Docs Menu
Docs Home
/
MongoDB Atlas
/ /

Atlas Search 복합 Geo JSON 쿼리를 실행하는 방법

이 페이지의 내용

  • Atlas Search 인덱스 만들기
  • 지역, 숫자 및 텍스트 필드 결합 쿼리 실행

이 튜토리얼에서는 sample_airbnb 데이터베이스의 listingsAndReviews 컬렉션에 대한 인덱스를 생성하고 지정된 내의 각 속성에 대해 name , address , property_type 이 포함된 문서를 반환하는 쿼리를 실행하는 방법을 설명합니다. coordinates 을 사용하여 정의된 다각형입니다.

이 튜토리얼에서는 다음 단계를 안내합니다:

  1. Atlas Search 인덱스를 sample_airbnb.listingsAndReviews컬렉션의 address 필드에 생성합니다.

  2. 지정된 지리적 coordinates 내에서 각 속성의 name, address, property_type 가 포함된 문서 10개를 반환하는 쿼리를 실행합니다. Atlas Search 결과는 condominium 유형의 속성에 대한 기본 설정을 반영하며, 결과의 각 문서에는 관련성 score 이 할당되어 가장 높은 것부터 낮은 것 순으로 반환됩니다.

시작하기 전에 Atlas 클러스터가 필수 구성 요소에 설명된 요건을 충족하는지 확인하세요.

Atlas Search 인덱스를 생성하려면 프로젝트에 대한 Project Data Access Admin 이상의 액세스 권한이 있어야 합니다.

이 섹션에서는 sample_airbnb.listingsAndReviews collection의 address 필드에 Atlas Search 검색 인덱스를 생성합니다.

1
  1. 아직 표시되지 않은 경우 탐색 표시줄의 Organizations 메뉴에서 원하는 프로젝트가 포함된 조직을 선택합니다.

  2. 아직 표시되지 않은 경우 탐색 표시줄의 Projects 메뉴에서 원하는 프로젝트를 선택합니다.

  3. 아직 표시되지 않은 경우 사이드바에서 Clusters 을(를) 클릭합니다.

    클러스터 페이지가 표시됩니다.

2

사이드바, Data Explorer 또는 클러스터 세부 정보 페이지에서 Atlas Search 페이지로 이동할 수 있습니다.

  1. 사이드바에서 Services 제목 아래의 Atlas Search를 클릭합니다.

  2. Select data source 드롭다운에서 클러스터를 선택하고 Go to Atlas Search를 클릭합니다.

    Atlas Search 페이지가 표시됩니다.

  1. cluster의 Browse Collections 버튼을 클릭합니다.

  2. 데이터베이스를 확장하고 컬렉션을 선택합니다.

  3. 컬렉션의 Search Indexes 탭을 클릭합니다.

    Atlas Search 페이지가 표시됩니다.

  1. 클러스터 이름을 클릭합니다.

  2. Atlas Search 탭을 클릭합니다.

    Atlas Search 페이지가 표시됩니다.

3
4
  • 안내를 따라 진행하고자 할 때는 Atlas Search Visual Editor를 선택합니다.

  • 원시 인덱스 정의를 편집하고 싶다면, Atlas Search JSON Editor을 선택합니다.

5
  1. Index Name 필드에 geo-json-tutorial를 입력합니다.

    인덱스 이름을 default로 지정하면 $search 파이프라인 단계에서 index 매개변수를 지정할 필요가 없습니다. 인덱스에 사용자 지정 이름을 지정하는 경우 index 매개변수에 이 이름을 지정해야 합니다.

  2. Database and Collection 섹션에서 sample_airbnb 데이터베이스를 찾고 listingsAndReviews 컬렉션을 선택합니다.

6

Atlas user 인터페이스에서 Atlas Search Visual Editor 또는 Atlas Search JSON Editor 을(를) 사용하여 인덱스를 생성할 수 있습니다. 다음 인덱스 정의는 Atlas Search가 인덱싱해야 함을 지정합니다.

  • collection의 모든 필드가 자동으로 생성됩니다.

  • geo 유형인 documentaddress.location 필드입니다.

  1. Next를 클릭합니다.

  2. Refine Your Index를 클릭합니다.

  3. Field Mappings 섹션에서 Add Field를 클릭하여 Add Field Mapping > Customized Configuration 탭을 엽니다.

  4. Field Name 드롭다운 메뉴에서 address.location을(를) 선택합니다.

  5. Data Type 드롭다운을 클릭하여 Geo를 선택합니다.

  6. Add를 클릭합니다.

  7. Save Changes를 클릭합니다.

  1. 기본 인덱스 정의를 다음 예제 인덱스 정의로 바꿉니다.

    {
    "mappings": {
    "dynamic": true,
    "fields": {
    "address": {
    "fields": {
    "location": {
    "type": "geo"
    }
    },
    "type": "document"
    }
    }
    }
    }
  2. Next를 클릭합니다.

7
8

인덱스가 작성 중임을 보여주는 모달 창이 표시됩니다. Close 버튼을 클릭합니다.

9

인덱스 작성에는 약 1분 정도가 소요됩니다. 작성하는 동안 Status 열은 Build in Progress을 읽습니다. 작성이 완료되면 Status 열에 Active이 표시됩니다.


➤ 이 페이지의 언어 선택 드롭다운 메뉴를 사용하여 이 섹션에 있는 예시의 언어를 설정합니다.


이 섹션에서는 지정된 지리적 coordinates 내 각 속성에 대해 name, address, property_type 이 포함된 문서 10개를 반환하는 쿼리를 실행합니다. 각 문서 score 를 지정하는 필드도 반환되며, 결과는 condominium 유형의 속성에 대한 기본 설정으로 정렬됩니다.

1
  1. 아직 표시되지 않은 경우 탐색 표시줄의 Organizations 메뉴에서 원하는 프로젝트가 포함된 조직을 선택합니다.

  2. 아직 표시되지 않은 경우 탐색 표시줄의 Projects 메뉴에서 원하는 프로젝트를 선택합니다.

  3. 아직 표시되지 않은 경우 사이드바에서 Clusters 을(를) 클릭합니다.

    Clusters(클러스터) 페이지가 표시됩니다.

2

사이드바, Data Explorer 또는 클러스터 세부 정보 페이지에서 Atlas Search 페이지로 이동할 수 있습니다.

  1. 사이드바에서 Services 제목 아래의 Atlas Search를 클릭합니다.

  2. Select data source 드롭다운에서 클러스터를 선택하고 Go to Atlas Search를 클릭합니다.

    Atlas Search 페이지가 표시됩니다.

  1. cluster의 Browse Collections 버튼을 클릭합니다.

  2. 데이터베이스를 확장하고 컬렉션을 선택합니다.

  3. 컬렉션의 Search Indexes 탭을 클릭합니다.

    Atlas Search 페이지가 표시됩니다.

  1. 클러스터 이름을 클릭합니다.

  2. Atlas Search 탭을 클릭합니다.

    Atlas Search 페이지가 표시됩니다.

3

쿼리할 인덱스 오른쪽에 있는 Query 버튼을 클릭합니다.

4

Edit Query 을 클릭하면 JSON 형식의 기본 쿼리 구문 샘플을 볼 수 있습니다.

5

다음 Atlas Search 검색 쿼리는 복합 연산자 를 사용하여 다음을 수행합니다.

  • 결과 mustcoordinates 세트에 의해 정의된 Polygon 내에 포함되도록 지정합니다.

