점수 상세 정보 반환
$search
단계에서 scoreDetails
부울 옵션을 사용하면 쿼리 결과의 각 문서에 대한 점수를 자세히 분석할 수 있습니다. 메타데이터를 보려면 $project
단계에서 $meta 표현식을 사용해야 합니다.
구문
{ "$search": { "<operator>": { <operator-specification> }, "scoreDetails": true | false } }, { "$project": { "scoreDetails": {"$meta": "searchScoreDetails"} } }
옵션
$search 단계 에서 scoreDetails
부울 옵션은 다음 값 중 하나를 사용합니다.
true
- 결과에 문서의 점수 세부 정보를 포함합니다.true
로 설정하면 Atlas Search는 결과에 있는 각 문서의 점수를 자세히 분석하여 반환합니다. 자세한 내용은 출력을 참조하세요.false
- 결과에서 점수 분석의 세부 정보를 제외합니다. (기본값)
생략하면 scoreDetails
옵션의 기본값은 false
입니다.
$project 단계에서 scoreDetails
필드는 $meta 표현식을 취하며, 이는 다음 값을 요구합니다:
| 결과에 포함된 각 문서의 점수에 대한 자세한 분석을 반환합니다. |
출력
scoreDetails
옵션은 결과의 각 문서에 대해 scoreDetails
객체 내부의 details
배열에 다음 필드를 반환합니다.
필드 | 유형 | 설명 |
---|---|---|
| float | |
| 문자열 | 문서에 점수를 매긴 방법과 점수 계산 시 고려된 요소에 대한 정보를 포함하는 채점 공식의 하위 집합입니다. 최상위 |
| 객체 배열 | 점수 공식의 하위 집합을 기반으로 문서에 있는 각 일치 항목의 점수 분석입니다. 이 값은 구조가 재귀적인 점수 세부 정보 객체의 배열입니다. |
점수에 기여하는 요소
BM25Similarity
의 경우, 점수는 boost * idf * tf
로 계산됩니다. Atlas Search는 점수를 계산할 때 다음 BM25Similarity
요소를 고려합니다.
| 텀의 중요도를 높입니다. | |
| 쿼리 텀의 빈도입니다. | |
| 쿼리의 역 문서 빈도입니다. Atlas Search는 다음 공식을 사용하여 빈도를 계산합니다.
where:
| |
| 용어 빈도. Atlas Search는 다음 공식을 사용하여 빈도를 계산합니다.
where:
|
거리 감쇠 함수의 경우 점수는 pivot / (pivot +
abs(fieldValue - origin))
으로 계산됩니다. Atlas Search는 점수를 계산할 때 다음 요소를 고려합니다.
| 근처에서 검색할 값입니다. 이는 결과의 근접성이 측정되는 점입니다. |
| 문서에서 쿼리하는 필드의 값입니다. |
|
|
예시
다음 예에서는 다음에 대한 결과에서 점수의 세부 정보를 검색하는 방법을 보여 줍니다.
쿼리는 text, near, 복합 및 embeddedDocument 연산자를 사용하여 실행됩니다.
function
옵션 표현식을 사용하여 점수가 수정된 쿼리입니다.
팁
객체 배열에서 재귀적으로 점수의 세부 정보를 보려면 다음을 실행하여 mongosh
에서 설정을 구성합니다.
config.set('inspectDepth', Infinity)
연산자 예제
다음 예제에서는 텍스트 , near , 복합 및 embeddedDocument 연산자 쿼리에 대한 결과의 문서에 대해 옵션을 사용하여 점수 분석을 검색하는 방법을 보여 줍니다.$search
scoreDetails
사용자 지정 점수 예시
다음 $search
scoreDetails
예제에서는 sample_mflix.movies
collection에 대한 함수 표현식 예제 쿼리의 결과에 있는 문서에 대해 옵션을 사용하여 점수 분석을 검색하는 방법을 보여 줍니다.
