following developer resources: Documentation: Vector Quantization in Atlas Vector Search Documentation: How to Measure the Accuracy of Your Query Results Tutorial: How to Use Cohere's Quantized Vectors to Build Cost-effective AI Apps With MongoDB

December 12, 2024
Artificial Intelligence

IntellectAI Unleashes AI at Scale With MongoDB

IntellectAI , a business unit of Intellect Design Arena , is a trailblazer in AI. Since 2019 the company has been using MongoDB to drive a number of innovative use cases in the banking, financial services, and insurance (BFSI) industry. For example, Intellect Design Arena’s broader insurance business has been using MongoDB Atlas as a foundation for its architecture. Atlas’s flexibility enables Intellect Design Arena to manage varied and constantly evolving datasets and increase operational performance. Building on this experience, the company looked at deepening its use of MongoDB Atlas’s unique AI and search capabilities for its new IntellectAI division. IntellectAI Partner and Chief Technology Officer Deepak Dastrala spoke on the MongoDB.local Mumbai stage in September 2024 . Dastrala shared how the company has built a powerful, scalable, and highly accurate AI platform-as-a-service offering, Purple Fabric , using MongoDB Atlas and Atlas Vector Search . Using AI to generate actionable compliance insights for clients Purple Fabric helps transform enterprise data into actionable AI insights and solutions by making data ready for retrieval-augmented generation (RAG). The platform collects and analyzes structured and unstructured enterprise data, policies, market data, regulatory information, and tacit knowledge to enable its AI Expert Agent System to achieve precise, goal-driven outcomes with accuracy and speed. A significant part of IntellectAI’s work involves assessing environmental, social, and governance (ESG) compliance. This requires companies to monitor diverse nonfinancial factors such as child labor practices, supply chain ethics, and biodiversity. “Historically, 80% to 85% of AI projects fail because people are still worried about the quality of the data. With Generative AI, which is often unstructured, this concern becomes even more significant,” said Deepak Dastrala. According to Deepak Dastrala, the challenge today is less about building AI tools than about operationalizing AI effectively. A prime example of this is IntellectAI’s work with one of the largest sovereign wealth funds in the world, which manages over $1.5 trillion across 9,000 companies. The fund sought to utilize AI for making responsible investment decisions based on millions of unique data points across those companies, including compliance, risk prediction, and impact assessment. This included processing both structured and unstructured data to enable the fund to make informed, real-time decisions. “We had to process almost 10 million documents in more than 30 different data formats—text and image—and correlate both structured and unstructured data to provide those particular hard-to-find insights,” said Dastrala. “We ingested hundreds of millions of vectors across these documents, and this is where we truly understood the power of MongoDB.” For example, by leveraging MongoDB's capabilities, including time series collections, IntellectAI simplifies the processing of unstructured and semi-structured data from companies' reports over various years, extracting key performance metrics and trends to enhance compliance insights. “MongoDB Atlas and Vector Search give us flexibility around the schema and how we can turn particular data into knowledge,” Dastrala said. For Dastrala, there are four unique advantages of working with MongoDB—particularly using MongoDB Atlas Vector Search—that other companies should consider when building long-term AI strategies: a unified data model, multimodality, dynamic data linking, and simplicity. “For me, the unified data model is a really big thing because a stand-alone vector database will not help you. The kind of data that you will continue to ingest will increase, and there are no limits. So whatever choices that you make, you need to make the choices from the long-term perspective,” said Dastrala. Delivering massive scale, driving more than 90% AI accuracy, and accelerating decision-making with MongoDB Before IntellectAI built this ESG capability, its client relied on subject matter experts, but they could examine only a limited number of companies and datasets and were unable to scale their investigation of portfolios or information. “If you want to do it at scale, you need proper enterprise support, and that’s where MongoDB became really handy for us. We are able to give 100% coverage and do what the ESG analysts were able to do for this organization almost a thousand times faster,” said Dastrala. Previously, analysts could examine only between 100 and 150 companies. With MongoDB Atlas and Atlas Vector Search, Purple Fabric can now process information from over 8,000 companies across the world, covering different languages and delivering more than 90% accuracy. “Generally, RAG will probably give you 80% to 85% accuracy. But in our case, we are talking about a fund deciding whether to invest billions or not in a company, so the accuracy should be 90% minimum,” said Dastrala. “What we are doing is not ‘simple search’; it is very contextual, and MongoDB helps us provide that high-dimension data.” Concluding the presentation speech on the MongoDB.local stage, Dastrala reminded the audience why IntellectAI is using MongoDB’s unique capabilities to support its long-term vision: “Multimodality is very important because today we are using text and images, but tomorrow we might use audio, video, and more. And don’t forget, from a developer perspective, how important it is to keep the simplicity and leverage all the options that MongoDB provides.” This is just the beginning for IntellectAI and its Purple Fabric platform. “Because we are doing more and more with greater accuracy, our customers have started giving us more problems to solve. And this is absolutely happening at a scale [that] is unprecedented,” said Dastrala. Using MongoDB Atlas to drive broader business benefits across Intellect Design The success encountered with the Purple Fabric platform is leading Intellect Design’s broader business to look at MongoDB Atlas for more use cases. Intellect Design is currently in the process of migrating more of its insurance and Wealth platforms onto MongoDB Atlas, as well as leveraging the product family to support the next phase of its app modernization strategy. Using MongoDB Atlas, Intellect Design aims to improve resilience, support scalable growth, decrease time to market, and enhance data insights. Head over to our product page to learn more about MongoDB Atlas . To learn more about how MongoDB Atlas Vector Search can help you build or deepen your AI and search capabilities, visit our Vector Search page .