  • condominium 유형의 속성에 대한 결과에 우선 순위를 부여합니다.

참고

Search Tester는 반환하는 문서의 모든 필드를 표시하지 않을 수 있습니다. 쿼리 경로에 지정한 필드를 비롯하여 모든 필드를 보려면 결과에서 문서를 펼칩니다.

[
{
"$search": {
"index": "geo-json-tutorial",
"compound": {
"must": [{
"geoWithin": {
"geometry": {
"type": "Polygon",
"coordinates": [[[ -161.323242, 22.512557 ],
[ -152.446289, 22.065278 ],
[ -156.09375, 17.811456 ],
[ -161.323242, 22.512557 ]]]
},
"path": "address.location"
}
}],
"should": [{
"text": {
"path": "property_type",
"query": "Condominium"
}
}]
}
}
}
]
1SCORE: 2.238388776779175 _id: "1001265"
2 listing_url: "https://www.airbnb.com/rooms/1001265"
3 name: "Ocean View Waikiki Marina w/prkg"
4 summary: "A short distance from Honolulu's billion dollar mall,
5 and the same dis…"
6 ...
7 property_type: "Condominium"
8 ...
9 address: Object
10 street: "Honolulu, HI, United States"
11 suburb: "Oʻahu"
12 government_area: "Primary Urban Center"
13 market: "Oahu"
14 country: "United States"
15 country_code: "US"
16 location: Object
17 type: "Point"
18 coordinates: Array
19 0: -157.83919
20 1: 21.28634
21 is_location_exact: true
22 ...
23
24SCORE: 2.238388776779175 _id: "10227000"
25 listing_url: "https://www.airbnb.com/rooms/10227000"
26 name: "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!"
27 summary: "THIS IS A VERY SPACIOUS 1 BEDROOM FULL CONDO (SLEEPS 4) AT THE BEAUTIF…"
28 ...
29 property_type: "Condominium"
30 ...
31 address: Object
32 street: "Lahaina, HI, United States"
33 suburb: "Maui"
34 government_area: "Lahaina"
35 market: "Maui"
36 country: "United States"
37 country_code: "US"
38 location: Object
39 type: "Point"
40 coordinates: Array
41 0: -156.68012
42 1: 20.96996
43 is_location_exact: true
44 ...
45
46SCORE: 2.238388776779175 _id: "10266175"
47 listing_url: "https://www.airbnb.com/rooms/10266175"
48 name: "Makaha Valley Paradise with OceanView"
49 summary: "A beautiful and comfortable 1 Bedroom Air Conditioned Condo in Makaha …"
50 ...
51 property_type: "Condominium"
52 ...
53 address: Object
54 street: "Waianae, HI, United States"
55 suburb: "Leeward Side"
56 government_area: "Waianae"
57 market: "Oahu"
58 country: "United States"
59 country_code: "US"
60 location: Object
61 type: "Point"
62 coordinates: Array
63 0: -158.20291
64 1: 21.4818
65 is_location_exact: true
66 ...
67
68SCORE: 2.238388776779175 _id: "1042446"
69 listing_url: "https://www.airbnb.com/rooms/1042446"
70 name: "March 2019 availability! Oceanview on Sugar Beach!"
71 summary: ""
72 ...
73 property_type: "Condominium"
74 ...
75 address: Object
76 street: "Kihei, HI, United States"
77 suburb: "Maui"
78 government_area: "Kihei-Makena"
79 market: "Maui"
80 country: "United States"
81 country_code: "US"
82 location: Object
83 type: "Point"
84 coordinates: Array
85 0: -156.46881
86 1: 20.78621
87 is_location_exact: true
88 ...
89
90SCORE: 2.238388776779175 _id: "10527243"
91 listing_url: "https://www.airbnb.com/rooms/10527243"
92 name: "Tropical Jungle Oasis"
93 summary: "2 bedrooms, one with a queen sized bed, one with 2 single beds. 1 and …"
94 ...
95 property_type: "Condominium"
96 ...
97 address: Object
98 street: "Hilo, HI, United States"
99 suburb: "Island of Hawaiʻi"
100 government_area: "South Hilo"
101 market: "The Big Island"
102 country: "United States"
103 country_code: "US"
104 location: Object
105 type: "Point"
106 coordinates: Array
107 0: -155.09259
108 1: 19.73108
109 is_location_exact: true
110 ...
111
112SCORE: 2.238388776779175 _id: "1104768"
113 listing_url: "https://www.airbnb.com/rooms/1104768"
114 name: "2 Bdrm/2 Bath Family Suite Ocean View"
115 summary: "This breathtaking 180 degree view of Waikiki is one of a kind. You wil…"
116 ...
117 property_type: "Condominium"
118 ...
119 address: Object
120 street: "Honolulu, HI, United States"
121 suburb: "Waikiki"
122 government_area: "Primary Urban Center"
123 market: "Oahu"
124 country: "United States"
125 country_code: "US"
126 location: Object
127 type: "Point"
128 coordinates: Array
129 0: -157.82696
130 1: 21.27971
131 is_location_exact: true
132 ...
133
134SCORE: 2.238388776779175 _id: "11207193"
135 listing_url: "https://www.airbnb.com/rooms/11207193"
136 name: "302 Kanai A Nalu Ocean front/view"
137 summary: "Welcome to Kana'i A Nalu a quiet resort that sits on the ocean away fr…"
138 ...
139 property_type: "Condominium"
140 ...
141 address: Object
142 street: "Wailuku, HI, United States"
143 suburb: "Maui"
144 government_area: "Kihei-Makena"
145 market: "Maui"
146 country: "United States"
147 country_code: "US"
148 location: Object
149 type: "Point"
150 coordinates: Array
151 0: -156.5039
152 1: 20.79664
153 is_location_exact: true
154 ...
155
156SCORE: 2.238388776779175 _id: "11319047"
157 listing_url: "https://www.airbnb.com/rooms/11319047"
158 name: "Sugar Beach Resort 1BR Ground Floor Condo !"
159 summary: "The Sugar Beach Resort enjoys a beachfront setting fit for a postcard."
160 ...
161 property_type: "Condominium"
162 ...
163 address: Object
164 street: "Kihei, HI, United States"
165 suburb: "Maui"
166 government_area: "Kihei-Makena"
167 market: "Maui"
168 country: "United States"
169 country_code: "US"
170 location: Object
171 type: "Point"
172 coordinates: Array
173 0: -156.46697
174 1: 20.78484
175 is_location_exact: true
176 ...
177
178SCORE: 2.238388776779175 _id: "11695887"
179 listing_url: "https://www.airbnb.com/rooms/11695887"
180 name: "2 BR Oceanview - Great Location!"
181 summary: "Location, location, location... This is a great 2 bed, 2 bath condo is…"
182 ...
183 property_type: "Condominium"
184 ...
185 address: Object
186 street: "Kihei, HI, United States"
187 suburb: "Kihei/Wailea"
188 government_area: "Kihei-Makena"
189 market: "Maui"
190 country: "United States"
191 country_code: "US"
192 location: Object
193 type: "Point"
194 coordinates: Array
195 0: -156.44917
196 1: 20.73013
197 is_location_exact: true
198 ...
199
200SCORE: 2.238388776779175 _id: "11817249"
201 listing_url: "https://www.airbnb.com/rooms/11817249"
202 name: "PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC"
203 summary: "Book with confidence this stunning 2 bedroom, 2 bathroom condo at the …"
204 ...
205 property_type: "Condominium"
206 ...
207 address: Object
208 street: "Kihei, HI, United States"
209 suburb: "Maui"
210 government_area: "Kihei-Makena"
211 market: "Maui"
212 country: "United States"
213 country_code: "US"
214 location: Object
215 type: "Point"
216 coordinates: Array
217 0: -156.4409
218 1: 20.69735
219 is_location_exact: true
220 ...
1

터미널 창에서 mongosh 를 열고 클러스터에 연결합니다. 연결에 대한 자세한 지침은 mongosh 를 통한 연결을 참조하세요.