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function":{ 8 "multiply":[ 9 { 10 "path": { 11 "value": "imdb.rating", 12 "undefined": 2 13 } 14 }, 15 { 16 "score": "relevance" 17 } 18 ] 19 } 20 } 21 }, 22 "scoreDetails": true 23 } 24 }, 25 { 26 $limit: 5 27 }, 28 { 29 $project: { 30 "_id": 0, 31 "title": 1, 32 "score": { "$meta": "searchScore" }, 33 "scoreDetails": {"$meta": "searchScoreDetails"} 34 } 35 }])
[ { title: 'Men...', score: 23.431293487548828, scoreDetails: { value: 23.431293487548828, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 23.431293487548828, description: '(imdb.rating * scores)', details: [] } ] } }, { title: '12 Angry Men', score: 22.080968856811523, scoreDetails: { value: 22.080968856811523, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 22.080968856811523, description: '(imdb.rating * scores)', details: [] } ] } }, { title: 'X-Men', score: 21.34803581237793, scoreDetails: { value: 21.34803581237793, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 21.34803581237793, description: '(imdb.rating * scores)', details: [] } ] } }, { title: 'X-Men', score: 21.34803581237793, scoreDetails: { value: 21.34803581237793, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 21.34803581237793, description: '(imdb.rating * scores)', details: [] } ] } }, { title: 'Matchstick Men', score: 21.05954933166504, scoreDetails: { value: 21.05954933166504, description: 'FunctionScoreQuery($type:string/title:men, scored by (imdb.rating * scores)) [BM25Similarity], result of:', details: [ { value: 21.05954933166504, description: '(imdb.rating * scores)', details: [] } ] } } ]
1 db.movies.aggregate([ 2 { 3 "$search": { 4 "text": { 5 "path": "title", 6 "query": "men", 7 "score": { 8 "function":{ 9 "constant": 3 10 } 11 } 12 }, 13 "scoreDetails": true 14 } 15 }, 16 { 17 $limit: 5 18 }, 19 { 20 $project: { 21 "_id": 0, 22 "title": 1, 23 "score": { "$meta": "searchScore" }, 24 "scoreDetails": {"$meta": "searchScoreDetails"} 25 } 26 } 27 ])
[ { title: 'Men Without Women', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: 'One Hundred Men and a Girl', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: 'Of Mice and Men', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: "All the King's Men", score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } }, { title: 'The Men', score: 3, scoreDetails: { value: 3, description: 'FunctionScoreQuery($type:string/title:men, scored by constant(3.0)) [BM25Similarity], result of:', details: [ { value: 3, description: 'constant(3.0)', details: [] } ] } } ]
1 db.movies.aggregate([ 2 { 3 "$search": { 4 "text": { 5 "path": "title", 6 "query": "shop", 7 "score": { 8 "function":{ 9 "gauss": { 10 "path": { 11 "value": "imdb.rating", 12 "undefined": 4.6 13 }, 14 "origin": 9.5, 15 "scale": 5, 16 "offset": 0, 17 "decay": 0.5 18 } 19 } 20 } 21 }, 22 "scoreDetails": true 23 } 24 }, 25 { 26 "$limit": 10 27 }, 28 { 29 "$project": { 30 "_id": 0, 31 "title": 1, 32 "score": { "$meta": "searchScore" }, 33 "scoreDetails": {"$meta": "searchScoreDetails"} 34 } 35 } 36 ])
[ { title: 'The Shop Around the Corner', score: 0.9471074342727661, scoreDetails: { value: 0.9471074342727661, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.9471074342727661, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Exit Through the Gift Shop', score: 0.9471074342727661, scoreDetails: { value: 0.9471074342727661, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.9471074342727661, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'The Shop on Main Street', score: 0.9395227432250977, scoreDetails: { value: 0.9395227432250977, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.9395227432250977, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Chop Shop', score: 0.8849083781242371, scoreDetails: { value: 0.8849083781242371, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.8849083781242371, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Little Shop of Horrors', score: 0.8290896415710449, scoreDetails: { value: 0.8290896415710449, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.8290896415710449, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'The Suicide Shop', score: 0.7257778644561768, scoreDetails: { value: 0.7257778644561768, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.7257778644561768, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'A Woman, a Gun and a Noodle Shop', score: 0.6559237241744995, scoreDetails: { value: 0.6559237241744995, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.6559237241744995, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } }, { title: 'Beauty Shop', score: 0.6274620294570923, scoreDetails: { value: 0.6274620294570923, description: 'FunctionScoreQuery($type:string/title:shop, scored by exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))) [BM25Similarity], result of:', details: [ { value: 0.6274620294570923, description: 'exp((max(0, |imdb.rating - 9.5| - 0.0)^2) / 2 * (5.0^2 / 2 * ln(0.5)))', details: [] } ] } } ]
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function":{ 8 "path": { 9 "value": "imdb.rating", 10 "undefined": 4.6 11 } 12 } 13 } 14 }, 15 "scoreDetails": true 16 } 17 }, 18 { 19 $limit: 5 20 }, 21 { 22 $project: { 23 "_id": 0, 24 "title": 1, 25 "score": { "$meta": "searchScore" }, 26 "scoreDetails": {"$meta": "searchScoreDetails"} 27 } 28 }])