December 12, 2024
Artificial Intelligence

AI-Powered Call Centers: A New Era of Customer Service

Customer satisfaction is critical for insurance companies. Studies have shown that companies with superior customer experiences consistently outperform their peers. In fact, McKinsey found that life and property/casualty insurers with superior customer experiences saw a significant 20% and 65% increase in Total Shareholder Return , respectively, over five years. A satisfied customer is a loyal customer. They are 80% more likely to renew their policies, directly contributing to sustainable growth. However, one major challenge faced by many insurance companies is the inefficiency of their call centers. Agents often struggle to quickly locate and deliver accurate information to customers, leading to frustration and dissatisfaction. This article explores how Dataworkz and MongoDB can transform call center operations. By converting call recordings into searchable vectors (numerical representations of data points in a multi-dimensional space), businesses can quickly access relevant information and improve customer service. We'll dig into how the integration of Amazon Transcribe, Cohere, and MongoDB Atlas Vector Search—as well as Dataworkz's RAG-as-a-service platform— is achieving this transformation. From call recordings to vectors: A data-driven approach Customer service interactions are goldmines of valuable insights. By analyzing call recordings, we can identify successful resolution strategies and uncover frequently asked questions. In turn, by making this information—which is often buried in audio files— accessible to agents, they can give customers faster and more accurate assistance. However, the vast volume and unstructured nature of these audio files make it challenging to extract actionable information efficiently. To address this challenge, we propose a pipeline that leverages AI and analytics to transform raw audio recordings into vectors as shown in Figure 1: Storage of raw audio files: Past call recordings are stored in their original audio format Processing of the audio files with AI and analytics services (such as Amazon Transcribe Call Analytics ): speech-to-text conversion, summarization of content, and vectorization Storage of vectors and metadata: The generated vectors and associated metadata (e.g., call timestamps, agent information) are stored in an operational data store Figure 1: Customer service call insight extraction and vectorization flow Once the data is stored in vector format within the operational data store, it becomes accessible for real-time applications. This data can be consumed directly through vector search or integrated into a retrieval-augmented generation (RAG) architecture, a technique that combines the capabilities of large language models (LLMs) with external knowledge sources to generate more accurate and informative outputs. Introducing Dataworkz: Simplifying RAG implementation Building RAG pipelines can be cumbersome and time-consuming for developers who must learn yet another stack of technologies. Especially in this initial phase, where companies want to experiment and move fast, it is essential to leverage tools that allow us to abstract complexity and don’t require deep knowledge of each component in order to experiment with and realize the benefits of RAG quickly. Dataworkz offers a powerful and composable RAG-as-a-service platform that streamlines the process of building RAG applications for enterprises. To operationalize RAG effectively, organizations need to master five key capabilities: ETL for LLMs: Dataworkz connects with diverse data sources and formats, transforming the data to make it ready for consumption by generative AI applications. Indexing: The platform breaks down data into smaller chunks and creates embeddings that capture semantics, storing them in a vector database. Retrieval: Dataworkz ensures the retrieval of accurate information in response to user queries, a critical part of the RAG process. Synthesis: The retrieved information is then used to build the context for a foundational model, generating responses grounded in reality. Monitoring: With many moving parts in the RAG system, Dataworkz provides robust monitoring capabilities essential for production use cases. Dataworkz's intuitive point-and-click interface (as seen in Video 1) simplifies RAG implementation, allowing enterprises to quickly operationalize AI applications. The platform offers flexibility and choice in data connectors, embedding models, vector stores, and language models. Additionally, tools like A/B testing ensure the quality and reliability of generated responses. This combination of ease of use, optionality, and quality assurance is a key tenet of Dataworkz's "RAG as a Service" offering. Diving deeper: System architecture and functionalities Now that we’ve looked at the components of the pre-processing pipeline, let’s explore the proposed real-time system architecture in detail. It comprises the following modules and functions (see Figure 2): Amazon Transcribe , which receives the audio coming from the customer’s phone and converts it into text. Cohere ’s embedding model, served through Amazon Bedrock , vectorizes the text coming from Transcribe. MongoDB Atlas Vector Search receives the query vector and returns a document that contains the most semantically similar FAQ in the database. Figure 2: System architecture and modules Here are a couple of FAQs we used for the demo: Q: “Can you explain the different types of coverage available for my home insurance?” A: “Home insurance typically includes coverage for the structure of your home, your personal belongings, liability protection, and additional living expenses in case you need to temporarily relocate. I can provide more detailed information on each type if you'd like.” Q: “What is the process for adding a new driver to my auto insurance policy?" A: “To add a new driver to your auto insurance policy, I'll need some details about the driver, such as their name, date of birth, and driver's license number. We can add them to your policy over the phone, or you can do it through our online portal.” Note that the question is reported just for reference, and it’s not used for retrieval. The actual question is provided by the user through the voice interface and then matched in real-time with the answers in the database using Vector Search. This information is finally presented to the customer service operator in text form (see Fig. 3). The proposed architecture is simple but very powerful, easy to implement, and effective. Moreover, it can serve as a foundation for more advanced use cases that require complex interactions, such as agentic workflows , and iterative and multi-step processes that combine LLMs and hybrid search to complete sophisticated tasks. Figure 3: App interface, displaying what has been asked by the customer (left) and how the information is presented to the customer service operator (right) This solution not only impacts human operator workflows but can also underpin chatbots and voicebots, enabling them to provide more relevant and contextual customer responses. Building a better future for customer service By seamlessly integrating analytical and operational data streams, insurance companies can significantly enhance both operational efficiency and customer satisfaction. Our system empowers businesses to optimize staffing, accelerate inquiry resolution, and deliver superior customer service through data-driven, real-time insights. To embark on your own customer service transformation, explore our GitHub repository and take advantage of the Dataworkz free tier .