2

mongosh 프롬프트에서 다음 명령을 실행합니다.

use sample_airbnb
3

다음 Atlas Search 쿼리:

  • 복합 $search 단계를 사용하여 다음을 수행합니다.

    • 결과 mustcoordinates 세트에 의해 정의된 Polygon 내에 포함되도록 지정합니다.

    • condominium 유형의 속성에 대한 결과에 우선 순위를 부여합니다.

  • $project 단계를 사용하여 다음을 수행합니다.

    • name, addressproperty_type 를 제외한 모든 필드를 제외합니다.

    • 반환된 각 문서에 관련성 score 을 추가합니다.

쿼리는 다음과 같습니다.

db.listingsAndReviews.aggregate([
{
"$search": {
"index": "geo-json-tutorial",
"compound": {
"must": [{
"geoWithin": {
"geometry": {
"type": "Polygon",
"coordinates": [[[ -161.323242, 22.512557 ],
[ -152.446289, 22.065278 ],
[ -156.09375, 17.811456 ],
[ -161.323242, 22.512557 ]]]
},
"path": "address.location"
}
}],
"should": [{
"text": {
"path": "property_type",
"query": "Condominium"
}
}]
}
}
},
{
"$limit": 10
},
{
$project: {
"_id": 0,
"name": 1,
"address": 1,
"property_type": 1,
score: { $meta: "searchScore" }
}
}
])
[
{
name: 'Ocean View Waikiki Marina w/prkg',
property_type: 'Condominium',
address: {
street: 'Honolulu, HI, United States',
suburb: 'Oʻahu',
government_area: 'Primary Urban Center',
market: 'Oahu',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -157.83919, 21.28634 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!',
property_type: 'Condominium',
address: {
street: 'Lahaina, HI, United States',
suburb: 'Maui',
government_area: 'Lahaina',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.68012, 20.96996 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'Makaha Valley Paradise with OceanView',
property_type: 'Condominium',
address: {
street: 'Waianae, HI, United States',
suburb: 'Leeward Side',
government_area: 'Waianae',
market: 'Oahu',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -158.20291, 21.4818 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'March 2019 availability! Oceanview on Sugar Beach!',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.46881, 20.78621 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'Tropical Jungle Oasis',
property_type: 'Condominium',
address: {
street: 'Hilo, HI, United States',
suburb: 'Island of Hawaiʻi',
government_area: 'South Hilo',
market: 'The Big Island',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -155.09259, 19.73108 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: '2 Bdrm/2 Bath Family Suite Ocean View',
property_type: 'Condominium',
address: {
street: 'Honolulu, HI, United States',
suburb: 'Waikiki',
government_area: 'Primary Urban Center',
market: 'Oahu',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -157.82696, 21.27971 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: '302 Kanai A Nalu Ocean front/view',
property_type: 'Condominium',
address: {
street: 'Wailuku, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.5039, 20.79664 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'Sugar Beach Resort 1BR Ground Floor Condo !',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.46697, 20.78484 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: '2 BR Oceanview - Great Location!',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Kihei/Wailea',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.44917, 20.73013 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.4409, 20.69735 ],
is_location_exact: true
}
},
score: 2.238388776779175
}
]
1

MongoDB Compass를 열고 cluster에 연결합니다. 연결에 대한 자세한 내용은 Compass를 통한 연결을 참조하세요.

2

Database 화면에서 sample_airbnb 데이터베이스를 클릭한 다음 listingsAndReviews collection을 클릭합니다.

3

다음 쿼리입니다:

  • 복합 $search 단계를 사용하여 다음을 수행합니다.

    • 결과 mustcoordinates 세트에 의해 정의된 Polygon 내에 포함되도록 지정합니다.

    • condominium 유형의 속성에 대한 결과에 우선 순위를 부여합니다.

  • $project 단계를 사용하여 다음을 수행합니다.

    • name, addressproperty_type 를 제외한 모든 필드를 제외합니다.

    • 반환된 각 문서에 관련성 score 을 추가합니다.

MongoDB Compass에서 이 Atlas Search 쿼리를 실행하려면 다음을 수행합니다.

  1. Aggregations 탭을 클릭합니다.

  2. Select...를 클릭한 다음 드롭다운에서 단계를 선택하고 해당 단계에 대한 쿼리를 추가하여 다음 파이프라인 단계를 각각 구성합니다. 단계를 추가하려면 Add Stage을 클릭합니다.

    파이프라인 단계
    쿼리
    $search
    {
    'index': 'geo-json-tutorial',
    'compound': {
    'must': [
    {
    'geoWithin': {
    'geometry': {
    'type': 'Polygon',
    'coordinates': [
    [
    [
    -161.323242, 22.512557
    ], [
    -152.446289, 22.065278
    ], [
    -156.09375, 17.811456
    ], [
    -161.323242, 22.512557
    ]
    ]
    ]
    },
    'path': 'address.location'
    }
    }
    ],
    'should': [
    {
    'text': {
    'path': 'property_type',
    'query': 'Condominium'
    }
    }
    ]
    }
    }
    $limit
    10
    $project
    {
    '_id': 0,
    'name': 1,
    'address': 1,
    'property_type': 1,
    'score': {
    '$meta': 'searchScore'
    }
    }

Auto Preview를 활성화한 경우 MongoDB Compass는 $project 파이프라인 단계 옆에 다음 문서를 표시합니다.

