I have an aggregation that produces data that contains embedded documents as:
{
"_id": {
"$oid": "65816a666771a1d4de33eb68"
},
"diet_included": [
{
"label": "banana",
"_id": "62af112dbe66bc92f8ceabcb",
"type": "foodLabel",
"labelId": 46,
"optionCategoryIdsForConflicts": [
13200,
90020,
91020
],
"foodLabel": "banana",
"categoriesNames": []
},
{
"label": "carrot",
"_id": "62af113cbe66bc92f8ceac20",
"type": "foodLabel",
"labelId": 131,
"optionCategoryIdsForConflicts": [
18170,
91010
],
"foodLabel": "carrot",
"categoriesNames": []
},
{
"label": "eggplant",
"_id": "62af115cbe66bc92f8ceacd4",
"type": "foodLabel",
"labelId": 311,
"optionCategoryIdsForConflicts": [
18080,
61000,
90020
],
"foodLabel": "eggplant",
"categoriesNames": []
}
],
"matchedLabels": {
"matchBased": [
{
"name": "None"
},
{
"name": "Pescatarian"
},
{
"name": "L_Vit. A"
}
],
"noMatchedMicro": [],
"userIncludedFoodLabels": [
"banana",
"carrot",
"eggplant"
]
}
}
I can successfully extract the data using the pandas library
result = col.aggrerate(agg)
df = pandas.DataFrame(result)
However this doesnt work with polars.DataFrame or with pymongoarrow aggregate_polars_all.
This is more of an irritant than a show stopper, but it raises the concern that perhaps polars a) isn't compatible with 3.11 or that pymongo is the cause
So anyone gone too far on the bleeding edge?