November 27, 2024
Artificial Intelligence

Better Digital Banking Experiences with AI and MongoDB

Interactive banking represents a new era in financial services where customers engage with digital platforms that anticipate, understand, and meet their needs in real-time. This approach encompasses AI-driven technologies such as chatbots, virtual assistants, and predictive analytics that allow banks to enhance digital self-service while delivering personalized, context-aware interactions. According to Accenture’s 2023 consumer banking study , 44% of consumers aged 18-44 reported difficulty accessing human support when needed, underscoring the demand for more responsive digital solutions that help bridge this gap between customers and financial services. Generative AI technologies like chatbots and virtual assistants can fill this need by instantly addressing inquiries, providing tailored financial advice, and anticipating future needs. This shift has tremendous growth potential; the global chatbot market is expected to grow at a CAGR of 23.3% from 2023 to 2030 , with the financial sector experiencing the fastest growth rate of 24.0%. This shift is more than just a convenience; it aims to create a smarter, more engaging, and intuitive banking journey for every user. Simplifying self-service banking with AI Navigating daily banking activities like transfers, payments, and withdrawals can often raise immediate questions for customers: “Can I overdraft my account?” “What will the penalties be?” or “How can I avoid these fees?” While the answers usually lie within the bank’s terms and conditions, these documents are often dense, complex, and overwhelming for the average user. At the same time, customers value their independence and want to handle their banking needs through self-service channels, but wading through extensive fine print isn't what they signed up for. By integrating AI-driven advisors into the digital banking experience, banks can provide a seamless, in-app solution that delivers instant, relevant answers. This removes the need for customers to leave the app to sift through pages of bank documentation in search of answers, or worse, endure the inconvenience of calling customer service. The result is a smoother and user-friendly interaction, where customers feel supported in their self-service journey, free from the frustration of navigating traditional, cumbersome information sources. The entire experience remains within the application, enhancing convenience and efficiency. Solution overview This AI-driven solution enhances the self-service experience in digital banking by applying Retrieval-Augmented Generation (RAG) principles, which combine the power of generative AI with reliable information retrieval, ensuring that the chatbot provides accurate, contextually relevant responses. The approach begins by processing dense, text-heavy documents, like terms and conditions, often the source of customer inquiries. These documents are divided into smaller, manageable chunks vectorized to create searchable data representations. Storing these vectorized chunks in MongoDB Atlas allows for efficient querying using MongoDB Atlas Vector Search , making it possible to instantly retrieve relevant information based on the customer’s question. Figure 1: Detailed solution architecture When a customer inputs a question in the banking app, the system quickly identifies and retrieves the most relevant chunks using semantic search. The AI then uses this information to generate clear, contextually relevant answers within the app, enabling a smooth, frustration-free experience without requiring customers to sift through dense documents or contact support. Figure 2: Leafy Bank mock-up chatbot in action How MongoDB supports AI-driven banking solutions MongoDB offers unique capabilities that empower financial institutions to build and scale AI-driven applications. Unified data model for flexibility: MongoDB’s flexible document model unifies structured and unstructured data, creating