1{
2 name: 'Ocean View Waikiki Marina w/prkg',
3 property_type: 'Condominium',
4 address: {
5 street: 'Honolulu, HI, United States',
6 suburb: 'Oʻahu',
7 government_area: 'Primary Urban Center',
8 market: 'Oahu',
9 country: 'United States',
10 country_code: 'US',
11 location: {
12 type: 'Point',
13 coordinates: [ -157.83919, 21.28634 ],
14 is_location_exact: true
15 }
16 },
17 score: 2.238388776779175
18},
19{
20 name: 'LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!',
21 property_type: 'Condominium',
22 address: {
23 street: 'Lahaina, HI, United States',
24 suburb: 'Maui',
25 government_area: 'Lahaina',
26 market: 'Maui',
27 country: 'United States',
28 country_code: 'US',
29 location: {
30 type: 'Point',
31 coordinates: [ -156.68012, 20.96996 ],
32 is_location_exact: true
33 }
34 },
35 score: 2.238388776779175
36},
37{
38 name: 'Makaha Valley Paradise with OceanView',
39 property_type: 'Condominium',
40 address: {
41 street: 'Waianae, HI, United States',
42 suburb: 'Leeward Side',
43 government_area: 'Waianae',
44 market: 'Oahu',
45 country: 'United States',
46 country_code: 'US',
47 location: {
48 type: 'Point',
49 coordinates: [ -158.20291, 21.4818 ],
50 is_location_exact: true
51 }
52 },
53 score: 2.238388776779175
54},
55{
56 name: 'March 2019 availability! Oceanview on Sugar Beach!',
57 property_type: 'Condominium',
58 address: {
59 street: 'Kihei, HI, United States',
60 suburb: 'Maui',
61 government_area: 'Kihei-Makena',
62 market: 'Maui',
63 country: 'United States',
64 country_code: 'US',
65 location: {
66 type: 'Point',
67 coordinates: [ -156.46881, 20.78621 ],
68 is_location_exact: true
69 }
70 },
71 score: 2.238388776779175
72},
73{
74 name: 'Tropical Jungle Oasis',
75 property_type: 'Condominium',
76 address: {
77 street: 'Hilo, HI, United States',
78 suburb: 'Island of Hawaiʻi',
79 government_area: 'South Hilo',
80 market: 'The Big Island',
81 country: 'United States',
82 country_code: 'US',
83 location: {
84 type: 'Point',
85 coordinates: [ -155.09259, 19.73108 ],
86 is_location_exact: true
87 }
88 },
89 score: 2.238388776779175
90},
91{
92 name: '2 Bdrm/2 Bath Family Suite Ocean View',
93 property_type: 'Condominium',
94 address: {
95 street: 'Honolulu, HI, United States',
96 suburb: 'Waikiki',
97 government_area: 'Primary Urban Center',
98 market: 'Oahu',
99 country: 'United States',
100 country_code: 'US',
101 location: {
102 type: 'Point',
103 coordinates: [ -157.82696, 21.27971 ],
104 is_location_exact: true
105 }
106 },
107 score: 2.238388776779175
108},
109{
110 name: '302 Kanai A Nalu Ocean front/view',
111 property_type: 'Condominium',
112 address: {
113 street: 'Wailuku, HI, United States',
114 suburb: 'Maui',
115 government_area: 'Kihei-Makena',
116 market: 'Maui',
117 country: 'United States',
118 country_code: 'US',
119 location: {
120 type: 'Point',
121 coordinates: [ -156.5039, 20.79664 ],
122 is_location_exact: true
123 }
124 },
125 score: 2.238388776779175
126},
127{
128 name: 'Sugar Beach Resort 1BR Ground Floor Condo !',
129 property_type: 'Condominium',
130 address: {
131 street: 'Kihei, HI, United States',
132 suburb: 'Maui',
133 government_area: 'Kihei-Makena',
134 market: 'Maui',
135 country: 'United States',
136 country_code: 'US',
137 location: {
138 type: 'Point',
139 coordinates: [ -156.46697, 20.78484 ],
140 is_location_exact: true
141 }
142 },
143 score: 2.238388776779175
144},
145{
146 name: '2 BR Oceanview - Great Location!',
147 property_type: 'Condominium',
148 address: {
149 street: 'Kihei, HI, United States',
150 suburb: 'Kihei/Wailea',
151 government_area: 'Kihei-Makena',
152 market: 'Maui',
153 country: 'United States',
154 country_code: 'US',
155 location: {
156 type: 'Point',
157 coordinates: [ -156.44917, 20.73013 ],
158 is_location_exact: true
159 }
160 },
161 score: 2.238388776779175
162},
163{
164 name: 'PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC',
165 property_type: 'Condominium',
166 address: {
167 street: 'Kihei, HI, United States',
168 suburb: 'Maui',
169 government_area: 'Kihei-Makena',
170 market: 'Maui',
171 country: 'United States',
172 country_code: 'US',
173 location: {
174 type: 'Point',
175 coordinates: [ -156.4409, 20.69735 ],
176 is_location_exact: true
177 }
178 },
179 score: 2.238388776779175
180}

$search 파이프라인 단계에 대한 자세한 내용은 해당 참조 페이지를 참조하세요. 전체 집계 파이프라인 설명서는 MongoDB 서버 매뉴얼을 참조하시기 바랍니다.

1
  1. combined-geo-query라는 새 디렉터리를 만들고 dotnet new 명령으로 프로젝트를 초기화합니다.

    mkdir combined-geo-query
    cd combined-geo-query
    dotnet new console
  2. .NET/C# 드라이버를 프로젝트에 종속성으로 추가합니다.

    dotnet add package MongoDB.Driver
2
  1. Program.cs 파일의 내용을 다음 코드로 바꿉니다.

    다음 Atlas Search 쿼리:

    • 복합 $search 단계를 사용하여 다음을 수행합니다.

      • 결과 mustcoordinates 세트에 의해 정의된 Polygon 내에 포함되도록 지정합니다.

      • condominium 유형의 속성에 대한 결과에 우선 순위를 부여합니다.

    • $project 단계를 사용하여 다음을 수행합니다.

      • name, addressproperty_type 를 제외한 모든 필드를 제외합니다.

      • 반환된 각 문서에 관련성 score 을 추가합니다.

    1using MongoDB.Bson;
    2using MongoDB.Bson.IO;
    3using MongoDB.Bson.Serialization;
    4using MongoDB.Bson.Serialization.Attributes;
    5using MongoDB.Bson.Serialization.Conventions;
    6using MongoDB.Driver;
    7using MongoDB.Driver.GeoJsonObjectModel;
    8using MongoDB.Driver.Search;
    9using System;
    10
    11public class GeoQuery
    12{
    13 private const string MongoConnectionString = "<connection-string>";
    14
    15 public static void Main(string[] args)
    16 {
    17 // allow automapping of the camelCase database fields to our AirbnbDocument
    18 var camelCaseConvention = new ConventionPack { new CamelCaseElementNameConvention() };
    19 ConventionRegistry.Register("CamelCase", camelCaseConvention, type => true);
    20
    21 // connect to your Atlas cluster
    22 var mongoClient = new MongoClient(MongoConnectionString);
    23 var airbnbDatabase = mongoClient.GetDatabase("sample_airbnb");
    24 var airbnbCollection = airbnbDatabase.GetCollection<AirbnbDocument>("listingsAndReviews");
    25
    26 // declare data for the compound query
    27 string property_type = "Condominium";
    28 var coordinates = new GeoJson2DCoordinates[]
    29 {
    30 new(-161.323242, 22.512557),
    31 new(-152.446289, 22.065278),
    32 new(-156.09375, 17.811456),
    33 new(-161.323242, 22.512557)
    34 };
    35 var polygon = GeoJson.Polygon(coordinates);
    36
    37 // define and run pipeline
    38 var results = airbnbCollection.Aggregate()
    39 .Search(Builders<AirbnbDocument>.Search.Compound()
    40 .Must(Builders<AirbnbDocument>.Search.GeoWithin(airbnb => airbnb.Address.Location, polygon))
    41 .Should((Builders<AirbnbDocument>.Search.Text(airbnb => airbnb.PropertyType, property_type))),
    42 indexName: "geo-json-tutorial")
    43 .Limit (10)
    44 .Project<AirbnbDocument>(Builders<AirbnbDocument>.Projection
    45 .Include(airbnb => airbnb.PropertyType)
    46 .Include(airbnb => airbnb.Address.Location)
    47 .Include(airbnb => airbnb.Name)
    48 .Exclude(airbnb => airbnb.Id)
    49 .MetaSearchScore(airbnb => airbnb.Score))
    50 .ToList();
    51
    52 // print results
    53 foreach (var x in results) {
    54 Console.WriteLine(x.ToJson());
    55 }
    56 }
    57}
    58[BsonIgnoreExtraElements]
    59public class AirbnbDocument
    60{
    61 [BsonIgnoreIfDefault]
    62 public ObjectId Id { get; set; }
    63 public String Name { get; set; }
    64 [BsonElement("property_type")]
    65 public string PropertyType { get; set; }
    66 public Address Address { get; set; }
    67 public double Score { get; set; }
    68}
    69[BsonIgnoreExtraElements]
    70public class Address
    71{
    72 public GeoJsonPoint<GeoJson2DCoordinates> Location { get; set; }
    73}
  2. 샘플을 실행하기 전에 <connection-string>을 Atlas 연결 문자열로 바꿉니다. 연결 문자열에는 데이터베이스 사용자의 자격 증명이 포함되어 있어야 합니다. 자세한 내용은 드라이버를 통한 연결을 참조하세요.