[ { title: '12 Angry Men', score: 8.899999618530273, scoreDetails: { value: 8.899999618530273, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.899999618530273, description: 'imdb.rating', details: [] } ] } }, { title: 'The Men Who Built America', score: 8.600000381469727, scoreDetails: { value: 8.600000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.600000381469727, description: 'imdb.rating', details: [] } ] } }, { title: 'No Country for Old Men', score: 8.100000381469727, scoreDetails: { value: 8.100000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.100000381469727, description: 'imdb.rating', details: [] } ] } }, { title: 'X-Men: Days of Future Past', score: 8.100000381469727, scoreDetails: { value: 8.100000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.100000381469727, description: 'imdb.rating', details: [] } ] } }, { title: 'The Best of Men', score: 8.100000381469727, scoreDetails: { value: 8.100000381469727, description: 'FunctionScoreQuery($type:string/title:men, scored by imdb.rating) [BM25Similarity], result of:', details: [ { value: 8.100000381469727, description: 'imdb.rating', details: [] } ] } } ]
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function":{ 8 "score": "relevance" 9 } 10 } 11 }, 12 "scoreDetails": true 13 } 14 }, 15 { 16 $limit: 5 17 }, 18 { 19 $project: { 20 "_id": 0, 21 "title": 1, 22 "score": { "$meta": "searchScore" }, 23 "scoreDetails": {"$meta": "searchScoreDetails"} 24 } 25 }])
[ { title: 'Men...', score: 3.4457783699035645, scoreDetails: { value: 3.4457783699035645, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 3.4457783699035645, description: 'weight($type:string/title:men in 4705) [BM25Similarity], result of:', details: [ { value: 3.4457783699035645, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.6196683645248413, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 1, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'The Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 870) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'Simple Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 6371) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'X-Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 8368) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } }, { title: 'Mystery Men', score: 2.8848698139190674, scoreDetails: { value: 2.8848698139190674, description: 'FunctionScoreQuery($type:string/title:men, scored by scores) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'weight($type:string/title:men in 8601) [BM25Similarity], result of:', details: [ { value: 2.8848698139190674, description: 'score(freq=1.0), computed as boost * idf * tf from:', details: [ { value: 5.5606818199157715, description: 'idf, computed as log(1 + (N - n + 0.5) / (n + 0.5)) from:', details: [ { value: 90, description: 'n, number of documents containing term', details: [] }, { value: 23529, description: 'N, total number of documents with field', details: [] } ] }, { value: 0.5187978744506836, description: 'tf, computed as freq / (freq + k1 * (1 - b + b * dl / avgdl)) from:', details: [ { value: 1, description: 'freq, occurrences of term within document', details: [] }, { value: 1.2000000476837158, description: 'k1, term saturation parameter', details: [] }, { value: 0.75, description: 'b, length normalization parameter', details: [] }, { value: 2, description: 'dl, length of field', details: [] }, { value: 2.868375301361084, description: 'avgdl, average length of field', details: [] } ] } ] } ] } ] } } ]
1 db.movies.aggregate([{ 2 "$search": { 3 "text": { 4 "path": "title", 5 "query": "men", 6 "score": { 7 "function": { 8 "log": { 9 "path": { 10 "value": "imdb.rating", 11 "undefined": 10 12 } 13 } 14 } 15 } 16 }, 17 "scoreDetails": true 18 } 19 }, 20 { 21 $limit: 5 22 }, 23 { 24 $project: { 25 "_id": 0, 26 "title": 1, 27 "score": { "$meta": "searchScore" }, 28 "scoreDetails": {"$meta": "searchScoreDetails"} 29 } 30 }])
[ { title: '12 Angry Men', score: 0.9493899941444397, scoreDetails: { value: 0.9493899941444397, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9493899941444397, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'The Men Who Built America', score: 0.9344984292984009, scoreDetails: { value: 0.9344984292984009, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9344984292984009, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'No Country for Old Men', score: 0.9084849953651428, scoreDetails: { value: 0.9084849953651428, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9084849953651428, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'X-Men: Days of Future Past', score: 0.9084849953651428, scoreDetails: { value: 0.9084849953651428, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9084849953651428, description: 'log(imdb.rating)', details: [] } ] } }, { title: 'The Best of Men', score: 0.9084849953651428, scoreDetails: { value: 0.9084849953651428, description: 'FunctionScoreQuery($type:string/title:men, scored by log(imdb.rating)) [BM25Similarity], result of:', details: [ { value: 0.9084849953651428, description: 'log(imdb.rating)', details: [] } ] } } ]