a consistent dataset that enhances the AI’s ability to understand and respond to complex queries. This model enables financial institutions to store and manage customer data, transaction history, and document content within a single system, streamlining interactions and making AI responses more contextually relevant. Vector search for enhanced querying: MongoDB Atlas Vector Search makes it easy to perform semantic searches on vectorized document chunks, quickly retrieving the most relevant information to answer user questions. This capability allows the AI to find precise answers within dense documents, enhancing the self-service experience for customers. Scalable integration with AI models: MongoDB is designed to work seamlessly with leading AI frameworks, allowing banks to integrate and scale AI applications quickly and efficiently. By aligning MongoDB Atlas with cloud-based LLM providers, banks can use the best tools available to interpret and respond to customer queries accurately, meeting demand with responsive, real-time answers. High performance and cost efficiency: MongoDB’s multi-cloud, developer-friendly platform allows financial institutions to innovate without costly infrastructure changes. It’s built to scale as data and AI needs to grow, ensuring banks can continually improve the customer experience with minimal disruptions. MongoDB’s built-in scalability allows banks to expand their AI capabilities effortlessly, offering a future-proof foundation for digital banking. Building future-proof applications Implementing generative AI presents several advantages, not only for end-users of the interactive banking applications but also for financial institutions: Enhanced user experience encourages customer satisfaction, ensures retention, boosts reputation, and reduces customer turnover while unlocking new opportunities for cross-selling and up-selling to increase revenue, drive growth and elevate customer value. Moreover, adopting AI-driven initiatives prepares the groundwork for businesses to develop innovative, creative, and future-proof applications to address customer needs and upgrade business applications with features that are shaping the industry and will continue to do so, here are some examples: Summarize and categorize transactional information by powering applications with MongoDB’s Real-Time Analytics . Understand and find trends based on customer behavior that could positively impact and leverage fraud prevention , anti-money laundering (AML) , and credit card application (just to mention a few). Offering investing, budgeting, and loan assessments through AI-powered conversational banking experience. In today’s data-driven world, companies face increasing pressure to stay ahead of rapid technological advancements and ever-evolving customer demands. Now more than ever, businesses must deliver intuitive, robust, and high-performing services through their applications to remain competitive and meet user expectations. Luckily, MongoDB provides businesses with comprehensive reference architectures for building generative AI applications, an end-to-end technology stack that includes integrations with leading technology providers, professional services, and a coordinated support system through the MongoDB AI Applications Program (MAAP) . By building AI-enriched applications with the leading multi-cloud developer data platform, companies can leverage low-cost, efficient solutions through MongoDB’s flexible and scalable document model which empowers businesses to unify real-time, operational, unstructured, and AI-related data, extending and customizing their applications to seize upcoming technological opportunities. Check out these additional resources to get started on your AI journey with MongoDB: How Leading Industries are Transforming with AI and MongoDB Atlas - E-book Our Solutions Library is where you can learn about different use cases for gen AI and other interesting topics that are applied to financial services and many other industries.