3
dotnet run combined-geo-query.csproj
{
"name" : "Ocean View Waikiki Marina w/prkg",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-157.83919, 21.286339999999999],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.68011999999999, 20.96996],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "Makaha Valley Paradise with OceanView",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-158.20291, 21.4818],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "March 2019 availability! Oceanview on Sugar Beach!",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.46880999999999, 20.786210000000001],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "Tropical Jungle Oasis",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-155.09259, 19.731079999999999],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "2 Bdrm/2 Bath Family Suite Ocean View",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-157.82696000000001, 21.279710000000001],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "302 Kanai A Nalu Ocean front/view",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.50389999999999, 20.79664],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "Sugar Beach Resort 1BR Ground Floor Condo !",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.46697, 20.784839999999999],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "2 BR Oceanview - Great Location!",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.44917000000001, 20.730129999999999],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
{
"name" : "PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC",
"property_type" : "Condominium",
"address" : {
"location" : {
"type" : "Point",
"coordinates" : [-156.4409, 20.69735],
"is_location_exact" : true
}
},
"score" : 2.2383887767791748
}
1
2

다음 코드 예제에서는:

  • mongodb 패키지 및 종속성을 가져옵니다.

  • Atlas 클러스터에 대한 연결을 설정합니다.

  • 복합 $search 단계를 사용하여 다음을 수행합니다.

    • 결과 mustcoordinates 세트에 의해 정의된 Polygon 내에 포함되도록 지정합니다.

    • condominium 유형의 속성에 대한 결과에 우선 순위를 부여합니다.

  • $project 단계를 사용하여 다음을 수행합니다.

    • name, addressproperty_type 를 제외한 모든 필드를 제외합니다.

    • 반환된 각 문서에 관련성 score 을 추가합니다.

  • 커서 위를 반복하여 쿼리와 일치하는 문서를 인쇄합니다.

1package main
2
3import (
4 "context"
5 "fmt"
6
7 "go.mongodb.org/mongo-driver/bson"
8 "go.mongodb.org/mongo-driver/mongo"
9 "go.mongodb.org/mongo-driver/mongo/options"
10)
11
12func main() {
13 // connect to your Atlas cluster
14 client, err := mongo.Connect(context.TODO(), options.Client().ApplyURI("<connection-string>"))
15 if err != nil {
16 panic(err)
17 }
18 defer client.Disconnect(context.TODO())
19
20 // set namespace
21 collection := client.Database("sample_airbnb").Collection("listingsAndReviews")
22
23 // define polygon
24 polygon := [][][]float64{{
25 {-161.323242, 22.512557},
26 {-152.446289, 22.065278},
27 {-156.09375, 17.811456},
28 {-161.323242, 22.512557},
29 }}
30
31 // define pipeline
32 searchStage := bson.D{{"$search", bson.M{
33 "index": "geo-json-tutorial",
34 "compound": bson.M{
35 "must": bson.M{
36 "geoWithin": bson.M{
37 "geometry": bson.M{
38 "type": "Polygon",
39 "coordinates": polygon,
40 },
41 "path": "address.location",
42 },
43 },
44 "should": bson.M{
45 "text": bson.M{
46 "path": "property_type",
47 "query": "Condominium",
48 }},
49 },
50 },
51 }}
52 limitStage := bson.D{{"$limit", 10}}
53 projectStage := bson.D{{"$project", bson.D{{"name", 1}, {"address", 1}, {"property_type", 1}, {"_id", 0}, {"score", bson.D{{"$meta", "searchScore"}}}}}}
54
55 // run pipeline
56 cursor, err := collection.Aggregate(context.TODO(), mongo.Pipeline{searchStage, limitStage, projectStage})
57 if err != nil {
58 panic(err)
59 }
60
61 // print results
62 var results []bson.D
63 if err = cursor.All(context.TODO(), &results); err != nil {
64 panic(err)
65 }
66 for _, result := range results {
67 fmt.Println(result)
68 }
69}
3

샘플을 실행하기 전에 <connection-string>을 Atlas 연결 문자열로 바꿉니다. 연결 문자열에는 데이터베이스 사용자의 자격 증명이 포함되어 있어야 합니다. 자세한 내용은 드라이버를 통한 연결을 참조하세요.

4
go run run-geo-query.go
[{name Ocean View Waikiki Marina w/prkg} {property_type Condominium} {address [{street Honolulu, HI, United States} {suburb Oʻahu} {government_area Primary Urban Center} {market Oahu} {country United States} {country_code US} {location [{type Point} {coordinates [-157.83919 21.28634]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!} {property_type Condominium} {address [{street Lahaina, HI, United States} {suburb Maui} {government_area Lahaina} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.68012 20.96996]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name Makaha Valley Paradise with OceanView} {property_type Condominium} {address [{street Waianae, HI, United States} {suburb Leeward Side} {government_area Waianae} {market Oahu} {country United States} {country_code US} {location [{type Point} {coordinates [-158.20291 21.4818]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name March 2019 availability! Oceanview on Sugar Beach!} {property_type Condominium} {address [{street Kihei, HI, United States} {suburb Maui} {government_area Kihei-Makena} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.46881 20.78621]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name Tropical Jungle Oasis} {property_type Condominium} {address [{street Hilo, HI, United States} {suburb Island of Hawaiʻi} {government_area South Hilo} {market The Big Island} {country United States} {country_code US} {location [{type Point} {coordinates [-155.09259 19.73108]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name 2 Bdrm/2 Bath Family Suite Ocean View} {property_type Condominium} {address [{street Honolulu, HI, United States} {suburb Waikiki} {government_area Primary Urban Center} {market Oahu} {country United States} {country_code US} {location [{type Point} {coordinates [-157.82696 21.27971]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name 302 Kanai A Nalu Ocean front/view} {property_type Condominium} {address [{street Wailuku, HI, United States} {suburb Maui} {government_area Kihei-Makena} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.5039 20.79664]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name Sugar Beach Resort 1BR Ground Floor Condo !} {property_type Condominium} {address [{street Kihei, HI, United States} {suburb Maui} {government_area Kihei-Makena} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.46697 20.78484]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name 2 BR Oceanview - Great Location!} {property_type Condominium} {address [{street Kihei, HI, United States} {suburb Kihei/Wailea} {government_area Kihei-Makena} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.44917 20.73013]} {is_location_exact true}]}]} {score 2.238388776779175}]
[{name PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC} {property_type Condominium} {address [{street Kihei, HI, United States} {suburb Maui} {government_area Kihei-Makena} {market Maui} {country United States} {country_code US} {location [{type Point} {coordinates [-156.4409 20.69735]} {is_location_exact true}]}]} {score 2.238388776779175}]
1
junit
4.11 또는 그 이상의 버전
mongodb-driver-sync
4.3.0 또는 그 이상의 버전
slf4j-log4j12
1.7.30 또는 그 이상의 버전
2
3

다음 코드 예제에서는:

  • mongodb 패키지 및 종속성을 가져옵니다.

  • Atlas 클러스터에 대한 연결을 설정합니다.

  • 복합 $search 단계를 사용하여 다음을 수행합니다.

    • 결과 mustcoordinates 세트에 의해 정의된 Polygon 내에 포함되도록 지정합니다.

    • condominium 유형의 속성에 대한 결과에 우선 순위를 부여합니다.

  • $project 단계를 사용하여 다음을 수행합니다.

    • name, addressproperty_type 를 제외한 모든 필드를 제외합니다.

    • 반환된 각 문서에 관련성 score 을 추가합니다.

  • 커서 위를 반복하여 쿼리와 일치하는 문서를 인쇄합니다.
    호출합니다.
1import java.util.Arrays;
2import static com.mongodb.client.model.Filters.eq;
3import static com.mongodb.client.model.Aggregates.limit;
4import static com.mongodb.client.model.Aggregates.project;
5import static com.mongodb.client.model.Projections.computed;
6import static com.mongodb.client.model.Projections.excludeId;
7import static com.mongodb.client.model.Projections.fields;
8import static com.mongodb.client.model.Projections.include;
9import com.mongodb.client.MongoClient;
10import com.mongodb.client.MongoClients;
11import com.mongodb.client.MongoCollection;
12import com.mongodb.client.MongoDatabase;
13import org.bson.Document;
14
15public class GeoQuery {
16 public static void main( String[] args ) {
17 Document agg = new Document( "$search",
18 new Document( "index", "geo-json-tutorial")
19 .append("compound",
20 new Document("must", Arrays.asList(new Document("geoWithin",
21 new Document("geometry",
22 new Document("type", "Polygon")
23 .append("coordinates", Arrays.asList(Arrays.asList(Arrays.asList(-161.323242d, 22.512557d), Arrays.asList(-152.446289d, 22.065278d), Arrays.asList(-156.09375d, 17.811456d), Arrays.asList(-161.323242d, 22.512557d)))))
24 .append("path", "address.location"))))
25 .append("should", Arrays.asList(new Document("text",
26 new Document("path", "property_type")
27 .append("query", "Condominium"))))));
28
29 String uri = "<connection-string>";
30
31 try (MongoClient mongoClient = MongoClients.create(uri)) {
32 MongoDatabase database = mongoClient.getDatabase("sample_airbnb");
33 MongoCollection<Document> collection = database.getCollection("listingsAndReviews");
34
35 collection.aggregate(Arrays.asList(agg,
36 limit(10),
37 project(fields(excludeId(), include("name", "address", "property_type"), computed("score", new Document("$meta", "searchScore"))))))
38 .forEach(doc -> System.out.println(doc.toJson() + "\n"));
39 }
40 }
41}

참고

Maven 환경에서 샘플 코드를 실행하려면 파일의 가져오기 문 위에 다음을 추가하세요.

package com.mongodb.drivers;
4

샘플을 실행하기 전에 <connection-string>을 Atlas 연결 문자열로 바꿉니다. 연결 문자열에는 데이터베이스 사용자의 자격 증명이 포함되어 있어야 합니다. 자세한 내용은 드라이버를 통한 연결을 참조하세요.

5
javac GeoQuery.java
java GeoQuery
{"name": "Ocean View Waikiki Marina w/prkg", "property_type": "Condominium", "address": {"street": "Honolulu, HI, United States", "suburb": "O\u02bbahu", "government_area": "Primary Urban Center", "market": "Oahu", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-157.83919, 21.28634], "is_location_exact": true}}, "score": 1.0},
{"name": "Kailua-Kona, Kona Coast II 2b condo", "property_type": "Apartment", "address": {"street": "Kailua-Kona, HI, United States", "suburb": "Kailua/Kona", "government_area": "North Kona", "market": "The Big Island", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-155.96445, 19.5702], "is_location_exact": true}}, "score": 1.0},
{"name": "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!", "property_type": "Condominium", "address": {"street": "Lahaina, HI, United States", "suburb": "Maui", "government_area": "Lahaina", "market": "Maui", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-156.68012, 20.96996], "is_location_exact": true}}, "score": 1.0},
{"name": "Makaha Valley Paradise with OceanView", "property_type": "Condominium", "address": {"street": "Waianae, HI, United States", "suburb": "Leeward Side", "government_area": "Waianae", "market": "Oahu", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-158.20291, 21.4818], "is_location_exact": true}}, "score": 1.0},
{"name": "~Ao Lele~ Flying Cloud", "property_type": "Treehouse", "address": {"street": "Volcano, HI, United States", "suburb": "Island of Hawai\u02bbi", "government_area": "Puna", "market": "The Big Island", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-155.21763, 19.42151], "is_location_exact": false}}, "score": 1.0},
{"name": "Private OceanFront - Bathtub Beach. Spacious House", "property_type": "House", "address": {"street": "Laie, HI, United States", "suburb": "Ko'olauloa", "government_area": "Koolauloa", "market": "Oahu", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-157.91952, 21.63549], "is_location_exact": true}}, "score": 1.0},
{"name": "Banyan Bungalow", "property_type": "Bungalow", "address": {"street": "Waialua, HI, United States", "suburb": "O\u02bbahu", "government_area": "North Shore Oahu", "market": "Oahu", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-158.1602, 21.57561], "is_location_exact": false}}, "score": 1.0},
{"name": "March 2019 availability! Oceanview on Sugar Beach!", "property_type": "Condominium", "address": {"street": "Kihei, HI, United States", "suburb": "Maui", "government_area": "Kihei-Makena", "market": "Maui", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-156.46881, 20.78621], "is_location_exact": true}}, "score": 1.0},
{"name": "Tropical Jungle Oasis", "property_type": "Condominium", "address": {"street": "Hilo, HI, United States", "suburb": "Island of Hawai\u02bbi", "government_area": "South Hilo", "market": "The Big Island", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-155.09259, 19.73108], "is_location_exact": true}}, "score": 1.0},
{"name": "Jubilee By The Sea (Ocean Views)", "property_type": "House", "address": {"street": "Kailua-Kona, HI, United States", "suburb": "Island of Hawai\u02bbi", "government_area": "North Kona", "market": "The Big Island", "country": "United States", "country_code": "US", "location": {"type": "Point", "coordinates": [-155.97349, 19.61318], "is_location_exact": false}}, "score": 1.0}
1
mongodb-driver-kotlin-coroutine
4.10.0 또는 그 이상의 버전
2
3

다음 코드 예제에서는:

  • mongodb 패키지 및 종속성을 가져옵니다.

  • Atlas 클러스터에 대한 연결을 설정합니다.

  • 복합 $search 단계를 사용하여 다음을 수행합니다.

    • 결과 mustcoordinates 세트에 의해 정의된 Polygon 내에 포함되도록 지정합니다.

    • condominium 유형의 속성에 대한 결과에 우선 순위를 부여합니다.

  • $project 단계를 사용하여 다음을 수행합니다.

    • name, addressproperty_type 를 제외한 모든 필드를 제외합니다.

    • 반환된 각 문서에 관련성 score 을 추가합니다.

  • AggregateFlow 인스턴스에서 쿼리와 일치하는 문서를 인쇄합니다.