November 26, 2024
Artificial Intelligence

Hanabi Technologies Uses MongoDB to Power AI Assistant, Hana

For all the hype surrounding generative AI, cynics tend to view the few real-world implementations as little more than “fancy chatbots.” But for Abhinav Aggarwal, CEO of Hanabi Technologies , the idea of a generative AI-powered bot that is more than just an assistant was intriguing. “I’d been using ChatGPT since it launched,” said Aggarwal. “That got me thinking: How could we make a chatbot that was like a team member?” And with that concept, Hana was born. The problem with bots “Most generative AI chatbots do not act like people; they wait for a command and give a response,” said Aggarwal. “We wanted to create a human-like chatbot that would proactively help people based on what they wanted—automating reminders, for example, or fetching time zones from your calendar to correctly schedule meetings.” Hanabi’s flagship product, Hana, is an AI assistant designed to enhance team collaboration within Google Chat, working in concert with Google Workspace and its suite of products. “Our target customers are smaller companies of between 10 and 50 people. At this size you’re not going to build your own agent from scratch,” he said. Hana integrates with Google APIs to deliver a human-like assistant that chimes in with helpful interventions, such as automatically setting reminders and making sure meetings are booked in the right time zone for each participant. “Hana is designed to bring AI to smaller companies and help them collaborate in a space where they are already working—Google Workspace,” Aggarwal explained. The MongoDB Atlas solution For Hana to act like a member of the team, Hanabi needed to process massive amounts of data to support advanced features like retrieval-augmented generation (RAG) for better information retrieval across Google Docs and many other sources. And with a rapidly growing user base of over 600 organizations and 17,000+ installs, Hanabi also required a secure, scalable, and high-performing data storage solution. MongoDB Atlas provided a flexible document model, built-in vector database, and scalable cloud-based infrastructure, freeing Hanabi engineers to build new features for Hana rather than focusing on rote tasks like data extract, transform, and load processes or manual scaling and provisioning. Now, MongoDB Atlas handles a variety of responsibilities: Scalability and security: MongoDB Atlas’s auto-scaling and automatic backup features have enabled Hanabi to seamlessly grow its user base without the need for manual database management. RAG: MongoDB Atlas plays a critical role in Hana’s RAG functionality. The platform enables Hanabi to split Google Docs into small sections, create embeddings, and store these sections in Atlas’s vector database. Development Processes: According to Aggarwal, MongoDB’s flexibility in managing changing schemas has been essential to the company’s fast-paced development cycle. Data Visualization: Using MongoDB Atlas Charts has enabled Hanabi to create comprehensive dashboards for real-time data visualization. This has helped the team track usage, set reminders, and optimize performance without needing to build a manual dashboard. Impact and results With MongoDB Atlas, Hanabi can successfully scale Hana to meet the demands of its rapidly expanding user base. The integration is also enabling Hana to offer powerful features like automatic interactions with customers, advanced information retrieval from Google Docs, and manually added memory snippets, making it an essential tool for teams around the world. Next steps Hanabi plans to continue integrating more tools into Hana while expanding its reach to personal Gmail users. The company is also rolling out a new automatic-interaction feature, further enhancing Hana’s ability to proactively assist users without direct commands. MongoDB Atlas remains a key component of Hanabi’s stack, alongside Google Kubernetes Engine, NestJS, and LangChain, enabling Hanabi to focus on innovating to improve the customer experience. Tech Stack MongoDB Atlas Google Kubernetes Engine NestJS LangChain Are you building AI apps? Join the MongoDB AI Innovators Program today! Successful participants gain access to free MongoDB Atlas credits, technical enablement, and invaluable connections within the broader AI ecosystem. If your company is interested in being featured, we’d love to hear from you. Connect with us at ai_adopters@mongodb.com.

November 21, 2024
Artificial Intelligence

MongoDB, Microsoft Team Up to Enhance Copilot in VS Code

As modern applications grow increasingly complex, developers face the challenge of meeting market demands for faster, smarter solutions. To stay ahead, they need tools that streamline their workflows, available directly in the environments where they build. According to the 2024 Stack Overflow Developer Survey , Microsoft’s Visual Studio Code (VS Code) is the integrated development environment (IDE) of choice for 74% of professional developers, serving as a central hub for building, testing, and deploying applications. With the rise of AI-powered tools like GitHub Copilot—which is used by 44% of professional developers—there’s a growing demand for intelligent assistance in the development process without disrupting flow. At MongoDB, we believe that the future of development lies in democratizing the value of these experiences by incorporating domain-specific knowledge and capabilities directly into developer flows. That’s why we’re thrilled to announce the public preview of MongoDB’s extension to GitHub Copilot in VS Code. With this integration, developers can effortlessly generate MongoDB queries, inspect collection schemas, and get answers from the latest MongoDB docs—all without leaving their IDE. Our collaboration with MongoDB continues to bring powerful, integrated solutions to developers building the modern applications of the future. The new MongoDB extension for GitHub Copilot exemplifies a shared commitment to the developer experience, leveraging AI to ensure that workflows are optimized for developer productivity by keeping everything developers need within reach, without breaking their flow. Isidor Nikolic, Senior Product Manager for VS Code, Microsoft But we’re not stopping there. As AI continues to evolve, so will the ways developers interact with their tools. Stay tuned for more exciting developments next week at Microsoft Ignite , where we’ll unveil more ways we’re pushing the boundaries of what’s possible with AI through MongoDB and Microsoft’s partnership! What is MongoDB's Copilot extension? MongoDB’s Copilot extension supercharges your GitHub Copilot in VS Code with MongoDB domain knowledge. The Copilot integration is built into the MongoDB for VS Code extension , which has more than 1.8M downloads in the VS Code marketplace today. Type ‘@MongoDB’ in Copilot chat and take advantage of three transformative commands: Generate queries from natural language (/query) —this generates accurate MongoDB queries by passing collection schema as context to Github Copilot Query MongoDB documentation (/docs) —this answers any documentation questions using the latest MongoDB documentation through Retrieval-Augmented Generation (RAG) Browse collection schema (/schema) —this provides schema information for any collection and is useful for data modeling with the Copilot extension. Generate queries from natural language This command transforms natural language prompts into MongoDB queries, leveraging your collection schema to produce precise, valid queries. It eliminates the need to manually write complex query syntax, and allows developers to quickly extract data without taking their focus away from building applications. Whether you run the query directly from the Copilot chat or refine it in a MongoDB playground file, we’ve sped up the query-building process by deeply integrating these capabilities into the existing flow of MongoDB VS Code extension. Query MongoDB documentation The /docs command answers MongoDB documentation-specific questions, complemented by direct links to the official documentation site. There’s no need to switch back and forth between your browser and your IDE; the Copilot extension calls out to the MongoDB Documentation Chatbot API that leverages retrieval-augmented generation technology to generate responses that are informed by the most recent version of the MongoDB documentation. In the near future, these questions will be smartly routed to documentation for the specific server version of the cluster you are connected to in the MongoDB VS Code extension. Browse collection schema The /schema command offers quick access to collection schemas, making it easier for developers to access and interact with their data model in real-time. This can be helpful in situations where developers are debugging with Copilot or just want to know valid field names while developing their applications. Developers can additionally export collection schemas into JSON files or ask follow-up questions directly to brainstorm data modeling techniques with the MongoDB Copilot extension. On the Horizon This is just the start of our work on MongoDB’s Copilot extension. As we continue to improve the experience with new features—like translating and testing queries to and from popular programming languages, and in-line query generation in Playgrounds—we remain focused on democratizing AI-driven workflows, empowering developers to access the tools and knowledge they need to build smarter, faster, and more efficiently, right within their existing environments. Download MongoDB’s VS Code extension and enable the MongoDB chat experience to get started today.