1import com.mongodb.client.model.Aggregates.limit
2import com.mongodb.client.model.Aggregates.project
3import com.mongodb.client.model.Projections.*
4import com.mongodb.kotlin.client.coroutine.MongoClient
5import kotlinx.coroutines.runBlocking
6import org.bson.Document
7
8fun main() {
9 // connect to your Atlas cluster
10 val uri = "<connection-string>"
11 val mongoClient = MongoClient.create(uri)
12
13 // set namespace
14 val database = mongoClient.getDatabase("sample_airbnb")
15 val collection = database.getCollection<Document>("listingsAndReviews")
16
17 runBlocking {
18 // define pipeline
19 val agg = Document(
20 "\$search",
21 Document("index", "geo-json-tutorial")
22 .append(
23 "compound",
24 Document(
25 "must", listOf(
26 Document(
27 "geoWithin",
28 Document(
29 "geometry",
30 Document("type", "Polygon")
31 .append(
32 "coordinates",
33 listOf(
34 listOf(
35 listOf(-161.323242, 22.512557),
36 listOf(-152.446289, 22.065278),
37 listOf(-156.09375, 17.811456),
38 listOf(-161.323242, 22.512557)
39 )
40 )
41 )
42 )
43 .append("path", "address.location")
44 )
45 )
46 )
47 .append(
48 "should", listOf(
49 Document(
50 "text",
51 Document("path", "property_type")
52 .append("query", "Condominium")
53 )
54 )
55 )
56 )
57 )
58
59 // run pipeline and print results
60 val resultsFlow = collection.aggregate<Document>(
61 listOf(
62 agg,
63 limit(10),
64 project(fields(
65 excludeId(),
66 include("name", "address", "property_type"),
67 computed("score", Document("\$meta", "searchScore"))
68 ))
69 )
70 )
71 resultsFlow.collect { println(it) }
72 }
73 mongoClient.close()
74}
4

샘플을 실행하기 전에 <connection-string>을 Atlas 연결 문자열로 바꿉니다. 연결 문자열에는 데이터베이스 사용자의 자격 증명이 포함되어 있어야 합니다. 자세한 내용은 드라이버를 통한 연결을 참조하세요.

5

IDE에서 GeoQuery.kt 프로그램을 실행하면 다음 문서가 인쇄됩니다.

Document{{name=Ocean View Waikiki Marina w/prkg, property_type=Condominium, address=Document{{street=Honolulu, HI, United States, suburb=Oʻahu, government_area=Primary Urban Center, market=Oahu, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-157.83919, 21.28634], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!, property_type=Condominium, address=Document{{street=Lahaina, HI, United States, suburb=Maui, government_area=Lahaina, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.68012, 20.96996], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=Makaha Valley Paradise with OceanView, property_type=Condominium, address=Document{{street=Waianae, HI, United States, suburb=Leeward Side, government_area=Waianae, market=Oahu, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-158.20291, 21.4818], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=March 2019 availability! Oceanview on Sugar Beach!, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.46881, 20.78621], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=Tropical Jungle Oasis, property_type=Condominium, address=Document{{street=Hilo, HI, United States, suburb=Island of Hawaiʻi, government_area=South Hilo, market=The Big Island, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-155.09259, 19.73108], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=2 Bdrm/2 Bath Family Suite Ocean View, property_type=Condominium, address=Document{{street=Honolulu, HI, United States, suburb=Waikiki, government_area=Primary Urban Center, market=Oahu, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-157.82696, 21.27971], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=302 Kanai A Nalu Ocean front/view, property_type=Condominium, address=Document{{street=Wailuku, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.5039, 20.79664], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=Sugar Beach Resort 1BR Ground Floor Condo !, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.46697, 20.78484], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=2 BR Oceanview - Great Location!, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Kihei/Wailea, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.44917, 20.73013], is_location_exact=true}}}}, score=2.238388776779175}}
Document{{name=PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC, property_type=Condominium, address=Document{{street=Kihei, HI, United States, suburb=Maui, government_area=Kihei-Makena, market=Maui, country=United States, country_code=US, location=Document{{type=Point, coordinates=[-156.4409, 20.69735], is_location_exact=true}}}}, score=2.238388776779175}}
1
2

다음 코드 예제에서는:

  • MongoDB의 Node.js 드라이버인 mongodb를 가져옵니다.

  • MongoClient 클래스의 인스턴스를 만들어 Atlas 클러스터에 대한 연결을 설정합니다.

    • 복합 $search 단계를 사용하여 다음을 수행합니다.

      • 결과 mustcoordinates 세트에 의해 정의된 Polygon 내에 포함되도록 지정합니다.

      • condominium 유형의 속성에 대한 결과에 우선 순위를 부여합니다.

    • $project 단계를 사용하여 다음을 수행합니다.

      • name, addressproperty_type 를 제외한 모든 필드를 제외합니다.

      • 반환된 각 문서에 관련성 score 을 추가합니다.

  • 커서 위를 반복하여 쿼리와 일치하는 문서를 인쇄합니다.

    1const { MongoClient } = require("mongodb");
    2
    3// connect to your Atlas cluster
    4const uri ="<connection-string>";
    5
    6const client = new MongoClient(uri);
    7
    8async function run() {
    9 try {
    10 await client.connect();
    11
    12 // set namespace
    13 const database = client.db("sample_airbnb");
    14 const coll = database.collection("listingsAndReviews");
    15
    16 // define pipeline
    17 const agg = [
    18 {
    19 '$search': {
    20 'index': 'geo-json-tutorial',
    21 'compound': {
    22 'must': [
    23 {
    24 'geoWithin': {
    25 'geometry': {
    26 'type': 'Polygon',
    27 'coordinates': [
    28 [
    29 [
    30 -161.323242, 22.512557
    31 ], [
    32 -152.446289, 22.065278
    33 ], [
    34 -156.09375, 17.811456
    35 ], [
    36 -161.323242, 22.512557
    37 ]
    38 ]
    39 ]
    40 },
    41 'path': 'address.location'
    42 }
    43 }
    44 ],
    45 'should': [
    46 {
    47 'text': {
    48 'path': 'property_type',
    49 'query': 'Condominium'
    50 }
    51 }
    52 ]
    53 }
    54 }
    55 }, {
    56 '$limit': 10
    57 }, {
    58 '$project': {
    59 '_id': 0,
    60 'name': 1,
    61 'address': 1,
    62 'property_type': 1,
    63 'score': {
    64 '$meta': 'searchScore'
    65 }
    66 }
    67 }
    68 ];
    69 // run pipeline
    70 const result = await coll.aggregate(agg);
    71
    72 // print results
    73 await result.forEach((doc) => console.log(doc));
    74 } finally {
    75 await client.close();
    76 }
    77}
    78run().catch(console.dir);
3

샘플을 실행하기 전에 <connection-string>을 Atlas 연결 문자열로 바꿉니다. 연결 문자열에는 데이터베이스 사용자의 자격 증명이 포함되어 있어야 합니다. 자세한 내용은 드라이버를 통한 연결을 참조하세요.

4

다음 명령을 실행하여 컬렉션을 쿼리합니다.

node run-geo-query.js
{
name: 'Ocean View Waikiki Marina w/prkg',
property_type: 'Condominium',
address: {
street: 'Honolulu, HI, United States',
suburb: 'Oʻahu',
government_area: 'Primary Urban Center',
market: 'Oahu',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -157.83919, 21.28634 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!',
property_type: 'Condominium',
address: {
street: 'Lahaina, HI, United States',
suburb: 'Maui',
government_area: 'Lahaina',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.68012, 20.96996 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'Makaha Valley Paradise with OceanView',
property_type: 'Condominium',
address: {
street: 'Waianae, HI, United States',
suburb: 'Leeward Side',
government_area: 'Waianae',
market: 'Oahu',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -158.20291, 21.4818 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'March 2019 availability! Oceanview on Sugar Beach!',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.46881, 20.78621 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'Tropical Jungle Oasis',
property_type: 'Condominium',
address: {
street: 'Hilo, HI, United States',
suburb: 'Island of Hawaiʻi',
government_area: 'South Hilo',
market: 'The Big Island',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -155.09259, 19.73108 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: '2 Bdrm/2 Bath Family Suite Ocean View',
property_type: 'Condominium',
address: {
street: 'Honolulu, HI, United States',
suburb: 'Waikiki',
government_area: 'Primary Urban Center',
market: 'Oahu',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -157.82696, 21.27971 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: '302 Kanai A Nalu Ocean front/view',
property_type: 'Condominium',
address: {
street: 'Wailuku, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.5039, 20.79664 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'Sugar Beach Resort 1BR Ground Floor Condo !',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.46697, 20.78484 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: '2 BR Oceanview - Great Location!',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Kihei/Wailea',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.44917, 20.73013 ],
is_location_exact: true
}
},
score: 2.238388776779175
},
{
name: 'PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC',
property_type: 'Condominium',
address: {
street: 'Kihei, HI, United States',
suburb: 'Maui',
government_area: 'Kihei-Makena',
market: 'Maui',
country: 'United States',
country_code: 'US',
location: {
type: 'Point',
coordinates: [ -156.4409, 20.69735 ],
is_location_exact: true
}
},
score: 2.238388776779175
}
1
2

다음 코드 예제에서는:

  • pymongo, MongoDB의 Python 드라이버 및 dns 모듈을 가져옵니다. 이 모듈은 DNS 시드 리스트 연결 문자열을 사용하여 pymongoAtlas에 연결하는 데 필요합니다.

  • MongoClient 클래스의 인스턴스를 만들어 Atlas 클러스터에 대한 연결을 설정합니다.

    • 복합 $search 단계를 사용하여 다음을 수행합니다.

      • 결과 mustcoordinates 세트에 의해 정의된 Polygon 내에 포함되도록 지정합니다.

      • condominium 유형의 속성에 대한 결과에 우선 순위를 부여합니다.

    • $project 단계를 사용하여 다음을 수행합니다.

      • name, addressproperty_type 를 제외한 모든 필드를 제외합니다.

      • 반환된 각 문서에 관련성 score 을 추가합니다.

  • 커서 위를 반복하여 쿼리와 일치하는 문서를 인쇄합니다.

    1import pymongo
    2
    3# connect to your Atlas cluster
    4client = pymongo.MongoClient('<connection-string>')
    5
    6# define pipeline
    7pipeline = [
    8 {
    9 '$search': {
    10 'index': 'geo-json-tutorial',
    11 'compound': {
    12 'must': [
    13 {
    14 'geoWithin': {
    15 'geometry': {
    16 'type': 'Polygon',
    17 'coordinates': [
    18 [
    19 [
    20 -161.323242, 22.512557
    21 ], [
    22 -152.446289, 22.065278
    23 ], [
    24 -156.09375, 17.811456
    25 ], [
    26 -161.323242, 22.512557
    27 ]
    28 ]
    29 ]
    30 },
    31 'path': 'address.location'
    32 }
    33 }
    34 ],
    35 'should': [
    36 {
    37 'text': {
    38 'path': 'property_type',
    39 'query': 'Condominium'
    40 }
    41 }
    42 ]
    43 }
    44 }
    45 }, {
    46 '$limit': 10
    47 }, {
    48 '$project': {
    49 '_id': 0,
    50 'name': 1,
    51 'address': 1,
    52 'property_type': 1,
    53 'score': {
    54 '$meta': 'searchScore'
    55 }
    56 }
    57 }
    58]
    59# run pipeline
    60result = client["sample_airbnb"]["listingsAndReviews"].aggregate(pipeline)
    61
    62# print results
    63for i in result:
    64 print(i)
3

샘플을 실행하기 전에 <connection-string>을 Atlas 연결 문자열로 바꿉니다. 연결 문자열에는 데이터베이스 사용자의 자격 증명이 포함되어 있어야 합니다. 자세한 내용은 드라이버를 통한 연결을 참조하세요.

4
python run-geo-query.py
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Primary Urban Center",
"location": {
"coordinates": [
-157.83919,
21.28634
],
"is_location_exact": true,
"type": "Point"
},
"market": "Oahu",
"street": "Honolulu, HI, United States",
"suburb": "O\u02bbahu"
},
"name": "Ocean View Waikiki Marina w/prkg",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Lahaina",
"location": {
"coordinates": [
-156.68012,
20.96996
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Lahaina, HI, United States",
"suburb": "Maui"
},
"name": "LAHAINA, MAUI! RESORT/CONDO BEACHFRONT!! SLEEPS 4!",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Waianae",
"location": {
"coordinates": [
-158.20291,
21.4818
],
"is_location_exact": true,
"type": "Point"
},
"market": "Oahu",
"street": "Waianae, HI, United States",
"suburb": "Leeward Side"
},
"name": "Makaha Valley Paradise with OceanView",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Kihei-Makena",
"location": {
"coordinates": [
-156.46881,
20.78621
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Kihei, HI, United States",
"suburb": "Maui"
},
"name": "March 2019 availability! Oceanview on Sugar Beach!",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "South Hilo",
"location": {
"coordinates": [
-155.09259,
19.73108
],
"is_location_exact": true,
"type": "Point"
},
"market": "The Big Island",
"street": "Hilo, HI, United States",
"suburb": "Island of Hawai\u02bbi"
},
"name": "Tropical Jungle Oasis",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Primary Urban Center",
"location": {
"coordinates": [
-157.82696,
21.27971
],
"is_location_exact": true,
"type": "Point"
},
"market": "Oahu",
"street": "Honolulu, HI, United States",
"suburb": "Waikiki"
},
"name": "2 Bdrm/2 Bath Family Suite Ocean View",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Kihei-Makena",
"location": {
"coordinates": [
-156.5039,
20.79664
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Wailuku, HI, United States",
"suburb": "Maui"
},
"name": "302 Kanai A Nalu Ocean front/view",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Kihei-Makena",
"location": {
"coordinates": [
-156.46697,
20.78484
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Kihei, HI, United States",
"suburb": "Maui"
},
"name": "Sugar Beach Resort 1BR Ground Floor Condo !",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Kihei-Makena",
"location": {
"coordinates": [
-156.44917,
20.73013
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Kihei, HI, United States",
"suburb": "Kihei/Wailea"
},
"name": "2 BR Oceanview - Great Location!",
"property_type": "Condominium",
"score": 2.238388776779175
}
{
"address": {
"country": "United States",
"country_code": "US",
"government_area": "Kihei-Makena",
"location": {
"coordinates": [
-156.4409,
20.69735
],
"is_location_exact": true,
"type": "Point"
},
"market": "Maui",
"street": "Kihei, HI, United States",
"suburb": "Maui"
},
"name": "PALMS AT WAILEA #905-2BR-REMODELED-LARGE LANAI-AC",
"property_type": "Condominium",
"score": 2.238388776779175
}

돌아가기

분음 부호 무감지