November 13, 2024
Artificial Intelligence

Building Gen AI with MongoDB & AI Partners | October 2024

It’s no surprise that AI is a topic of seemingly every professional conversation and meeting nowadays—my friends joke that 11 out of 10 words that come out of my mouth are “gen AI.” But an important question remains: do organizations truly know how to harness AI, or do they simply feel pressured to join the crowd? Are they driven by FOMO more than anything else? One thing is for sure: adopting generative AI still presents a huge learning curve. Which is why we’ve been working to provide the right tools for companies to build innovative gen AI apps with, and why we offer organizations a variety of AI knowledge and guidance, regardless of where they are with gen AI. We’re fortunate to work with our industry-leading partners to help educate and shape this nascent market. Working so closely with them on product launches, integrations, and solving real-world challenges allows us to bring diverse perspectives and a better understanding of AI to our customers, giving them the technology and confidence to move forward even before engaging with tough use cases and specific technical problems (something that the MongoDB AI Applications Program can definitely help with). One of our main educational initiatives has been our webinar series with our top-tier MAAP partners. We’ve constantly launched video content to deepen understanding of topics essential to gen AI for enterprises answering broader questions such as “ how can my company generate AI-driven outcomes ” and “ how can I modernize my workload ,” to specific, tangible topics such as “ how to build a chatbot that knows my business .” Each session is designed to move beyond the basics, sharing insights from experts in AI, and addressing our customers’ burning questions and challenges that matter most to them. Welcoming new AI and tech partners In October, we also welcomed four new AI and tech partners that offer product integrations with MongoDB. Read on to learn more about each great new partner! Astronomer Astronomer empowers data teams to bring mission-critical software, analytics, and AI to life and is the company behind Astro, the industry-leading data orchestration and observability platform powered by Apache Airflow. " Astronomer's partnership with MongoDB is redefining RAG workflows for GenAI workloads. By integrating Astronomer's managed Apache Airflow platform with MongoDB Atlas' powerful vector database capabilities, we enable organizations to orchestrate complex data pipelines that fuel advanced AI and machine learning applications”, said Julian LaNeve, CTO at Astronomer. “This collaboration empowers data teams to manage real-time, high-dimensional data with ease, accelerating the journey from raw data to actionable insights and transforming how businesses harness the power of generative AI." CloudZero CloudZero is a cloud cost optimization platform that automates the collection, allocation, and analysis of cloud costs to identify savings opportunities and improve cloud efficiency rates. "Database spending is one of the shared costs that can make it tricky for organizations to reach 100% cost allocation. CloudZero eliminates that problem," said Anand Sundaram, Senior Vice President of Product at CloudZero. “ Our industry-leading allocation engine can organize MongoDB spend in a matter of hours , tracing it precisely to the products, features, customers, and/or teams responsible for it. This way, companies get a clear view of what’s driving their costs, who’s accountable, and how to optimize to maximize their cloud efficiency.” ObjectBox ObjectBox is an on-device vector database for mobile, IoT, and embedded devices that enables storing, syncing, and querying data locally online and offline. " We’re thrilled to partner with MongoDB to give developers an edge,” celebrated Vivien Dollinger, CEO and co-founder of ObjectBox. “By combining MongoDB’s cloud and scalability with ObjectBox’s high-performance on-device database and data sync, we empower developers to build fast, data-rich applications that feel right at home across devices and environments. Offline, online, edge, cloud, whenever, wherever... We’re here to enable your data with speed and reliability." Rasa Rasa is a flexible framework for building conversational AI platforms that lets companies develop scalable generative AI assistants that hit the market faster. “ Rasa is excited to partner with MongoDB to empower companies in building conversational AI experiences. Together, we’re helping create generative AI assistants that save costs, speed up development, and maintain full brand control and security,” said Melissa Gordon, CEO of Rasa. “With MongoDB, deploying production-ready generative AI assistants is seamless, and we’re eager to continue accelerating our customers’ journey toward trusted conversational AI solutions.” But wait, there's more! Whether you’re starting out or scaling up, MongoDB and our partners are here with the resources, expertise, and trusted guidance to help you succeed in your genAI strategy! And if you have any suggestions for a good webinar topic, don’t hesitate to reach out. To learn more about building AI-powered apps with MongoDB, check out our AI Resources Hub and stop by our Partner Ecosystem Catalog to read about our integrations with MongoDB’s ever-evolving AI partner ecosystem.

November 11, 2024
Artificial Intelligence

Ready to get Started with MongoDB Atlas?

Start Free